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Abstract

We present a method to assess the reliability of local structure prediction from sequence. We introduce a greedy algorithm
for filtering and enrichment of dynamic fragment libraries, compiled with remote-homology detection methods such as
HHfrag. After filtering false hits at each target position, we reduce the fragment library to a minimal set of representative
fragments, which are guaranteed to have correct local structure in regions of detectable conservation. We demonstrate that
the location of conserved motifs in a protein sequence can be predicted by examining the recurrence and structural
homogeneity of detected fragments. The resulting confidence score correlates with the local RMSD of the representative
fragments and allows us to predict torsion angles from sequence with better accuracy compared to existing machine
learning methods.
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Introduction

Deciphering the protein folding problem remains a fundamen-

tal challenge. Although experimental and theoretical studies have

improved our understanding of the process, there are still many

open problems, one of which is to reliably predict the native

structure from sequence only. It has become clear that protein

sequences do not adopt unlimited varieties of global and local

shapes. Proteins that fold do not explore the complete conforma-

tional space [1]. Rather, the local structure of each polypeptide

segment is biased by the geometrical and chemical properties of its

constituent amino acids [2]. This observation prompted the

development of structural alphabets in an attempt to partition

known protein structures into a dictionary of discrete motif

prototypes [3]. It has been reported that such fragment libraries

may be sufficient to describe all protein folds in terms of recurrent

building blocks [4,5].

One of the first efforts to systematically study the amino acid

preferences of known structural motifs is the I-Sites fragment

library [6,7], which was later adapted for use in ab initio fragment

assembly [8] with Rosetta [9]. This has proven to be a successful

strategy for local structure prediction from sequence. However,

not all motifs have identifiable sequence preferences. A fixed set of

sequence-based prototypes is generally insufficient to detect all

structural elements in existing protein structures [10]. Although

the sensitivity of sequence-based fragment detection can be pushed

to higher levels by dynamic fragment selection [9], our studies

show that protein structures are not simple combinations of

conserved sequence motifs. Rather, we observe an alternating

pattern of easily detectable elements (often matching to known I-

Sites), connected by highly variable regions with no detectable

sequence conservation (typically flexible coils and linkers) [10].

The ability to discriminate between these high- and low-precision

regions is important, since local structure prediction in non-

conserved regions is unreliable and should not be trusted.

Conversely, protocols that assemble fragments should be able to

obtain information about the locations of the conserved motif

instances in a given protein sequence and utilize the corresponding

torsion angle predictions with higher precedence.

In this study, we introduce a reliable algorithm for blind

prediction of local high- and low-precision regions in protein

sequences. By analysing the structural consistency and recurrence

of motifs in dynamic HHfrag libraries, this method quantifies the

quality of fragment assignment at each query position and

nominates representative fragments, which are most likely to

match the local structure of the query closely. We show that the

confidence score of local structure prediction correlates well with

the local RMSD and torsion angle error of representative

fragments and can be used as a reliable predictor for the presence

of high- or low-precision regions. Finally, we illustrate how this

property can be used to predict torsion angles from sequence with

higher accuracy than existing machine learning methods [11,12].

Methods

To predict the torsion angles of a target protein of unknown

structure, we first build a dynamic fragment library using the

HHfrag method for fragment detection from sequence [10]. The

reliability of fragment detection at each target position is then

analyzed by clustering and filtering all fragments, covering a given

target residue. If the obtained confidence score for this position is

indicative of a local region of high precision, our algorithm
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proceeds by selecting a representative fragment (the centroid) and

extracts the torsion angles of the centroid. The final list of

predicted torsion angles for the entire target sequence is compiled

from the set of all nominated centroids.

Dynamic Fragment Selection
For a given target sequence, we compute a dynamic library of

variable-length fragments using the standard HHfrag protocol

[10]. HHfrag is a sensitive and accurate fragment detection

method, which uses internally the HHsearch [13] algorithm for

local alignment of pairs of profile hidden Markov models (HMM).

For this purpose, both the query sequence and all template

proteins are represented as profile HMMs with secondary

structure information incorporated into the HHM files [14].

Sequence profiles are generated with PSI-BLAST [15]. Secondary

structure information is calculated with DSSP [16] from the

experimental structures of all templates or predicted with

PSIPRED [17] for the query. The database of template structures

(PDBS25) is a non-redundant subset of PDB [18], derived from

the April 2010 build of PDBselect25 [19] (4824 protein chains,

filtered at 25% sequence identity).

