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Abstract 

Over the past 30 years the literature has burgeoned with in-situ approaches for groundwater 

remediation. Of the methods currently available, the use of metallic iron (Fe0) in permeable 

reactive barrier (PRB) systems is one of the most commonly applied. Despite such interest, an 

increasing amount of experimental and field observations have reported inconsistent Fe0 

barrier operation compared to contemporary theory. In the current work, a critical review of 

the physical chemistry of aqueous Fe0 corrosion in porous media is presented. Subsequent 

implications for the design of Fe0 filtration systems are modelled. The results suggest that: (i) 

for the pH range of natural waters (> 4.5), the high volumetric expansion of Fe0 during 

oxidation and precipitation dictates that Fe0 should be mixed with a non-expansive material; 

(ii) naturally-occurring solute precipitates have a negligible impact on permeability loss 

compared to Fe0 expansive corrosion; and (iii) the proliferation of H2 metabolising bacteria 
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may contribute to alleviate permeability loss. As a consequence, it is suggested that more 

emphasis must be placed on future work with regard to considering the Fe
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physical (size-exclusion) water filter device. 
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Acronym List 

ITRC  Interstate Technology & Regulatory Council 

PRB  Permeable reactive barrier 

RZ  Reactive Zone 

ZVI  Zerovalent iron 

 

1 Introduction 

Permeable reactive barriers containing metallic iron as a reactive filler material (Fe0 PRBs) is 

an established technology for groundwater remediation [1-10]. At present, more than 120 Fe0 

PRBs have been installed worldwide, and effective performance has typically been reported 

[10-13]. Fe0 PRBs typically contain either pure Fe0 or a mixture of Fe0 and another material, 

such as gravel or sand. The incorporation of a secondary material is typically employed either 

to meet design requirements, cost, or to limit permeability loss. In such cases, potential 

drawbacks on the kinetics of contaminant removal must be considered [14]. However, some 

available experimental results from batch [15,16] and column [14,17] studies suggest that 

admixing pumice/sand to Fe0 is beneficial for the process of contaminant removal. Therefore, 

the recent statement of Ulsamer [13] that “there is no conclusive evidence that a sand/iron mix 

is better or worse than a pure iron barrier” can be considered the current state-of-the-art. 

In addition, the challenge of determining the fundamental mechanisms which govern 

hydraulic conductivity (permeability) loss is yet to be properly addressed [10,11,13,18,19]. At 

present it is suggested that the mechanism of permeability loss in Fe0 PRBs is due to the 
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accumulation of insoluble minerals within the PRB pore network [10,13]. Relevant minerals 

include siderite (FeCO
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3), aragonite (CaCO3), and iron (hydr)oxides (e.g. Fe(OH)2, Fe(OH)3, 

FeOOH, Fe2O3, Fe3O4) [10,13,20-26]. Another mechanism reported attributes the 

permeability loss to the build-up of H2 gas, formed due to the hydrolysis of water during Fe0 

corrosion [11,27,28]. However, as H2 is a key source of energy for numerous different 

microorganism species [23,29-31], the contribution of H2 to the process of Fe0 PRB 

permeability loss has been ascribed as minor [32]. 

The theory that Fe0 PRB permeability loss is predominantly due to the accumulation of 

insoluble minerals within pore volumes was recently challenged by Henderson and Demond 

[11]. The authors cited that whilst natural groundwater constituents (e.g. carbonates) and 

contaminant species can occur in subsurface concentrations of several hundred parts per 

million (or mg per litre), the mass/volume occupied by the mineral precipitates will be minor 

compared to the large amount required to significantly impair the permeability of an average 

permeable reactive barrier system. Based on this premise they attributed the permeability loss 

to the accumulation of H2 gas, and suggested periodical venting to prevent build-up. All 

studies to date, however, have overlooked the role of the volumetric expansive iron corrosion 

products [33-36] in PRB permeability loss. 

In the current work, a multidisciplinary theoretical approach has been applied to analyse the 

relationship between the extent of Fe0 depletion and permeability loss in Fe0 beds (including 

water filters and PRBs), by linking: contemporary knowledge of the mechanisms which 

govern contaminant removal by Fe0 [37]; with mathematical modelling mass conservation 

equations. Much of the impetus for this work originates from recent work summarized in 

Noubactep et al. [38] wherein the advantages of admixing non-expansive materials to Fe0 

within Fe0 filtration systems are discussed. For the sake of clarity, the basic conservation 

equation for the oxidative dissolution of iron will be given. 

