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Abstract

Let K be a number field, � a finitely generated subgroup of K∗, for instance the unit group
of K, and κ > 0. For an ideal a of K let ind�(a) denote the multiplicative index of the reduc-
tion of � in (OK / a)∗ (whenever it makes sense). For a prime ideal p of K and a positive in-
teger γ let Iκ

γ (p) be the average of ind〈a1,...,aγ 〉(p)κ over all tupels (a1, . . . , aγ ) ∈ (OK / p)∗γ .
Motivated by a problem of Rohrlich we prove, partly conditionally on fairly standard hypo-
theses, lower bounds for

∑
N a�x ind�(a)κ and asymptotic formulae for

∑
N p�x Iκ

γ (p).

1. Introduction

Let K be a number field with ring of integers OK and unit group UK := O∗
K, an abelian

group of rank r + s − 1, where r and s denote the number of real and pairs of complex
embeddings of K, respectively. For any ideal a of K one may consider the image UK of
UK in (OK / a)∗ and ask for the behaviour of its residual index, denoted by indUK

(a). This
quantity behaves rather erratically as a runs through ideals of K, if UK is infinite, i.e. K is
neither Q nor an imaginary quadratic field. In this case a suitable generalisation of Artin’s
conjecture on primitive roots to number fields (see e.g. [15]) suggests that the index should
often be small and in fact UK should even generate (OK / a)∗ quite frequently. On the other
hand, Rohrlich [25] has explicitly constructed a (very sparse) infinite family of ideals a of
K for which the index is as large as (N a)1−ε, where N a denotes the number of elements
in OK / a. This construction was one of the key ingredients for strong bounds towards the
Ramanujan conjecture for GLn over number fields [19]. But at the same time the sparseness
of this sequence prevented an extension of the Kim–Sarnak bound [11] for GL2 over Q to
general number fields (see [3] for more details).

In a recent paper of Rohrlich [24] the quantity indUK
(a) appeared once again. This time

its average order occupied an important position in connection with counting self-dual Artin
representations over number fields. In this regard Zelinsky [31] has recently proved the upper
bound ∑

N a�x

indUK
(a) �

x2

log3−ε x
(1·1)

for any ε > 0, if UK is infinite, thereby improving the trivial bounds

x �
∑

N a�x

indUK
(a) � x2. (1·2)

Apart from this, however, little seems to be known.
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In this paper we will establish non-trivial lower bounds for the sum in (1·1) and also prove
a conditional result which, somewhat unexpectedly, suggests that the correct order of growth
is in fact x2+o(1). These lower bounds will be proven in a more general setting. Instead of
the average behaviour of indUK

(a) we consider arbitrary (positive) moments of the index
ind�(a) of the reduction modulo a of any (not necessarily torsion-free) subgroup � of K∗ of
finite rank γ � 1 (the case of finite � being uninteresting). Clearly we must restrict to those
ideals a for which the reduction � modulo a makes sense and is contained in (OK / a)∗. For
convenience this property will be denoted by � ⊂ (OK / a)∗.

Another problem addressed by this paper is the average behaviour of ind�(p) over prime
ideals p of K. The advantage here is that the multiplicative structure of the residue field
OK / p is much easier to handle than the multiplicative structure of OK / a if a is composite.
In some sense the averaging over prime ideals therefore seems to be the more natural prob-
lem. In [29], Wagstaff has provided heuristic arguments for K = Q which suggest that the
average multiplicative index of an integer a � 0, ±1 modulo p equals a positive multiple
of log p, but even under Generalised Riemann Hypothesis (GRH), a rigorous proof seems
out of reach (see [5] for some unconditional results). More generally, for any real κ > 0 we
expect

∑
N p�x

�⊂(OK /p)∗

ind�(p)κ ∼

⎧⎪⎨
⎪⎩

Aκ
� li(x), if γ > κ,

Aκ
�x, if γ = κ,

Aκ
� li(xκ−γ+1), if γ < κ,

(1·3)

with a positive constant Aκ
� depending on � and κ , and li(x) denoting the logarithmic integ-

ral. In this paper we prove results which support this conjecture.

2. Statements

For the rest of this paper let K be an algebraic number field, κ an arbitrary positive real,
γ � 1 an integer and � a (not necessarily torsion-free) subgroup of K∗ of rank γ .

2·1. Averaging over all ideals

For any positive integer n, we denote by P+(n) the largest prime divisor of n, or 1 if
n = 1, and we set

Pδ,K(y) = {
p : N p � y, P+(N p −1) < yδ

}
for any δ, y > 0. Then we obtain the following theorem.

THEOREM 1. Let K be a number field. Assume that δ > 0 is a positive constant such that
there exist constants K = K (δ) and y0(δ) for which

�Pδ,K(y) �
y

(log y)K
(2·1)
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holds for all y > y0(δ) with an implied constant possibly depending on K. For any κ > 0
and any subgroup � of K∗ of rank γ � 1 we then have∑

N a�x
�⊂(OK /a)∗

ind�(a)κ � x1+κ−δ+o(1),

where the implied constant depends on γ , κ and K.