All detected fragments are directly excised by HHfrag from

their corresponding experimental structures. The resulting frag-

ment library is a position-specific, ordered set of structural motifs,

ranging from 6 to 21 residues in length [10]. Each fragment is

described by its matching query/subject positions, (Q,y) torsion

angle pairs and backbone coordinate trace.

Figure 1. The outlier rejection algorithm. The ShrinkCluster procedure operates on an undirected graph G. The algorithm keeps track of the total
sum of all edge weights in the graph (G:W ) and their average (G:D). V :W denotes the total weight of all edges incident to a given vertex V .
doi:10.1371/journal.pone.0076512.g001

Figure 2. Supporting procedures.
doi:10.1371/journal.pone.0076512.g002
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Fragment Clusters
To eliminate outliers in the raw dynamic fragment libraries and

select representative fragments for each target position, we propose

a greedy outlier rejection algorithm.

For every position i in the target sequence, we build a cluster of

all fragments, covering this position. Each fragment cluster is

represented by a graph whose nodes are fragments connected by

weighted edges. The edge weights are the Ca-RMSDs between

each given pair of fragments. Since all HHfrag libraries are

composed of motifs of varying length and start positions, some

fragments in a given cluster may overlap by less than 6 residues. In

such cases, the RMSD cannot be a meaningful indicator for the

structural divergence between fragments. Therefore, we do not

connect these pairs with an edge.

Figure 3. Local precision of filtered fragment libraries. The local precision of the complete HHfrag library for benchmark target 3 nzl was
measured by counting the percentage of assigned fragments below 1.5 Å Ca-RMSD to the native structure for each target residue (blue bars; see
[10]). The library was then filtered using the outlier rejection algorithm, described in Methods. The precision of the resulting library of representative
fragments was measured in a similar way, except that only one fragment per target position (its associated centroid) was taken into account. The
green curve shows the corresponding confidence values for each target residue.
doi:10.1371/journal.pone.0076512.g003

Figure 4. Reliability of the confidence score. Shown is the correlation between the confidence scores of all residue-wise centroids in our CASP9
benchmark and their Ca-RMSD similarity to the corresponding native structures. The RMSD values were calculated over the entire lengths of the
representative fragments.
doi:10.1371/journal.pone.0076512.g004
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Each fragment cluster has two key properties:

1. Recurrence (r) – refers to the sequence conservation of a

structural motif. The recurrence of a given motif is measured

by counting the number of its instances in the non-redundant

database of profiles (PDBS25). We compute the recurrence of a

query position and its associated cluster by simply counting the

number of assigned fragments, covering this position, which is

the number of vertices in the cluster.

2. Consistency (c) – characterizes the structural homogeneity of the

fragments. We measure the consistency of a cluster by

calculating the subset of structurally similar pairs of fragments.

Two vertices are considered similar if the weight of their

connecting edge, measured by the Ca-RMSD between the two

fragments, does not exceed a critical threshold of 1.5 Å.

Filtering
The goal of the outlier rejection algorithm is to improve the

structural consistency of a given cluster by performing a minimum

number of node deletions (Figure 1).

Every cluster (G) keeps track of the total sum of all of its pairwise

RMSDs (W ). Each cluster vertex (v) also maintains an up-to-date

Table 1. Torsion angle prediction performance.

Method Confidence MAE (Q) MAE (y)

TANGLE 0.8 31.9634.9u 90.7630.6u

ANGLOR 0.8 18.7625.8u 86.4643.0u

HHfrag 0.8 18.6627.0u 22.5636.2u

TANGLE 0.0 34.2636.4u 87.4632.3u

ANGLOR 0.0 23.5630.0u 84.7647.6u

HHfrag 0.0 25.4634.7u 34.9648.9u

Mean absolute error (MAE) of Q and y torsion angle prediction for high-
confidence (C§0:8) and all residues (C§0) in our benchmark.
doi:10.1371/journal.pone.0076512.t001

Figure 5. Distributions of the absolute errors of predicted torsion angles. Shown are the distributions of Q and y prediction errors for high-
confidence (right) and all target residues (left) in our benchmark.
doi:10.1371/journal.pone.0076512.g005

Figure 6. Torsion angle prediction accuracy at increasing
confidence cutoffs. We measured the mean absolute error (MAE) of
Q and y angle prediction at increasing confidence cutoffs. For each
cutoff, we computed the Q and y MAE for all target residues in our
benchmark, having a confidence greater or equal to the cutoff. The
optimal curve represents the lowest possible MAE, which our filtering
algorithm could achieve by always picking a centroid identical to the
best-fitting fragment at each position (the fragment with the lowest Ca-
RMSD).
doi:10.1371/journal.pone.0076512.g006
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sum of the weights of all edges incident to it Wv. A fragment

cluster is said to be stable, when the average RMSD D between all

adjacent vertices is lower than the threshold of 1.5 Å:

