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Abstract

Background: The multi-subunit eukaryotic initiation factor3 (eIF3) plays a central role in the initiation step of protein
synthesis in eukaryotes. One of its large subunits, eIF3b, serves as a scaffold within eIF3 as it interacts with several other
subunits. It harbors an RNA Recognition Motif (RRM), which is shown to be a non-canonical RRM in human as it is not
capable to interact with oligonucleotides, but rather interacts with eIF3j, a sub-stoichiometric subunit of eIF3.

Principal Finding: We have analyzed the high-resolution crystal structure of the eIF3b RRM domain from yeast. It exhibits
the same fold as its human ortholog, with similar charge distribution on the surface interacting with the eIF3j in human.
Thermodynamic analysis of the interaction between yeast eIF3b-RRM and eIF3j revealed the same range of enthalpy
change and dissociation constant as for the human proteins, providing another line of evidence for the same mode of
interaction between eIF3b and eIF3j in both organisms. However, analysis of the surface charge distribution of the
putative RNA-binding b-sheet suggested that in contrast to its human ortholog, it potentially could bind
oligonucleotides. Three-dimensional positioning of the so called ‘‘RNP1’’ motif in this domain is similar to other canoni-
cal RRMs, suggesting that this domain might indeed be a canonical RRM, conferring oligonucleotide binding capability
to eIF3 in yeast. Interaction studies with yeast total RNA extract confirmed the proposed RNA binding activity of yeast
eIF3b-RRM.

Conclusion: We showed that yeast eIF3b-RRM interacts with eIF3j in a manner similar to its human ortholog. However, it
shows similarities in the oligonucleotide binding surface to canonical RRMs and interacts with yeast total RNA. The
proposed RNA binding activity of eIF3b-RRM may help eIF3 to either bind to the ribosome or recruit the mRNA to the 43S
pre-initiation complex.
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Introduction

Translation initiation in eukaryotes is intimately regulated by a

set of proteins known as eukaryotic initiation factors (eIFs), which

exploit diverse functions from positioning of the initiator tRNA in

the ribosomal P-site to the recognition of mRNA [1]. The largest

of these factors, eIF3, is a multi-subunit complex consisting of five

stoichiometric subunits in yeast (eIF3a, b, c, g and i). Mammalian

eIF3 has thirteen subunits, five of which are homologous to the

yeast subunits of eIF3, hence believed to form the core of eIF3

and fulfill its essential functions [2]. The sixth subunit of eIF3 in

yeast, eIF3j (Hcr1), is a loosely associated subunit and is suggested

to play a role in recruitment of eIF3 to the ribosome [3]. In

addition to its role in translation initiation, eIF3j is also involved in

the biogenesis of ribosomal RNA [4]. It has also been suggested

that eIF3j might serve a cross-talk function between translation

initiation and termination by its interaction with translation

termination factor eRF1 as well as eIF3 [5]. eIF3j interacts with

the C-terminal domain (CTD) of eIF3a as well as the RNA

recognition motif of eIF3b [6]. Solution structure of human

eIF3b-RRM with a short peptide of eIF3j revealed the binding

site for eIF3j to be located in a cleft between two helices of the

RRM, distant from the exposed surface of the b-sheet which in

other RRMs binds to the target RNA or DNA [7]. Interestingly,

human eIF3b-RRM was shown to be a non-canonical RRM due

to the high distribution of the negative charges around the

canonical oligonucleotide binding site which makes it very

unlikely to be able to accommodate any oligonucleotide [8].

Comparing the predicted isoelectric points of human and yeast

eIF3b-RRM shows that in contrast to negatively charged human

eIF3b-RRM, the yeast homolog is highly positively charged.