2 Conservation equation of iron corrosion at pH > 4.5 
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2.1 Basic conservation equation 81 
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The basic constitutive equation expressing the overall conservation of mass of any chemical 

element (j) consumed in a chemical reaction relates volume (V), dry bulk density (ρ), and 

chemical composition (C) and mass fluxes (m) into or out of a system [39]: 

VpρpCj,p/100 + mj,flux = VwρwCj,w/100    (1) 

The first term of Eq. 1 expresses the mass of element j, contained in the original material 

before reaction, subscripted as p. It is given by the product of volume (V in cm3), dry bulk 

density (ρ in g/cm3), and elemental concentration (C in weight %). The mass of element j 

introduced into or out of the considered volume is indicated as mj,flux and is added to the mass 

of j in the system. Fluxes (mj,flux) are positive if they enter the system and negative if they exit 

the system. On the right-hand side of Eq. 1, the mass of element j contained in the volume of 

reaction products, subscripted w, is given by the product of the new volume, dry bulk density, 

and element concentration. 

2.2 Conservation equation of iron corrosion at pH > 4.5 

For iron corrosion, the element of concern is iron (j = Fe) which is distributed between the 

original metallic iron (Fe0 = ZVI) and various iron hydroxides and oxides (w = ox). Eq. 1 can 

therefore be written as: 

VZVIρZVICFe,ZVI + mFe,flux = VoxρoxCFe,ox   (2) 

For pH > 4.5 the solubility of iron is very low and the flux of Fe (mFe,flux) can be largely 

neglected assuming that water flow rate is slow enough that the dissolution/precipitation 

reactions are at pseudo-equilibrium. Eq. 2 can be re-written as: 

VZVIρZVICFe,ZVI = VoxρoxCFe,ox    (2a) 

Eq. 2a suggests that Vox (iron oxide) must be larger than VFe (metallic iron) because all iron 

(hydr)oxides are less dense than Fe0 (Tab. 1). 

2.3 Volumetric strain 
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With regard to iron corrosion driven volume changes, there are three possibilities: (i) 

volumetric compression (V
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ZVI > Vox), (ii) isovolumetric transformation (VZVI = Vox), and (iii) 

volumetric expansion (VZVI < Vox). Accordingly, volumetric changes should be determined 

experimentally. This is accomplished by using the classical definition of strain, ε, the ratio of 

volume change in a process to the initial volume (Eq. 3): 

ε = (Vox – VZVI)/VZVI = (Vox/VZVI) – 1    (3) 

Eq. 3 suggests that the volumetric strain is positive because Vox/VZVI ≥ 2.1 [35]. 

In the next section, a new approach for the discussion of permeability loss will be given. This 

exercise will be based on the recent paper by Henderson and Demond [11]. 

3 Permeability loss in Fe0/H2O systems 

The purpose of this section is to discuss the relative importance of mineral precipitation, gas 

production and expansive iron corrosion for permeability loss in Fe0/H2O systems. Expansive 

iron corrosion products included rust. To this end, the species discussed by Henderson and 

Demond [11] will be considered individually (Table 1). 

A cylindrical column apparatus for Fe0 filtration has an internal diameter (D), a reactive 

length (Hrz), and a subsequent total volume Vrz (Vrz = π*D2*Hrz/4). Hrz may be a fraction of 

the length of the column apparatus (Hrz ≤ H). A column may also contain several reactive 

zones. The discussion herein is limited to a single reactive zone. The ratio of the initial 

volume of the void space (inter-particular porosity) is Φ0 and the volume of pore is Vp = 

Φ0*Vrz. The volume occupied by the solid particles Vsolid is Vsolid = (1 – Φ0)*Vrz. Solid 

particles include Fe0 and additives (e.g. gravel, pumice, sand), assumingly having the same 

size and shape (roundness or sphericity). The following cylindrical column apparatus used by 

Henderson and Demond [11] is considered: D = 5 cm, Hrz = H = 25 cm, a subsequent Vrz = 

491.1 cm3, and initial porosities (Φ0) of 0.62. Φ0 = 0.62 is also from ref. [11]. 
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The challenge of the current work is to evaluate which quantity of each fouling species (iron 

corrosion products) is necessary to occupy the initial pore volume (Vp). 

