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Abstract

White spot syndrome virus (WSSV) causes large economic losses to the shrimp aquaculture industry, and thus far there are
no efficient therapeutic treatments available against this lethal virus. In this study, we present the development of a novel
real time isothermal recombinase polymerase amplification (RPA) assay for WSSV detection on a small ESEQuant Tube
Scanner device. The RPA sensitivity, specificity and rapidity were evaluated by using a plasmid standard as well as viral and
shrimp genomic DNAs. Compared with qPCR, the RPA assay revealed more satisfactory performance. It reached a detection
limit up to 10 molecules in 95% of cases as determined by probit analysis of 8 independent experiments within
6.4160.17 min at 39uC. Consequently, this rapid RPA method has great application potential for field use or point of care
diagnostics.
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Introduction

White spot syndrome virus (WSSV), belonging to the genus

Whispovirus of the family Nimaviridae [1], is a highly infectious

virus often causing white spots on the exoskeleton of shrimp and

infects many crustaceans including shrimps, lobsters, freshwater

crayfish and crabs [2–4]. Since WSSV was first detected in

Taiwan in 1992 [5], it has spread worldwide and brought about

large economic losses to the shrimp aquaculture industry [4–6].

Thus far, unfortunately, effective therapeutic methods are

unavailable to block or reduce the outbreaks of WSSV. Hence,

powerful surveillance management is crucial to monitor the

WSSV spread and infection in brood-stocks, larvae and adult

shrimps. It has been suggested that early diagnosis is one of the

most efficient strategies to monitor the WSSV occurrence in

shrimp farming facilities [7,8].

In 2006, Piepenburg and coauthors reported a novel molecular

diagnostic approach, recombinase polymerase amplification

(RPA), which coupled isothermal recombinase-driven primer

targeting the template with strand-displacement DNA synthesis

[9]. RPA achieves exponential amplification with no need of

pretreatment of the genomic DNA sample and is performed at

constant low temperature (39–42uC) [9]. In RPA, recombinase

UvsX with its co-factor UvsY combines with oligonucleotide

primers to generate a recombinase-primer complex; the complex

scans for reverse complementary sequences along a DNA

template; strand displacement amplification starts with the

presence of Sau polymerase (Staphylococcus aureus), once the

duplex DNA of primer and template is formed. Based on a

fluorescent-labeled probe detection system, the RPA assay is able

to achieve a real time recording of the amplification event [10–12].

Here we present the development and application of a real time

RPA assay for rapid detection of WSSV, the most lethal and

contagious shrimp pathogen known to date, in order to pave the

way for mobile/portable diagnostics of WSSV.

Materials and Methods

Viral and shrimp DNA samples
Genomic DNAs of WSSV and Penaeus monodon nudivirus

(PmNV, the so-called Monodon baculovirus) were kindly provided

by the Third Institute of Oceanography, State Oceanic Admin-

istration of China and National Taiwan University, respectively.

Infectious hypodermal and hematopoietic necrosis virus (IHHNV)

genomic DNA was extracted from diseased shrimps in this study.
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The shrimps were sampled with permission from an aquaculture

farm in Shanghai, China.

Preparation of plasmid standard
A 757 bp of WSSV DNA fragment containing vp28 was

amplified for preparation of a plasmid standard. The 50 ml PCR
contained 22 ng WSSV DNA, 10 mM of each primer (Table 1),

and 25 ml 26Taqmix (Tiangen, Beijing, China). The thermal cycle

program was as follows: 94uC for 4 min, followed by 30 cycles of

94uC for 30 s, 60uC for 30 s, 72uC for 60 s and a final extension

step of 72uC for 10 min. Amplification products were checked by

1.5% agarose gel electrophoresis. The target bands of the

amplification products were excised from the gel and purified

using QIAquickGel extraction kit (Qiagen, Germany) according to

the manufacturer’s instruction. The purified amplicons were

ligated into the pGM-T vector using the pGM-T Cloning Kit

(Tiangen, Beijing, China). The recombinant plasmid was trans-

ferred into competent Escherichia coli TOP10 cells (Tiangen,

Beijing, China) following the manufacturer’s instructions. Recom-

binant plasmids were identified by colony PCR. The correct insert

was verified by sequencing and quantified by using the Quant-iT

PicoGreen dsDNA Reagent and Kits (Invitrogen, USA).