Here, by using X-ray crystallography we studied the structure

of yeast eIF3b-RRM and showed that it corresponds to the

canonical RNA recognition motif. This domain also exhibited

binding to the yeast total RNA, further confirming the proposed

function. Nonetheless, determination of its specific physiological

target remains out of the scope of this work. We further studied

the thermodynamics of the interaction between eIF3b-RRM and
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eIF3j in yeast and showed that similar to human, this interaction

is enthalpy driven. Given the similarity in surface charge

distribution at the eIF3j binding site between yeast and human

eIF3b-RRM as well as the conservation of the eIF3j peptide

interacting with this domain, we propose that yeast applies the

same mode of interaction with eIF3j as human.

Results and Discussion

Structure of Yeast eIF3b-RRM
Two different truncations of the N-terminal domain of yeast

eIF3b were designed based on homology to the published

structure of its human ortholog [8]. Crystals of the shorter

truncation (rsidues 76–161) diffracted to 2.6 Å. However, they

were not easily reproducible as bunches of needles were obtained

instead. The second construct encompassing residues 76–170 was

designed to have an extra helix according to the secondary

structure predictions. Highly reproducible crystals were obtained

in space group P212121 with two molecules per asymmetric unit

which diffracted to 1.25 Å. Crystallographic phases were obtained

by molecular replacement using the structure of the sex-lethal

RRM domain as search model. Data processing and refinement

statistics are provided in Table 1. The structure is composed of

four b-strands and two a-helices which are arranged in a b-a-b-b-

a-b sequential order. The last b-strand is followed by a short a-

helix which connects this domain to the rest of the protein

(Figure 1A). This a-helix is absent in the NMR structure of human

eIF3b-RRM. The two yeast eIF3b76–170 monomers occupying the

asymmetric unit are related by a two-fold non-crystallographic

symmetry axis, forming a closely packed dimer (Figure 1B).

Analysis of the structure by PISA (http://www.ebi.ac.uk/msd-srv/

prot_int/pistart.html) [9] shows that 14.8% (1805 Å2) of the total

surface of the two molecules (12193 Å2) gets buried upon the

dimer formation. Two monomers in the asymmetric unit are held

in place by interactions between their b-sheets and between each

b-sheet and the extended a-helix of the neighboring chain.

Comparison of the relative orientation of the monomers between

eIF3b-RRM76–170 and eIF3b-RRM76–161 showed that chain B in

eIF3b-RRM76–161 has been displaced by ,9 Å relative to the same

chain in eIF3b-RRM76–170 (Figure 2). Therefore this dimer is most

probably an artifact of the crystallization and not the functional

unit of the protein in the solution. This is in agreement with the

gel-filtration profile of the protein showing that it eluted from the

column at a volume corresponding to the size of about 10 kDa

(data not shown).

Yeast eIF3b-RRM Interacts with eIF3j in a Similar Fashion
to Its Human Homolog

Analysis of the surface charge distribution of the yeast eIF3b-

RRM revealed a high degree of similarity to its human homolog

with the surface made up of two a-helices packed against the b-

sheet is rich in positively charged residues, creating an overall basic

region distal to the accessible surface of the b-sheet (Figure 3A–B).

The negatively-charged eIF3j peptide which interacts with human

eIF3b-RRM [7] reveals amino acid conservation in yeast (Figure 4)

which suggests the same mode of interaction between yeast eIF3b-

RRM and eIF3j. Superposition of reported structure with that of

human in complex with a short peptide of eIF3j (PDB code 2KRB)

suggests that lysines 97, 105, 142, 147 and arginine 148 provide a

positively charged surface for the accommodation of the negatively

charged peptide of eIF3j. Another line of evidence for the same

mechanism of the interaction between yeast 3b-RRM and 3j

comes from the analysis of the thermodynamics of their interaction

using isothermal titration calorimetry (ITC), showing that the Kd of

their interaction lies in the mM range, similar to the reported value

for the human proteins. The raw ITC data and the integrated

areas under each peak as a function of molar ratio of eIF3b-RRM

to eIF3j are plotted in the upper and lower panels of Figure 5,

respectively. The interaction is characterized by a large negative

enthalpy change (DH = 292786217.3 kcal.mol21), indicating that

similar to the human 3b-RRM, it is predominantly mediated

through electrostatic interactions [8]. The binding curve is

sigmoidal and best fitted to a single binding site model with

,1:1 stoichiometry, yielding a dissociation constant (Kd) of

7.560.5 mM.