3.1 Filling the pore volume with individual minerals and H2 gas 

In this section, Eq. (4) assumes that Fe0 is oxidized by water. The initial pore volume (Vp) is 

filled entirely by corrosion products (H2 and FeII/FeIII species): 

x Fe0  +  y H2O ⇒  FexOy  +  y H2↑  (4) 

t0 = 0  n0     0   0 

t > t0  n0*(1 – α)    n0*α/x  y*n0*α/x 

t > t0  x*n’0*(1 – α)    α*n’0   y*n’0*α 

It is considered that the number of moles (n0) of Fe0 at time t = 0 (t0) is a multiple of n’0 (n0 = 

x*n’0). Accordingly, at t0, the reactive zone contains only x*n’0 Fe0 (no oxide and no 

hydrogen). At each time t (t > t0), the residual number of moles of Fe0 is x*n’0*(1 – α), the 

number of mole of generated oxide is α*n0/x = α*n’0 and the number of mole of H2 is 

y*n0*α/x= y*n’0*α where α is the fraction of the initial amount of Fe0 which is depleted as a 

function of time (t). For iron hydroxides (Fe(OH)n) and carbonate (FeCO3), the stoichiometry 

of oxygen is taken as the value of “x” (y = x) because each mole of Fe releases one mole of 

H2 (for n = 2).  

Knowing the molar volume of individual oxides and H2 (Tab. 1), the degree of occupation of 

the initial pore volume (Vp) can be evaluated. The reactive zone is clogged when enough 

corrosion products (FexOy and H2) are produced to completely fill Vp. In other words, bed 

clogging corresponds to Eq. (5): 

VZVI + Vox + VH2 = Vrz    (5) 

The volume Vi occupied by a species i, is the product of its molar volume by the number of 

moles. The equation of the clogging can be written as (Eq. 5a): 

Vm,ZVI*x*n’0(1 – α) + Vm,ox*n’0*α + Vm,H2*n’0*y*α = Vrz  (5a) 
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To have α values for individual oxides, it is sufficient to solve Eq. 5a. The solution is given 

by Eq. 5b: 

α = [Vrz/x*n’0 – Vm,ZVI] / [Vm,ox/x + y/x*Vm,H2 –Vm,ZVI] (5b) 

The porosity of granular sandy beds used in sand filters ranges from 0.40 to 0.50 (average of 

0.45) [41]. The porosity of the filtration bed depends on several factors including grain size, 

grain size distribution and shape (sphericity) of used particles [42]. The sphericity of the 

medium is a measure of its roundness and ranges from 0.70 (angular grains) to about 0.90 

(grains rounded by water or wind) [41,43]. 

The volume of Fe0 (VFe) in the pure Fe0 system (100 % Fe0) depends on the compactness C or 

the porosity Φ (VFe= C*VRZ = (1-Φ)* VRZ). Reported operational values for the porosity of 

Fe0 systems vary between 40 and 70 % [10,11,15]. Calculations are made for the extreme 

values of the porosity reported in peer-reviewed journal articles (36 and 62 %). Φ0 = 36 % 

corresponds to the ideal case of spherical materials [38]. The initial number of moles of Fe0 

(n0) corresponding to the extreme cases are 41.4 (Φ0 = 36 %) and 24.6 (Φ0 = 62 %). 

Calculations (Tab. 2) showed that if H2 does not escape from the reactive zone, the 

consumption of less than 0.1 % of the initial amount of Fe0 will be sufficient to clog the 

systems. If this was likely to occur, the Fe0 filtration technology would have not been 

possible. 

Calculations assuming total escape of H2 gas out of the reactive zone (Vm,H2 = 0 in Eq. 5b) 

indicate that 16 to 62 % of Fe0 can be depleted just at system clogging (Φt∞ = 0 %) when the 

initial porosity is 36 %. For Φ0 = 62 %, 46 to 100 % Fe0 could be depleted just at system 

clogging (α ≥ 0.46). In other words, the sustainability of a Fe0 filtration system depends 

strongly from its initial porosity (Φ0). 

The results herein suggest that, for Φ0 = 36 %, when the main corrosion product is Fe3O4, 

only 58 % of Fe0 is consumed just at system clogging. This value in agreement with the value 
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of 51 % reported in former works [38]. The difference corresponds to different values used 

for the volumetric expansion coefficient (η); η = 1.97 herein vs. η = 2.08 in ref. [37]. 

However, this approach fails to consider the in-situ generation of colloidal Fe
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II/FeIII species 

and their further transformation to hydroxides and oxides [44,45]. 