The concentration of the recombinant plasmid was converted to

copy numbers based on the following equation: Number of

copies = (M66.026102361029)/(n6660), the M is the amount of

DNA in nanogram, n is the number of the recombinant plasmid in

base pair, and the average weight of one base pair is assumed to be

660 Da. The prepared plasmid standard was aliquoted and stored

at 280uC before use.

qPCR
The recombinant plasmid standard was serially diluted to a

range from 5 to 56106 copies per microliter. Two ml of each

dilution were utilized for qPCR assay on an ABI 7500 Fast qPCR

system with 2.0.1 version software (Applied Biosystems, USA). The

reaction mix (20 ml) contained 2 ml genomic DNA, 0.6 mM of

primers VP28–140F and VP28–140R (Table 1), and 10 ml
Maxima SYBR Green qPCR Master Mix (26) (Fermentas,

MBI). The thermal cycle program was described as follows:

95uC for 10 min, followed by 40 cycles of 94uC for 15 s, 60uC for

60 s.

RPA
The RPA primers were designed for the vp28 gene by a

multiple sequence alignment of 48 nucleotide sequences available

in GenBank. In reference to WSSV genomic sequence

AF332093.2 (ORF421, 244243–244858 bp), the RPA amplicon

was placed between position 244,384 and 244,507 (length 124 bp).

A probe was designed for real time RPA assay. It contained a

tetrahydrofuran (THF) flanked by a dT-Fluorophore and dT-

Quencher group. Thirty-one and seventeen nucleotides were

located 59 and 39 to the THF site, respectively (Table 2).

RPA was performed at 39uC for 20 minutes in a 50 ml volume

containing 420 nM of each primer, 120 nM probe, 14 mM Mg

acetate, enzymes and 16rehydration buffer (TwistAmp exo kit,

TwistDX, Cambridge, UK), and 2 ml recombinant plasmid

standard (1 ml for 5 copies dilution) or viral or shrimp DNA. An

ESEQuant Tube Scanner device (Qiagen Lake Constance,

Stockach, Germany) was used to detect the fluorescence signals.

Determination of sensitivity and specificity
The analytical sensitivity of RPA was tested using the WSSV

quantitative plasmid standard in a range of 1000, 100, 10 and 5

copies per reaction for 8 independent assays. The threshold time

was plotted against the log number of the detected molecules and a

semi-log regression was calculated. The probit regression was

Table 1. PCR primers used in this study.

Name Sequence 59–39

Genome
location
(AF332093)

Product
size (bp) Reference

WSSV
PCR-757 FP

TTGCCAATTGTCCTGTTACGTACTCTG 244110–244136

WSSVPCR-757 RP ACGATTTATTTACTCGGTCTCAGTGCC 244866–244840 757 This study

VP28–140F AGGTGTGGAACAACACATCAAG 244610–244631

VP28–140R TGCCAACTT CATCCTCATCA 244750–244731 140 [28]

WSSV PCR-757 FP and RP were used for the PCR-cloning of vp28.
VP28–140F and R were used in qPCR assay.
doi:10.1371/journal.pone.0104667.t001

Table 2. RPA primers and probe designed in this study.