Table 1. Summary of the data collection and structure
refinement.

eIF3b-RRM76–170 eIF3b-RRM76–161

A. Data collection

Space group P212121 P212121

Unit cell parameter

a (Å) 43.71 30.28

b (Å) 51.75 68.14

c (Å) 77.1 81.89

Resolution (Å) 3021.25 (1.3521.25) 3422.6 (2.7322.6)

Observed reflections 256057 (41259) 24819 (3276)

Unique reflections 48971 (8169) 5632 (771)

Completeness (%) 99.6 (99.4) 99.1 (94.6)

I/sI 12.42 (4.23) 10.8 (4.3)

Rmerge
a 8.1 (50.3) 11.1 (32.0)

Monomers in AUb 2 2

B. Refinement

Resolution (Å) 1.2 2.6

Rwork
c 14.16 22.5

Rfree
d 16.75 27.25

Number of protein atoms in the AU 1538 1392

Number of solvent atoms 301 50

Number of ligand atoms and ions 20 0

Mean B-value(Å2)

Protein 11.473 24.732

Solvent 23.931 16.929

Ligands and ions 30.611

Rmsd from ideal

Bond length (Å) 0.008 0.001

Bond angles (u) 1.247 0.480

Ramachandran plot(%)e

Favoured 100 98.86

Outlier 0 0

Allowed 0 1.14

PDB codes 3NS6 3NS5

Values in brackets refer to the highest resolution shell.
aRmerge = ShSl | Iih-,Ih. |/ShSI ,Ih., where ,Ih. is the mean of the
observations Iih of reflection h.

bAU stands for asymmetric unit.
cRwork = Shkl| |Fobs|–|Fcalc| |/Shkl |Fobs|, where Fobs and Fcalc are the observed and
calculated structure factors, respectively.

dR factor calculated for 5% randomly chosen reflections not included in the
refinement.

eThe geometry of the models was analyzed by Molprobity [26].
doi:10.1371/journal.pone.0012784.t001
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Oligonucleotide Binding Potentials of Yeast eIF3b-RRM
Analysis of the surface charge distribution of the yeast eIF3b-

RRM revealed that in contrast to the human eIF3b-RRM, the

solvent accessible surface of the b-sheet (distal to its surface which

is packed against a-helices) is either neutral or positively charged

(Figure 3C). This surface contains the ‘‘RNP1’’ motif, known for

the canonical RRMs, comprised of the consensus sequence of

[RK]-G-[FY]-[GA]-[FY]-[ILV]-X-[FY] [10]. Superposition of the

structures of the monomer of yeast eIF3b-RRM with six canonical

RRMs (PDB codes 1B7F, 2AD9, 2KH9, 2RQC, 3D2W and

2UP1) [11–16] bound to oligonucleotide (either RNA or DNA)