Eq. 5b describes a pure iron bed (100 % Fe0). In the case that Fe0 is admixed with a non 

expansive additive (e.g. gravel, pumice, sand) the initial number of moles of iron (n0) has to 

be corrected to the fraction of n0 corresponding to the volumetric proportion of Fe in the 

reactive zone, e.g. n0/2 for a system containing 50 % Fe0 (v/v) and the balance amount of a 

non porous material.  

The results from Tab. 2 suggest that, at Φ0 = 36 %, pure Fe0 beds are not sustainable as a rule 

(see section 3.2.2). For larger initial porosity (Φ0), more sustainable systems are obtained. 

This result was already theoretically achieved by admixing Fe0 and porous media (e.g. 

pumice). However, increased initial porosity as discussed here results from the geometry 

(size, shape) of used media (e.g. Fe0, sand, gravel). 

The influence of the shape of the Fe0 particles on the Fe0 bed porosity is schematically 

represented in Fig. 1 as spherical (left) and cylindrical (right) Fe0 particles (black) are 

progressively transformed to oxides (grey - rust). Fig. 1 confirms the fact that packed beds of 

spherical media are the most compact [46-49]. This delineates the importance of 

characterizing Fe0 and sand materials for their uniformity and sphericity and the resulting bed 

for its compactness (porosity).  

 Another important feature seen in Tab. 2 (α and α’ values) is that regardless from the 

abundance of Fe0 in the system, bed clogging due to H2 gas production is likely to occur prior 

to the consumption of 0.1 % Fe0. However, under the experimental conditions considered by 

Henderson and Demond [11], gas accumulation is unlikely since the solutions were pumped 

in upflow at a flow rate of 0.7 mL/min into the columns. In addition, under field conditions, 
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H2 consuming bacteria are ubiquitous [29]. In such cases, clogging is therefore more likely to 

result from enhanced (bio-)stimulation (biofilm growth) and not from H
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2 accumulation. 

The estimations in this section clearly show that if H2 was primarily responsible for bed 

clogging, then it is unlikely that the Fe0 PRB technology would have been effective on 

medium to long-term timescales as observed in the field. PRB clogging would have been 

prevalent before a fraction (less than 0.1 %) of the Fe0 had corroded. However, H2 gas may 

contribute to permeability loss in association with particle ‘cementation’ (compaction) by 

nascent iron hydroxides. In this case, compaction prohibits H2 escape and increases flow 

resistance for pumped solutions.  

3.2 The process of permeability loss in Fe0/H2O systems 

In this section, a contemporary evaluation of permeability loss in the Fe0/H2O system is given. 

The methodology is explicitly presented in ref. [38]. In the current work the following 

assumptions apply: 

(i) Uniform Fe0 corrosion: the radius reduction of spherical or cylindrical Fe0 particles is the 

same for all particles;  

(ii) the volume of the reactive zone (Vrz) remains constant and the volume of granular 

materials (e.g. sand) is not modified by the corrosion process; 

(iii) Fe0 corrosion products are fluid enough to progressively fill available pore space.  

As shown in section 2.3, iron corrosion occurs with concurrent volumetric expansion (η = 

Vox/VZVI > 1). The excess volume of Fe0 imbued by corrosion product formation is given by 

Vexcess in Eq. 6. By definition, Vexcess is the difference between Vox and VZVI (Eq. 6). 

Vexcess = (η - 1) * VZVI     (6) 

The Fe0 filtration system is clogged when the volume Vexcess is equal to the initial inter 

granular voids (Vp). “VZVI” in Eq. 6 represents the volume of Fe0 in a pure Fe0 bed. However, 

as discussed in sections 1 and 3.1, Fe0 should be only a fraction of Vsolid (VZVI = τZVI*Vsolid, 

with τZVI ≤ 1). Eq. 6 can be rewritten as: 
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(η - 1) * τZVI*Vsolid = Vexcess     (6a) 

Eq. 6a suggests that, for every η value (i.e. every oxide), Vexcess is a linear function of τZVI. To 

find out at what extent τZVI contributes to complete pore filling, it is sufficient to graphically 

solve Eq. 6a for Vexcess = VP. Practically, there are two equivalent approaches: (i) solving 

Vexcess – Vp = 0 or (ii) solving Vexcess/VP = 1. The second approach is adopted in this work. 