Name Sequence 59–39

Genome
location
(AF332093)

Product
size (bp)

WSSV RPA FP CATGGATGAAAACCTCCGCATTCCTGTGAC 244384–244413

WSSV RPA RP CATCAGACTTTCCATTGCGGATCTTGATTTTG 244507–244476

WSSV RPA P TGCTGAGGTTGGATCAGGCTACTTCAAGA(BHQ1-dT)
G(THF)C(FAM-dT)GATGTGTCCTTTGAC (phosphate)

244414–244462 124

WSSV RPA FP and RP: RPA primer, WSSV RPA P: RPA exo probe, BHQ1-dT: thymidine nucleotide carrying Blackhole quencher1, THF: tetrahydrofuran spacer, FAM-dT:
thymidine nucleotide carrying Fluorescein, phosphate: block elongation.
doi:10.1371/journal.pone.0104667.t002

RPA Assay for WSSV
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calculated using the IBM SPSS Statistics 20.0 (IBM, New York,

USA).

The specificity of the WSSV RPA assay was tested by using the

genomic DNA extracted from the white leg shrimp (Litopenaeus
vannamei), giant black tiger prawn (Penaeus monodon), Chinese
mitten crab (Eriocheir sinensis), human, IHHNV, and PmNV.

Detection of shrimp samples
Forty-four shrimp samples with or without WSSV infection

were used to test the performance of the RPA and qPCR assays.

DNA extraction was performed by using the TIANamp Marine

Animals DNA Kit (Tiangen, Beijing, China). The assays were

carried out as described above.

Statistic analysis
Values were represented as the mean with standard deviation

(SD). Statistical analysis was performed using the IBM SPSS

Statistics 20.0 (IBM, New York, USA).

Figure 1. (A) Amplification curve of qPCR showing 10-fold serial dilution of the WSSV DNA standard plasmids (107 to 10 copies per reaction). (B)
Amplification curve of real time RPA showing a dilution ranges of 103, 102, 10, 5 molecules of the WSSV DNA standard plasmids (Graph
generated by ESEquant tubescanner software). NC refers to negative control.
doi:10.1371/journal.pone.0104667.g001

RPA Assay for WSSV

PLOS ONE | www.plosone.org 3 August 2014 | Volume 9 | Issue 8 | e104667



Results

qPCR sensitivity
The qPCR assay revealed a high amplification efficiency

(Eff%=98.464) as well as a strong linear correlation

(R2= 0.9973) between the threshold cycles (Ct) of the plasmid

standards ranging from 1.06107 to 1.06101 copies (Figs.1 and 2).

The highest detection sensitivity of the qPCR was 10 molecules.

Two independent repeats confirmed the reproducibility of the

performance of the qPCR (Figs.1 and 2). Negative controls did not

show any amplification signals for each run (Fig. 1).

RPA sensitivity, rapidity and reliability
To ascertain the detection limit, the RPA assay was firstly

performed using the prepared plasmid standard of 107 to 10

copies. The high concentration (1072105 copies/ml) of standards
showed extremely high amplification signals in just 3–4 min of

reaction (data not show). Accordingly, it was unnecessary to

include those high concentrations of standard for evaluation of the

detection sensitivity of the RPA assay; only the standard

concentrations of 103, 102, 10, and 5 copies/ml were used as

templates in the subsequent RPA assay. As a result, a detection

limit of up to 5 copies detected within 7.1260.50 min was

achieved (Figs. 1 and 2). By applying the data analysis software

Origin, the standard deviation of the threshold time values for 103

Figure 2. (A) The reproducibility of WSSV qPCR assay (CT values were represented as the mean 6 standard deviation (SD)). Standard
regression line was generated based on two data sets. (B) The reproducibility of WSSV real-time RPA assay (Threshold time was represented
as the mean 6 standard deviation (SD)). Standard regression line was generated based on eight data sets.
doi:10.1371/journal.pone.0104667.g002

RPA Assay for WSSV
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down to 5 copies ranged from 0.11 to 0.50 minutes. The R square

value of the standard regression line was 0.90 (Fig. 2). The

detection rate of 10 and 5 copies was 87.5% and 75.0%,

respectively, as determined by 8 independent experiments. Probit

analysis of the reliability of the RPA using the results of 8

independent assays revealed that in 95% of cases a minimum of 10

molecules are detected, and the detection rate ranged from 70 to

99% (Fig. 3).