D~
1

DED

X
(u,v)[E

v(u,v)ƒ1:5 ð1Þ

where E is the set of all edges and v(u,v) is the RMSD between a

pair of fragments u and v. The algorithm performs iterative

rejections, until the cluster stability criterion is satisfied. On each

iteration, we probe all nodes by calculating the resulting average

RMSD D’v if vertex v is excluded. This is given by the following

greedy criterion:

D’opt~ min
v[V

P
e[E

v(e){
P

u[N(v)

v(u,v)

DED{DN(v)D
ð2Þ

where N(v) is the adjacency set of vertex v. The fragment, whose

exclusion from the cluster would produce the most significant drop

in D’ towards stability (Dƒ1:5Å), is selected for deletion and

removed.

When the graph is implemented using an adjacency sets data

structure, each removal requires linear time of O(DV D) (Figure 2),

needed to update all adjacency sets (linear complexity) and

recalculate the cached sums of weights Wv of affected nodes

(constant time per fragment). If no fragment removal results in

decrease of the average RMSD D, this cluster is not able to shrink

further. Such clusters are considered diverging, which indicates

heterogeneous aggregates of false positive fragments. In such cases

we terminate the filtering procedure and the corresponding target

position remains unassigned, additionally marked to be part of a

low-precision region. The same result is also obtained if all cluster

nodes are rejected before stability has been reached.

The maximum number of iterations equals the number of

fragments DV D in a cluster. The amount of work performed on each

iteration k is equal to the current number of nodes DVk D on

iteration k (to identify the candidate for rejection) plus additional

DVkD (to remove the candidate and update all adjacency sets and

cached weight sums). The worst-case running time of the filtering

algorithm is thus given by:

XDV D

k~1

2DVk D~H(DV D2zDV D) ð3Þ

However, most clusters reach stability much earlier than k~DV D
number of iterations, so the typical running time is in practice

much better.

Representative Fragments and Confidence
We define the representative fragment of a stable cluster to be its

centroid, which is the node with the minimum average RMSD to

its adjacent vertices (Figure 2). Since the number of edges per node

may vary, we consider only fragments connected to a significant

number of cluster elements (§50%).

The confidence score C, assigned to a given target position i and

its representative fragment, we derive from the recurrence (r) and

structural consistency values (c) of the corresponding filtered

(stable) cluster:

C~c log10 r~
e

DED
log10 DV D ð4Þ

where DV D is the number of fragments in the filtered cluster, DED is

its total number of edges and e is the number of pairwise RMSDs

not greater than 1.5 Å.

Prediction of Torsion Angles
We use the filtered fragment libraries and their associated

representative fragments for direct prediction of torsion angles

from sequence – a strategy, which bears resemblance to earlier

approaches [20]. For each position i in a given target protein, we

build a fragment cluster and compute the centroid fragment, as

outlined above. The pair of torsion angle values (Qi,yi) of the

representative fragment at target position i is extracted from the

centroid’s experimental structure and directly reported as the final

prediction at that position. A confidence value of 0.8 or higher

indicates a reliable prediction within a local region of high

precision.

Performance Evaluation
We used a set of 106 protein targets from the CASP9

competition [21] to benchmark the accuracy of torsion angle

prediction. The PDBS25 database of template structures, used for

fragment extraction by HHfrag, contains only older entries and no

homologous chains. For each target, we obtain a prediction for its

torsion angles with the procedure, described above. The predic-

tion accuracy was measured by the mean absolute error (MAE)

between the predicted (P) and experimental (E) torsion angle

values:

MAE~
1PM

i~1 Li

XM
i~1

XLi

j~1

DPij{Eij D ð5Þ

where M is the number of proteins and Li is the number of

residues in protein i of confidence greater than a chosen cutoff

(Cwx). All predicted and experimental torsion angles are

computed in degrees within the ½{180
0
,180

0 � range. To keep

the error values in that range as well, we apply the following rule

when calculating the absolute angular errors DAEij D:

DAEij D~
DAEijz360D if AEijv{180

DAEij{360D if AEijwz180

DAEij D otherwise

8><
>:

ð6Þ

Predicted torsion angles for the same set of proteins were also

obtained with ANGLOR [11] and TANGLE [12] using their web

server interfaces. MAE values were calculated using an identical

procedure.