The solution of Eq. 6a (clogging) is the interception of the line Vexcess/VP = f(τZVI) with the line 

100 % (Fig. 2). Before discussing the actual evolution of the porosity, some fundamental 

aspects for the solution of Eq. 6a will be given. 

3.2.1 Fe0 filtration systems 

To date, Fe0 particles have been widely reported as successful for water treatment [50-53]. 

However, a holistic understanding of the Fe0/H2O system is yet to be achieved.  

Fig. 2 represents the principle of Fe0 filtration beds. The origin (point O) represent a Fe0-free 

filter (e.g. activated alumina, activated carbon, gravel, pumice, sand, zeolite) and point 

I(100,100) represents an “ideal Fe0-based filter” which becomes 100 % clogged concurrent 

with 100 % Fe0 depletion (Vexcess/VP = 1). The line OI divides the graph into two halves. 

Below OI, Vexcess/VP < 100 and the system is not clogged at Fe0 depletion. Above OI, 

Vexcess/VP > 100 and the system is clogged before Fe0 depletion (a proportion of Fe0 is 

wasted). Thus, Fig. 2 can be regarded as a useful reference tool for future work within this 

field. Relevant parameters to complement Fig. 2 that will be investigated in future work 

include: (i) the intrinsic reactivity of Fe0; (ii) the shape and size of Fe0; (iii) the shape and size 

of sand; (iv) the dimensions and the geometry of the Fe0 bed; (v) the thickness of the Fe0/sand 

layer; (vi) the proportion of Fe0 in the Fe0/sand layer; and (vii) the water flow velocity.  

Point O in Fig. 2 represents all filtration designs without Fe0 (or another metallic element). 

These include conventional slow sand filters (SSF), biosand filters (BSF) and iron oxide-

coated sand filters. Considering filtration designs which entirely contain sandy materials, 

point O can be limited to BSF and SSF. SSF have been used for water treatment since 1840 in 
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Dijon/France by Henry Darcy [54]. BSF have been used for water treatment at household 

level for over 20 years [55,56]. However, despite intensive research on BSF, their operating 

mode is yet to be completely understood [42,43,55]. For example, there are no established 

comprehensive design criteria for BSF [41,55,57]. Accordingly, the reproducibility and 

comparison of reported results from one setting to another is problematic. To fill this gap, 

Kubare and Haarhoff [41] have provided the most recent systematic review for a rational 

design of BSF. A Fe
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0 filtration system (Fig. 2) can be regarded as a modification of a SSF or 

BSF (point O). Therefore, it is essential to carefully develop rational and comprehensive 

engineering design criteria. In this effort, designing tools for BSF would be very helpful 

[41,55]. 

3.2.2 The role of initial porosity in Fe0 bed clogging 

The theoretical discussion of Fe0 PRB porosity until now was focused on the case of 

maximum compactness for which the initial porosity is 0.36 (Φ0 = 36 %) [32]. For such 

systems, a pure Fe0 bed is clogged when less than 60 % of the initial amount of Fe0 is 

depleted (section 3.1). According to Fig. 1, for Φ0 = 36 %, all Fe0 beds are situated above line 

OI. However, significantly larger porosity values have typically been reported in the 

literature, the highest being 62 % by Henderson and Demond [11]. Accordingly, this section 

discusses the evolution of the porosity of a conventional sand filter (0 % Fe0) as it is 

progressively transformed to a pure Fe0 filter (100 % Fe0). Particular attention is paid to the 

extreme values of the porosity (Φ0 = 36 and 62 %). The results are summarized in Fig. 3. 

The ideal line OI is not represented in Fig. 3 for clarity. Instead the point I(100,100) is 

represented. Fig. 3a (Φ0 = 0.36) shows clearly that all systems are clogged before Fe0 

depletion has been occurred. In contrast, Fig. 3b shows that, for an initial porosity (Φ0) of 

0.62, Fe0 beds are sustainable if magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite 

(Fe2O3) are the sole iron corrosion products. Additionally, it shows that ferrous hydroxide 

(Fe(OH)2) is the “ideal corrosion product” for the Fe0 PRB to clog concurrent with Fe0 
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depletion. With the formation of ferrous hydroxide, magnetite, maghemite and hematite being 

more prevalent in anoxic conditions, it can therefore be stated that Fe
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0 PRBs are most ideally 

suited for oxygen depleted or anoxic conditions. 