suggests the conservation of these residues in three dimensions,

which together with the appropriate charge distribution make

should allow for binding to oligonucleotides (Figure 6). Surpris-

ingly, the human homologue of this protein also shows three-

dimensional conservation of this motif, however due to the

accumulation of negatively charged residues on the surface of its b-

sheet, it is not capable of accommodating an oligonucleotide

(Figure 3D). Superpositioning of structures of yeast eIF3b-RRM

with hnRNP A1 (UP1) complexed with single-stranded telomeric

DNA (PDB code 2UP1) suggests it to bind in the same manner to

an oligonucleotide, with Phe 126 stacking against the sugar pocket

of one nucleotide and Phe 128 against the base of the next

nucleotide, whilst the Lys 124 would neutralize the backbone

phosphate (Figure 7B). Interestingly, comparison of the dimer of

eIF3b-RRM with hnRNP A1 (UP1) shows that Tyr 158, Asp 162

and Phe166 of one monomer interact with the RNP1 motif of the

second monomer in the crystal, mimicking the presence of the

oligonucleotide (Figure 7A and C). Another motif known as

‘‘RNP2’’ with the sequence [ILV]-[FY]-[ILV]-X-N-L also plays a

role in the interaction with the oligonucleotide, though it is not as

conserved as the RNP1. For instance, in the structure of sex-lethal

protein in complex with RNA (PDB code 1B7F) [11] the first

RRM shows deviation from this consensus sequence, whereas the

second RRM harbors the exact consensus motif. Therefore

deviation of this motif from the consensus in yeast eIF3b-RRM

does not exclude its oligonucleotide binding capacities. Nonethe-

less, in the superimposed structure, Asn82 which belongs to RNP2

motif in an alternative conformation is close to the putative

position of the base of another nucleotide, which in the crystal is

occupied by Phe156 from another monomer in the asymmetric

unit (Figure 7C).

To test whether the proposed RNA binding activity occurs in

vitro, the protein was mixed with the weight excess of the yeast total

RNA to saturate the protein with RNA as much as possible and

studied the interaction at two different salt concentrations by

EMSA on a 5% native PAGE. Due to the overall positive charge

of the protein, the gel had to be run in a positive-to-negative

direction to get it into the gel. Results showed that in comparison

to a sharp single band for the RRM alone, the addition of RNA

Figure 1. Overall structure of yeast eIF3b-RRM. (A) Overall fold of the yeast eIF3b-RRM showing the canonical b-a-b-b-a-b fold which at the C-
terminus is followed by an extra helix which connects this domain to the rest of the protein (N- and C-termini are colored blue and red, respectively).
(B) Relative orientation of two monomers in the asymmetric unit. Two monomers are held in place by interactions between residues in their b-sheets
as well as the c-terminal helices. A 180u non-crystallographic symmetry axis exists between two monomers.
doi:10.1371/journal.pone.0012784.g001

Figure 2. Different dimer formation between two different
truncations of yeast eIF3b-RRM. Superimposition of the chains A of
the yeast RRM76–161 (red) and RRM76–170 (green) indicates the difference
in the relative orientation of the dimers between two molecules,
indicating that the formation of the dimer is probably an artifact of the
crystallization.
doi:10.1371/journal.pone.0012784.g002

Structure of Yeast eIF3b-RRM
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Figure 3. Surface charge distribution of yeast and human eIF3b-RRM. (A) Surface charge distribution of yeast eIF3b-RRM viewed from the a-
helical side of the domain (distal to the oligonucleotide binding side) showing the accumulation of positive charges which would provide a suitable
binding site for the negatively charged peptide of eIF3j. (B) Surface charge distribution of human eIF3b-RRM from the same view as (A). The short
negatively charged peptide of eIF3j (magenta) sits in a basic cleft on eIF3b-RRM. (C). Surface charge distribution on the nucleotide binding side of the
yeast eIF3b-RRM indicates the dominance of the positive over negative charges. This suggests that this motif can accommodate oligonucleotides. (D).
Surface charge distribution on the nucleotide binding side of the humaneIF3b-RRM. Accumulation of acidic side-chains leaves no room for
accommodation of any oligonucleotide.
doi:10.1371/journal.pone.0012784.g003

Figure 4. Sequence-based alignment of human and yeast eIF3j. The boxed sequence is the fragment which was solved in complex with
human eIF3b-RRM (PDB code 2KRB). Conservation of the sequence of this region suggests the same mode of binding between yeast eIF3j and eIF3b-
RRM. The alignment and the color representation were performed using ClustalW2 (www.ebi.ac.uk/Tools/clustalw2) [24] and ESPript 2.2 (www.
espript.ibcp.fr/ESPript) [25] respectively.
doi:10.1371/journal.pone.0012784.g004