The quality of the fragment library is also evaluated in terms of

local precision and coverage (see [10]). The accuracy of an assigned

fragment is assessed by the local Ca-RMSD of the fragment to the

native structure. If this RMSD is below 1.5 Å, the fragment is

considered a positive (compatible) hit. The percentage of correctly

assigned fragments that cover the same residue is the local

precision of the fragment library. The coverage is the percentage

of residues that are covered by at least one compatible fragment.

Confidence-Guided Local Structure Prediction
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Results and Discussion

In an earlier study, we discussed the precision of popular

methods for local structure prediction by sequence-based remote

homology detection [10]. We have shown that the precision of

fragment detection with this strategy is relatively low (40% on

average for Rosetta NNmake [9,22] and 70% for HHfrag).

Additionally, the precision of dynamic fragment libraries is never

uniform along the target sequences. Local zones of high precision

emerge in regions, containing detectable, well-known structural

motifs [10]. These motifs were found to exhibit a certain degree of

sequence profile conservation and can be observed in a wide range

of evolutionary unrelated proteins, thus serving the purpose of

structural design patterns [4,6]. The quality of fragment libraries

however rapidly decreases as we move away from the high-

precision regions and enter areas of very high variability, such as

loops and linkers.

In this study, we propose an intuitive model for the prediction of

local high- and low-precision zones and demonstrate how this

method can be applied to increase the reliability of local structure

prediction.

The Confidence Score
A key property of locally conserved motifs is that they usually

have good local sequence-structure correlation [6]. Such query

sequence regions generate lists of matching fragment instances of

higher structural consistency (Figure 3). Additionally, the most

conserved motifs, such as the GD box [23], can be highly

ubiquitous and often contain hundreds of detectable instances in

a non-redundant structural database. The recurrence of a given motif

was determined to be an equally strong indicator for reliable local

structure prediction and this observation already plays an integral

role in the HHfrag fragment detection method [14].

The confidence score of fragment assignment (Equation 4)

integrates these two properties. The recurrence term in the

expression is a weighting factor for the structural consistency of all

instances of a given motif. Highly conserved motifs have a

recurrence of 50–100 or more, which increases confidence because

the structural consistency amplified by a factor greater than one.

Clusters of size greater than 10 are up-weighted because 10 is the

critical number of HHsearch hits, below which the program

switches to a less strict, greedy hit-ranking mode [10,13]. At r~10,

the logarithm of the recurrence is 1 and the confidence is

determined entirely by the degree of structural consistency.

Clusters of size less than 10 are associated with increasing

uncertainty and thus severely penalized. We can follow the same

intuition to define natural thresholds for the confidence score:

1. Cw1: credible local structure prediction, which is guaranteed

to be accurate. For example, a confidence value of 1.5 can be

obtained for a highly homogeneous cluster (75%) of large size

(100 fragment instances).

2. C~1: transitional zone. Confidence value of 1 corresponds to

a rare motif (10 instances) with maximum structural conser-

vation or a highly abundant motif (100 instances) at moderate

consistency of 50%.

3. Cv0:8: uncertainty. This confidence threshold is equivalent to

a small fragment cluster (10 instances) at consistency equal to

the average precision of HHfrag for ordinary I-Sites (80%) or a

highly recurrent motif (100 instances) at low precision (40%).

Filtered Fragment Libraries
To maximise the precision of fragment-based local structure

prediction in conserved regions, we propose a filtering algorithm

used to compile reduced fragment libraries of low complexity and

very high local precision. For each query position, we build a

fragment cluster, as outlined in Methods. Inconsistent fragments in

each cluster are iteratively rejected until a sufficient level of

structural consistency is reached. A single, representative fragment

is then selected out of the pool of surviving cluster members. After

removing the outliers in all clusters, the entire library is enriched

with high-quality fragments. In regions of local conservation, this

always results in local centroid precision of 100%, i.e. represen-

tative fragments in those regions are guaranteed to have a low

RMSD to the native structure (Ca-RMSD ƒ1:5 Å).

This is illustrated in Figure 3. After filtering the raw HHfrag

library for target 3 nzl, we obtain a list of position-specific

representative fragments (one fragment per query position). The

local precision of the resulting filtered library of centroids is 100%

for all high-accuracy regions, observed on the original plot (see

Figure 3 for details). The confidence curve correlates well with the

observed local precision pattern, dropping rapidly in regions

where inaccurate centroids have been selected. Similar results

were obtained after filtering all remaining CASP9 targets from the

standard HHfrag benchmark [10] (see supplementary material).