Magnetite (xFe = 72.4 %, Tab.1) may result from Fe(OH)2 dehydration under anoxic 

conditions and is therefore the sole mineral, that is likely to be quantitatively generated from 

anoxic Fe0 corrosion. 

3.2.3 Discussion 

The presentation until now has focused on the evolution of the permeability loss as a key 

factor for the sustainability of Fe0 PRB systems. A Fe0 filtration system is sustainable only if 

it can maintain hydraulic (permeability) performance while also remaining effective for 

pollutant removal. In other words, a permeable but non reactive Fe0 filtration system is 

useless.  

A Fe0 filtration system can be considered both a chemical and physical water filter device, 

with its efficacy dictated by progressive expansion/compression cycles during aqueous 

corrosion [52]. In a Fe0 filtration system, chemical reactions included (i) iron oxidative 

dissolution, (ii) polymerisation of iron hydroxides and, (iii) subsequent precipitation of 

hydroxides and oxides. Quantitative chemical transformations (oxidation/reduction) of 

dissolved species may also occur. However, resulted species must be removed from the 

aqueous phase by a physical process: adsorption, occlusion, size-exclusion. Accordingly, Fe0 

is not a strong reducing agent under environmental conditions as widely accepted [5-7,10]. 

More importantly, reduction is not a stand alone contaminant removal mechanism [58-61]. 

Rather, Fe0 is a generator of contaminant scavengers for reactive filtration [44,62-65]. While 

adsorptive filtration has been mostly used for metal removal [62-65], the affinity of organic 

compounds for iron hydroxide/oxides (corrosion products) is well documented [66-71]. For  

example, Saha et al. [71] investigated the adsorptive removal of seven different dyes on iron 

 12



308 

309 

310 

311 

312 

313 

314 

315 

316 

317 

318 

319 

320 

321 

322 

323 

324 

325 

326 

327 

328 

329 

330 

331 

332 

333 

oxide nanoparticles an reported on enhanced adsorption capacity of the dyes containing 

hydroxyl (-OH) (erichrome black-T, bromophenol blue, bromocresol green, and fluorescein). 

For the proper scaling of Fe0-supported sand filters as reactive filtration device, factor 

sustaining size exclusion should be understood and optimised [72]: (i) the pore size must be 

small enough for sufficient contaminant removal; or (ii) used Fe0 must be reactive enough to 

produce a sufficient amount of ‘scavengers’ as a function of time. Alternatively, the thickness 

of the Fe0 PRB can be increased to improve the devices filtration capacity. 

This highlights the importance of characterizing the intrinsic reactivity of Fe0 materials prior 

to application [73]. Ideally, the selection of a Fe0 material for a particular site should be 

governed by its intrinsic reactivity (and porosity when incorporated in the PRB system) and 

the expected impact of local geochemical (and geophysical) conditions on these factors. In 

cases where contaminant breakthrough was observed despite insignificant permeability loss, 

two explanations can be suggested: (i) the material is not reactive enough to generate 

“scavengers” in sufficient quantities, (ii) clogging of the entrance zone has disturbed the flow 

regime and preferential flow paths are created in the system. Preferential flow paths 

significantly impair the contact of flowing water with bed media (collectors, iron, sand). 

4 Conclusions 

Correlating the fundamental relationship between Fe0 PRB permeability loss and groundwater 

chemistry is extremely important for the design of sustainable Fe0 remediation systems. 

Further developments require knowledge of the intrinsic reactivity of Fe0, the rate of the 

formation of corrosion products and the role of foreign detrital minerals. Using mathematical 

modelling, the present communication challenges both the prevailing view and the 

contribution of Henderson and Demond [11]. An extensive mass balance analysis of aqueous 

iron corrosion has been used to show that volumetric expansion is the major control on 

permeability loss. It has been shown that, whilst Fe0 filtration systems (including PRBs) 

operating in anoxic (phreatic zone) conditions can exhibit limited permeability loss due to Fe0 
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corrosion product formation, Fe0 filtration systems operating in oxic (vadose zone) conditions 

exhibit significantly high permeability loss. It can therefore be concluded that admixing Fe
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with a non expansive materials (e.g. gravel, MnO2, pumice, sand) is a prerequisite for any 

sustainable Fe0 filtration systems operating in the near surface geosphere.  

The present work and related studies have delineated the early development of the Fe0 PRB 

technology that was marked by empirical designs [37,38,74,75-80]. Field experiences from 

more than 120 reactive barriers and an innumerable numbers of filters (including laboratory 

columns) worldwide should be used to continuously refine this innovative technology. 