Structure of Yeast eIF3b-RRM
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resulted in smearing of the band upwards, indicating the formation

of several RNA-protein complexes. The smearing was more

pronounced at 80 mM than 160 mM salt (Figure 8A). To confirm

these results, a filter binding assay was performed using the same

complex preparations as for the EMSA but with the weight excess

of the protein over the RNA to bind as much RNA as possible to

the membrane for the sake of better detection. Results indicated

higher binding of the yeast total RNA to the membrane in the

presence of the RRM. Here, we also observed more binding at

lower salt concentration (Figure 8B). Taken together, the results

indicate the interaction between yeast eIF3b-RRM with its total

RNA.

Although these results propose an RNA binding function of

yeast eIF3b-RRM, determination of its exact RNA target is out of

the scope of this work. However, it is tempting to speculate that the

RNA binding ability conferred to eIF3 by this domain might serve

to either recruit it to the ribosome via interactions with certain

areas of the ribosomal RNA or facilitates its interaction with the

mRNA, hence promoting the recruitment of the mRNA to the

43S pre-initiation complex. Although the human homolog of this

domain has no RNA binding capability, this function may be

fulfilled by additional components of human eIF3 which are

missing in yeast.

Materials and Methods

Cloning
Yeast eIF3b-RRM spanning amino acid 76 to 161 or 170 and

Hcr1were PCR amplified from yeast genomic DNA using

following primers: 59 CCGGGATCCGATCAGT ACATCGT-

CGTTAATG 39 and 59 CCGCTCGAGTTAGTCGTCAGAAT-

TATATCTTT CAACA 39 or 59 CCGCTCGAGTTATTTCA-

TAGTATAAAGAAACAAACGATGT 39 for RRM76–170 and

RRM76–161, respectively, and CCGGGATCCATGTCTTGG-

GACGA CGAAG and CCGCTCGAGTTACATAAAGTCGT-

CATCACCGAA for eIF3j. Resulting fragments were digested by

BamH1 and Xho1 and ligated into the pGEX-6P-1 vector (GE

Healthcare) which was digested with the same restriction enzymes.

The ligation mixtures was then transformed into XL1-Blue cells

(Stratagene) and plated on LB plates containing ampicillin.

Positive transformants were determined by DNA sequencing and

transformed into strain Rosetta2 (DE3) (Novagen).

Protein expression and purification
For large-scale protein expression, 10 mL of preculture of