Confidence-guided Local Structure Prediction
To study the reliability of the confidence score as an indicator

for local motif conservation, we measured the local precision of

calculated centroids for all targets in the standard HHfrag

benchmark [10].

Figure 4 shows the overall correlation between local accuracy of

cluster centroids and confidence in our benchmark. A weak

confidence value (0.1–0.6) is a clear signal for the presence of a

low-accuracy region. Higher confidence values (0.8–1.0) indicate

generally conserved motifs, which sometimes cannot be predicted

reliably. The overall centroid precision in this confidence interval

is 80+17% with an average RMSD to native structures of

1.0+0.9 Å. Confidence greater than 1.0 guarantees an accurate

and reliable local structure prediction with a very low chance of an

error. The overall precision in such regions reaches 92+13% with

an average RMSD to native structures as low as 0:58+0:57 Å.

These results confirm the expected confidence thresholds derived

in the previous section.

Based on these observations, we propose a context-aware

method for prediction of torsion angles from sequence (see

Methods). In query regions of high confidence (0.8 or better), we

rely on the corresponding centroids as a source of highly accurate

torsion angle predictions. This allows client methods to consume

predicted torsion angles in order of decreasing confidence. The

confidence score brings contextual perspective to the local

structure prediction, allowing fragment assembly applications to

decide at runtime whether a given prediction should be trusted or

rather replaced by exhaustive sampling of a generic structural

alphabet.

Benchmark
We examined the performance of our centroid-based torsion

angle predictor on 106 protein targets from the CASP9

competition [21]. The mean absolute error (MAE) of predicted

Q and y angles was compared against the values, obtained with

two popular methods for torsion angle prediction from sequence:

ANGLOR [11] and TANGLE [12]. The overall precision of

HHFrag in comparison with these methods is summarized in

Table 1.

Confidence-Guided Local Structure Prediction
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When regions of any confidence are considered, our method

predicts Q angles with slightly lower accuracy than ANGLOR (2u
higher MAE), but better than TANGLE. For y angles however,

HHfrag is significantly more accurate, improving on both

ANGLOR and TANGLE by a 50u lower MAE (Figure 5). The

observed MAE of HHFrag is 25.4u for Q and 34.9u for y angles on

average.

As expected, the quality of torsion angle prediction with HHfrag

improves further when the confidence score of each query position

is taken into account (Figure 6. In target regions of C§0:8, the

average MAE drops by 6.8u and 12.4u for Q and y angles

respectively. Generally, the MAE of HHfrag predictions gradually

decreases as we discard regions of lower confidence (Figure 6).

Such tendency is less pronounced for Q angle predictions with

ANGLOR or TANGLE and completely lacking when these

methods are used to predict y angles (Figure 6). HHfrag does not

always select optimal centroids in low-confidence regions (Cv0:8)

as the lack of sufficient recurrence and consistency of such clusters

hinders the filtering algorithm. However, in transitional zones

(C§0:8), the deviation from the optimal MAE becomes negligible

and for high-confidence regions (C§1) our method is guaranteed

to extract torsion angles from the best-fitting fragment at each

position. These results highlight the importance of taking the local

conservation into account and confirm the utility of our

confidence-guided prediction strategy.

Availability
The fragment filtering algorithm and the confidence-guided

torsion angle predictor are implemented as an HHfrag extension

in version 1.2 of the CSB open-source SDK [24]. An HHfrag web

server is available at http://toolkit.tuebingen.mpg.de/hhfrag. The

standalone executable, source code and Python API are freely

available for download at http://csb.codeplex.com/releases.

Conclusion

We discussed the correlation between the quality of local

structure prediction from sequence and the degree of local motif

conservation. We introduced a greedy algorithm for fragment

filtering, which can be used to decrease the complexity of dynamic,

sequence-based fragment libraries. This algorithm takes a central

part of our confidence-guided framework for prediction of local

conservation, which captures the structural homogeneity and

recurrence of detected fragments. Protein sequence regions,

containing instances of ubiquitous and structurally consistent

motifs, generally correspond to zones of very high local accuracy.

We showed that this information can be used for reliable

prediction of torsion angles from sequence with better accuracy

compared to existing machine learning methods.

Supporting Information

Benchmark S1 Local centroid precision for each target
in the benchmark set and a breakdown of the torsion
angle prediction performance by residue type and
secondary structure.
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