Clearly the Fe0 technology should now be translated into rational engineering design criteria. 

As there are no established comprehensive design criteria for Fe0 beds, the reproducibility and 

comparison of available results is problematic. For example, despite the established 

significance of particle shape and size on the permeability, these parameters are not routinely 

given when describing operational conditions. Similarly, the initial porosity is not always 

given and the contribution of iron corrosion products to its filling was not properly addressed. 

A tentative guideline for future laboratory experiments can also be concluded: (i) assess the 

intrinsic reactivity of used Fe0, (ii) define the size and sphericity of all used materials (Fe0 and 

admixing materials), (iii) consider the surface roughness of Fe0 and sand grains, (iv) 

characterize the dimension and the composition of used columns, (v) evaluate the porosity of 

resulted columns, (vi) characterize used initial solutions (e.g. pH, Eh, O2 level, 

contamination), (vii) record the time dependant volume of the column effluent, and (viii) 

characterize the column effluent for pH, Eh, dissolved iron, target contaminants. 
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Table 1: Some characteristics of metallic iron (Fe0) and its main corrosion products 

commonly identified in Fe

553 

554 

555 

556 

557 
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0 PRBs. “x” is the weight percent of Fe in the phase. As a 

rule, oxides formed under anoxic conditions exhibit larger x values. “η” is the 

calculated coefficient of volumetric expansion. Phase parameters are compiled from 

Balasubramaniam et al. [40] and Henderson and Demond [11]. 

 

Phase Name Structure Density Vm x η 

   (g/cm3) (cm3/mol) (%) (-) 

Fe0 Iron metal bcc 7.86 7.6 100.0 - 

Fe(OH)3 FeIII hydroxide perovskite-like 3.1 34.4 52.0 4.53 

FeCO3 Siderite Trigonal 3.83 29.3 48.3 3.86 

Fe(OH)2 FeII hydroxide Trigonal 3.4 26.4 62.2 3.47 

α-FeOOH Goethite Orthorhombic 4.28 20.3 62.9 2.67 

γ-Fe2O3 Maghemite Cubic 4.69 29.1 70.0 1.91 

α-Fe2O3 Hematite Trigonal 5.3 30.1 70.0 1.98 

Fe3O4 Magnetite Cubic 5.175 45.0 72.4 1.97 

559 

560 
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Table 2: Estimation of the extent of Fe0 depletion (α value in %) in the column of Henderson 

and Demond [11] for two values of the initial bed porosity. α and α

561 
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568 

1 correspond to Φ0 = 36 % 

when H2 remains in the system or escapes respectively and α' and α'1 correspond to Φ0 = 62 

% when H2 remains in the system or escapes respectively. It is seen that in all cases the initial 

porosity is filled by gas when less than 0.1 % of the initial mass of Fe0 is corroded. A value of 

100 % is related to a system which is not clogged when Fe0 is depleted.  

 

 

Name Formula α values (%) 

  α α1 α’ α’1

Maghemite Fe2O3 0.01 62 0.04 100 

Magnetite Fe3O4 0.01 58 0.04 100 

Hematite Fe2O3 0.01 57 0.04 100 

Goethite FeOOH 0.02 34 0.06 98 

Ferrous hydroxide Fe(OH)2 0.02 24 0.06 70 

Siderite FeCO3 0.02 20 0.06 57 

Ferric hydroxide Fe(OH)3 0.02 16 0.06 46 
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Figure captions 570 
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Figure 1: Comparison of the evolution of porosity loss in a Fe0 bed filled with spherical (left) 

and cylindrical (right) particles. The compactness is maximal for spherical 

particles. The roundness or sphericity of used materials (Fe0 and additives) should 

be routinely characterized as this is crucial for the initial porosity.  

Figure 2: Types of Fe0-based filters for water treatment. The point O(0.0) represents a Fe0 

free filter (e.g. biosand filter, iron oxide-amended sand). The point I(100,100) 

correspond to a filter which is clogged just at Fe0 depletion. 

Figure 3: Evolution of the residual porosity as function of the volumetric proportion of Fe0 is 

the filter for the two extreme values of the initial porosity (Φ0 = 0.36 and 0.62). It is 

seen that for Φ0 = 0.36 no filter is sustainable. For Φ0 = 0.62, filter operating under 

strictly anoxic conditions are sustainable. 
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