each protein was prepared by resuspending several colonies of

Rosetta2 (DE3) cells harboring either eIF3b-RRM or eIF3j in

pGEX-6P-1 into LB medium supplemented with appropriate

antibiotics at 37uC. Next day, 500 mL 2xYT media containing

chloramphenicole and ampicilline was inoculated with 5 mL of

each preculture and incubated at 37uC at 220 rpm. The protein

expressions were induced with 0.2 mM IPTG at OD ,0.5 and

cells were subsequently transferred to 17uC. After 20 hours, cells

were harvested and the resulted cell pellets were shock-frozen in

liquid nitrogen. For protein purification, cells were resuspended

in lysis buffer (300 mM NaCl, 50 mM Hepes pH 7.5, 5%

Glycerol and 2 mM b-mercaptoethanol). Prior to the lysis, a

protease mixture containing aprotinin, leupeptin and pepstatin

was added to the suspension. Cell rupture was carried out by

passing the cells six times through the microfluidizer (Micro-

fluidics, Newton, US). Cell debris was removed by centrifugation

at 30,000 g for 30 minutes on a JA-20 rotor (Beckman). The

proteins were purified by applying the supernatants on a 5 mL

GSTrap column (GE Healthcare) using Äkta prime (GE

Healthcare). After loading the sample, the column was washed

for two column volumes with wash buffer (2M LiCl, 50 mM

Hepes pH 7.5, 5% Glycerol, 2 mM b-mercaptoethanol) to

remove any bound oligonucleotide and then equilibrated back

in lysis buffer. GST-fusion protein was eluted by washing the

column with elution buffer (the same as lysis buffer plus 30 mM

reduced glutathione). Fractions containing the fusion protein

were pooled together and treated with PreScission protease (GE

Healthcare) overnight to cleave off the GST. Fro RRM

purification, this sample was concentrated the next day to

5 mL and loaded on a Superdex S-75 (26/60) column (GE

Healthcare) pre-equilibrated in GF buffer (100 mM NaCl,

10 mM Hepes pH 7.5, 2 mM DTT). Fractions containing

eIF3b-RRM were merged together and concentrated to 12 mg

mL21 and flash frozen in liquid nitrogen. For Hcr1 purifica-

tion, the cleaved GST and the PreScission protease were

removed by a second step of glutathione affinity chromatography

and the GST-free Hcr1 sample was loaded on a Superdex S-75

(26/60) column pre-equilibrated in GF buffer. The eluant pro-

tein was concentrated to 17 mg mL21 and flash frozen in liquid

nitrogen.

Figure 5. Isothermal calorimetric titration of eIF3j with eIF3b-
RRM. The upper panel shows raw data of heat effect (in mcal?s21) of 20-
ml injections of 229 mM eIF3b-RRM into 1.5 ml of 10 mm eIF3j performed
at 300 s intervals. The lower panel shows the fitted binding isotherms.
The data points were obtained by integration of heat signals plotted
against the molar ratio of eIF3b-RRM to eIF3j in the reaction cell. The
solid line represents a calculated curve using the best fit parameters
obtained by a nonlinear least squares fit.
doi:10.1371/journal.pone.0012784.g005

Structure of Yeast eIF3b-RRM
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Crystallization, data collection and structure
determination

Needle-shape crystals of eIF3b-RRM76–170 were obtained at

20uC using sitting drop method by mixing equal volumes of

protein (11 mg.mL21) with 30% PEG 4000, 200 mM Li2SO4 and

100 mM Hepes pH 8. Crystals of good diffraction quality grew

after three days to the final size of 100*20*10 micrometer.

Datasets were collected at the beamline ID23-2 at ESRF,

Grenoble. The data set was processed in the space group P222

using XDS [17] and scaled to the final resolution of 1.25 Å. The

phase problem was solved by molecular replacement using the

crystal structure of Drosophila melanogaster sex-lethal protein (PDB

code 3SXL) [18] as the search model in Phaser [19]. The initial

model was further built and improved manually in Coot [20] and

subsequently subjected to iterative steps of refinement in Phenix

[21] and manual model building in Coot.

Plate-shape crystals of eIF3b-RRM76–161 were obtained by

mixing the same volume of the protein (17 mg.mL21) with the

reservoir containing 33% PEG4000 and 0.1 M Na-citrate (pH 5.6)

in sitting drop plates at 20uC. Good diffracting crystals appeared

after two weeks. A dataset was collected on the home source

beamline equipped with MAR345dtb detector mounted on a

Micromax 007 generator operating with a copper target at 1.5417

Å. The dataset was indexed, scaled and reduced using XDS and

SCALA [22] in the space group P 222 to the final resolution of 2.6

Å. The structure of eIF3b-RRM76–170 monomer was used as the

search model in Phaser. This model was subsequently subjected to

iterative steps of refinement in Phenix and manual model building

in Coot.

Both structures are deposited at the Protein Data Bank with the

accession codes 3NS5 (eIF3b-RRM76–161) and 3NS6 (eIF3b-

RRM76–170).

Isothermal titration calorimetry
Hcr1 and eIF3b-RRM76–170 were extensively dialyzed against

ITC buffer (200 mM NaCl, 10 mM Hepes pH 7.5, 5% Glycerol)

and concentrated to 10 and 229 mM, respectively. The experiment

was performed on a VP-ITC calorimeter (Microcal). 20 mL aliquots

of RRM were injected into the cell containing Hcr1 every 40

second, during which the titration peak returned to the base line.