RPA specificity
The specificity of RPA assay was confirmed by cross detection

assays using the genomic DNA of the shrimp, crab, human,

IHHNV, and PmNV. None of these were amplified.

Assay performance on shrimp samples
Ten shrimp individuals were detected originally by using both

qPCR and RPA. Eight shrimps were WSSV positive, and two

negative (Fig. 4). Both assays showed a similar performance

regarding the analytical sensitivity (Fig. 4). As for the RPA assay,

the WSSV copy number was between 1000 and 100 for sample 2,

between 100 and 10 for sample 4, and less than 10 for sample 1.

These results were in agreement with the calculated WSSV copy

number of 272 (sample 2), 51 (sample 4) and 7 (sample 1) obtained

by using qPCR (Fig. 4). It indicated that RPA was able to detect as

few as 10 WSSV particles in the shrimp samples. In addition, the

threshold times of samples 2, 4 and 1 were 6.1, 7.0, and 9.0 min in

RPA, respectively; by contrast, the detection CT value of the

qPCR was approximately 28.9, 31.4 and 34.4, respectively

(Fig. 4).

To further confirm the stability of the RPA assay, 34 more

shrimp individuals were subject to the detection for the infection of

WSSV. In both RPA and qPCR assays, as a result, 22 shrimps

were WSSV positive, and 11 negative. Only one sample showed

week positive amplification signal in RPA assay, but negative in

qPCR. Accordingly, the WSSV-RPA assay turned out to be

reliable.

Discussion

WSSV is one of the most serious pathogens in the shrimp-

farming industry [13–15]. Early and rapid monitoring its infection

with high sensitivity represents the most efficient strategy in the

control and prevention of the outbreaks of its diseases [8].

The limits of other detection methods
Thus far, a variety of methods have been developed to detect

WSSV, which can be divided into two groups based on their

targeting molecule of protein or DNA. The first group is antibody-

based immunological methods, which are generally simple and

low-cost detection systems with considerable rapidity [16–21].

However, these detection techniques encounter the problems of

both low sensitivity and limited throughput. The other group

comprises DNA-based detection methods (Table 3). Conventional

PCR is widely used [22,23], which is the powerful method to

detect pathogens in different kinds of hosts, such as plants,

animals, or humans, in laboratory [24,25]. In spite of its

superiority of sensitivity, the natures of PCR, such as the

requirement of expensive thermal cycler, time-consuming, labor-

intensive, especially depending on the classical agarose gel

electrophoresis to read amplification results, greatly impede its

application in situ. Improved PCR methods developed based on

the conventional PCR, including qPCR [26–28], nested PCR [29]

and insulated isothermal PCR [30,31], are not feasible for pond-

side detection either and incur high costs for routine monitoring of

WSSV during shrimp cultivation. Although isothermal LAMP

[32–34], detects WSSV using a simple heating block, the

amplification products are not amenable for quantification.

Additionally, the design of appropriate LAMP primers is more

complicated than that for PCR and RPA.

The advantages of RPA compared to qPCR regarding to
temperature, sensitivity and reaction time
Recently, Mendoza-Cano and coauthor [28] reported a SYBR

green-based qPCR assay for the detection of WSSV, which

Figure 3. Probit regression of WSSV real-time RPA using the data of 8 runs. (The sensitivity of 10 molecules with 95% reliability by SPSS
probit regression analysis).
doi:10.1371/journal.pone.0104667.g003

RPA Assay for WSSV
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revealed a high sensitivity of 12 copies per sample. In order to

evaluate the RPA assay, we also established this published qPCR

assay in this study, which showed a slightly higher sensitivity of 10

copies per reaction compared to that of [28].