Separately, seven injections of the same concentration of RRM into

the buffers were performed under the same conditions to determine

the heat of dilution. The titration data were analyzed using the

ORIGIN software to calculate the thermodynamics parameters.

RNA binding assays
Yeast total RNA was extracted from strain InviScI (Invitrogen)

using Nucleospin RNA II kit (Macherey-Nagel, Germany). 5%

Acrylamide gel was made as described previously [23] To allow

the detection by Coomassie Blue 2 mg of the protein was applied to

5 mg of the RNA in a reconstitution buffer [23] at the final volume

of 10 mL. The salt concentration of the buffer was changed to

obtain the final salt concentration of either 80 or 160 mM. As the

control, two samples, one only with RRM and the other only with

RNA were prepared in the final salt concentration of 80 mM.

After 15 minutes of incubation at 25uC, samples were mixed with

2 mL of 6X loading dye (50% sucrose, 0.02% bromophenol blue,

0.02% xylene cyanol) and loaded on the native gel. The gel was

Figure 6. Superimposition of yeast eIF3b-RRM with several canonical RRMs bound to oligonucleotides from PDB. (A) Six different
canonical RRMs (PDB codes 1B7F, 2AD9, 2KH9, 2RQC, 3D2W and 2UP1, all in grey) superimposed with yeast eIF3b-RRM (orange). As shown,
oligonucleotides (red loops) occupy more or less the same position on the solvent exposed side of the b-sheet. (B) Three dimensional conservation of
the elements of RNP1 (the black box on the panel A). The numbers correspond to the position of the amino acids in the motif [RK]1-G2-[FY]3-[GA]4-
[FY]5-[ILV]6-X7-[FY]8.
doi:10.1371/journal.pone.0012784.g006

Structure of Yeast eIF3b-RRM
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run at 7–10 W in the cold room for 30 minutes in a positive-to-

negative direction. Filter binding assay was performed by mixing

10 mg of the protein with 5 mg of the RNA in a final volume of

10 mL in the same buffers as for the native gel. After 15 minutes of

incubation at 25uC, the whole sample was loaded as a drop on a

nitrocellulose membrane connected to the vacuum. Each drop was

washed two times with reconstitution buffer and stained with

GelRed (BIOTIUM, USA).
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Figure 7. Critical interactions between two monomers in the
asymmetric unit mimic the presence of an oligonucleotide. (A).
The dimer of the RRM76–170 is held by several interactions, some of
which involve components of the RNP1 (Lys 124, Phe 126 and Phe 128)
or RNP2 (Asn 82). (B) Superposition of eIF3b-RRM with hnRNP A1 (UP1)
in complex with single-stranded telomeric DNA (PDB code 2UP1) shows
that different elements of RNP1 and RNP2 can interact with RNA bases
(Asn82 in one of its alternative conformations and Phe128), sugar
pocket (Phe126) or phosphate backbone (Lys124). (C) The interacting
partners for the residues depicted in panel B assume the position of
certain elements of the docked oligonucleotide; e.g. Asp 162 sits where
the negatively charged phosphate group would sit, Phe 156 and Phe
166 occupy the position of bases of the oligonucleotide and Tyr 158
mimics the sugar pocket.
doi:10.1371/journal.pone.0012784.g007

Figure 8. Binding studies between yeast IF3b-RRM and total
RNA extract. (A). Electrophoretic mobility shift assay between RRM
and total RNA indicates the upwards smearing of the RRM band upon
interaction with RNA. The effect is more pronounced at lower salt
concentration. (B). Filter binding assay confirms the results obtained by
EMSA. Drops of filter binding assay are aligned under the correspond-
ing lanes of EMSA. * stands for mM.
doi:10.1371/journal.pone.0012784.g008
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