As expected, the RPA method established in this study revealed

a satisfactory performance for the detecting of shrimp WSSV

DNA. The isothermal RPA was performed at 39uC, while the two-
step thermal cycling qPCR had to be conducted at 94 to 60uC.
The low and constant reaction temperature of RPA paves the way

for simpler devices and for mobile pond-site and point-of-care

detection of WSSV.

Besides, the detection limit of RPA is as few as 5 copies of

WSSV DNA per reaction, which is comparable to that of qPCR.

The reaction time of RPA was less than 10 min; by contrast,

approximately 33 cycles (134 minutes) were required in the qPCR

assay in order to achieve the similar detection sensitivity as in

RPA. Obviously, the RPA assay saves almost 100 min of reaction

time in comparison with the qPCR. This reduction in assay time

makes the WSSV-RPA assay a handy tool for monitoring WSSV

infection during shrimp cultivation on short notice in a real time

strategy.

The vp28 as the target gene
Most of the methods for detecting WSSV target vp19 [35],

vp28 [22,26,28], wsv360 [30], ORF191 [32,33] and ORF 36

[36]. Among these genes, the vp28 is mostly widely used. VP28 is

the most abundant envelope protein in WSSV and plays an

essential role in viral attachment during early events of virus

infection [37,38]. The vp28 gene detection assay appears to bear

much higher sensitivity in comparison to the methods targeting

other genes (Table 3), and there are plenty of sequences of vp28
gene available in GenBank, which contributes to the design of

high-coverage primers and probes. In addition, sequence align-

ment analysis indicated that vp28 is a highly conserved gene in

Figure 4. Amplification curve of qPCR (A) and real-time RPA (B)., showing 10-fold serial dilutions of standard plasmids and 4 out of 44
representative shrimp samples. Numbers (103 to 10) near black lines: vp28 copies/reaction, S1–S4 near black lines: 4 representative shrimp samples,
NC: negative control.
doi:10.1371/journal.pone.0104667.g004

RPA Assay for WSSV
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WSSV (Data not shown). Therefore, the diagnostic methods

developed based on vp28 is feasible for universal detection of

various WSSV isolates.

The convenience of application of RPA to in situ
diagnostics
The commercially available TwistAmp exo kit (TwistDX,

Cambridge, UK) contains buffer and reaction mixtures, which

include enzymes and nucleotides, all provided in a dried pellets.

Just primers, probe, and DNA template need to be added. Again

this recommends RPA is a promising technique designed for

point-of-care or field diagnoses.

Importantly, it is necessary to point out that the size of the

ESEquant Tube Scanner, the reaction signal recording device, is

just 17.4 by 18.8 cm with a weight of about 1 kg (including the

laptop). It means the Tube Scanner device is significantly light,

small and convenient for point of care monitoring [40]. Besides,

the Tube Scanner is much cheaper than any of the mobile PCR

devices. Therefore, RPA implemented on a tubescanner is a very

promising nucleic acid detection method that could easily be

applied on shrimp farms at much lower investment than for using

mobile qPCR on real time cyclers.

Recently, Lutz and coauthors combined RPA with a foil based

microfluidic LabDisc system [39]. This improvement together

with the development of automatic sample preparation system

could eventually lead to the development of RPA panels or chips

for the simultaneous detection of different categories of infectious

agents, e.g., syndromic panels of bacteria, and DNA and RNA

viruses, in small point of care devices.

In conclusion, with the assistance of the mobile device

(ESEquant Tubescanner system), we have developed an extremely

efficient and highly sensitive isothermal real time RPA assay for

the detection of WSSV. The WSSV real time RPA assay appears

to be much more suitable for mobile testing on pond sites. More

work, such as validation of specificity and reproducibility, needs to

be done to apply the established WSSV-RPA assay to the

diagnostics.
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