The accuracy of this lower bound depends on the quality of the smoothness condition
(2·1). In case K = Q one knows that (2·1) is satisfied for δ = 0.2961 . . . (cf. [1]). It is
conjectured to hold for all δ > 0 with any K > 1. We believe that this is also true for the
case K � Q and expect an asymptotic law like

∑
ind�(a)κ = x1+κ+o(1) to hold. Rohrlich

[25] has proved that (2·1) holds with K = 1 and some δ sufficiently close to 1 and depending
on K, thereby improving the lower bound in (1·2) for any fixed number field. We establish,
partly on GRH, admissible values for δ which are in fact smaller than 1/2.

THEOREM 2. Let K(n) be the normal closure of K / Q in some algebraic closure of K

and, for l ∈ N, let ζl denote a primitive l-th root of unity. Then condition (2·1) is satisfied
for K = 2 and every δ > δ0, where δ0 depends on K and may be chosen as follows:

(i) if K(n) is abelian, then δ0 := 1
2
√

e = 0.303265 . . . ;
(ii) if GRH holds for the fields K(n)(ζl), l ∈ N, then δ0 := 1

2 exp
{
− 1

[K(n):Q]+1

}
;

(iii) if Gal(K(n) / Q) has an abelian subgroup of index � 4, then δ0 := 1
2 − η with some

η > 0 depending on K.
The value of δ0 in (ii) can be slightly improved. For details and the exact value of η in (iii)
we refer to Section 4·2·2.

Theorem 1 is very surprising. On the one hand, as we shall see below, the index averaged
over prime ideals is typically small. In view of Artin’s conjecture on primitive roots and
Wagstaff’s heuristic this is not an unexpected phenomenon, as already mentioned above. On
the other hand, results of Kurlberg [12] and Kurlberg and Pomerance [13] suggest that even
within the set of all ideals the index is small with probability 1. Nevertheless it turns out that
the number of (highly composite) ideals for which the index is exceptionally big is larger
than expected.

2·2. Averaging over prime ideals

Let L / K be a finite normal extension. For a non-empty conjugacy class C in its Galois
group Gal(L / K) we denote by PC(L / K) the set of all prime ideals p of K which are

unramified in L and satisfy
[

L|K
p

]
= C . Here

[
L|K
p

]
is the Frobenius symbol of p. For

convenience PC(x, L / K) will consist of all p ∈ PC(L / K) with norm � x , and πC(x, L / K)

will denote the corresponding counting function.
We are interested not only in lower bounds, but in the asymptotic behaviour of κ-th mo-

ments of ind�(p) taken over prime ideals p ∈ PC(L / K) which satisfy � ⊂ (OK / p)∗. As
explained in the introduction, it is hopeless to attack this task by common methods. We
therefore sum the quantity

Iκ
γ (p) :=

∑
a1,...,aγ ∈(OK /p)∗

ind〈a1,...,aγ 〉(p)κ

(N p −1)γ
,

the κ-th moment of ind〈a1,...,aγ 〉(p) averaged over all (a1, . . . , aγ ) ∈ (OK / p)∗γ . One may
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hope that the behaviour of the reduction of � modulo p (whenever � ⊂ (OK / p)∗) resembles
that of a generic group, so that Iκ

γ (p) yields a reasonable approximation of ind�(p)κ .
As a consequence of the additional averaging process, precise asymptotic estimates for the

average order of Iκ
γ (p) over prime ideals in PC(L / K) become available. We formulate these

in the subsequent theorem. The results are unconditional and depend on whether γ = κ ,
γ > κ or γ < κ . The latter two cases turn out to be easier and admit asymptotic formulae
while in the first case one may at least determine the corresponding growth rate.

THEOREM 3. Let K, L, C, κ and γ be as above. For a positive integer n we let

cC(n) =
{

|C |, if {σ ∈ C : σ |L � K(ζn) = id}�∅,

0, otherwise.

Let furthermore ϕt(n) be the multiplicative function defined by ϕt(pe) = pe(1 − 1/pt) for
any prime power pe, e � 1, and any real t > 0.

(i) if γ > κ , then

∑
p∈PC(x,L / K)

Iκ
γ (p) = li(x) ·

∑
n�1

cC(n)ϕκ(n)

nγ−κ+1[L(ζn) : K] + O

(
li(x)

(log log x)
γ (γ−κ)

2γ−κ
−ε

)
,

where the implied constant depends on L, γ , κ and ε, and the sum over n is convergent
and positive;

(ii) if γ = κ , then

x �L

∑
p∈PC(x,L / K)

Iγ
γ (p) �K x;

(iii) if γ < κ , then

∑
p∈PC(x,L / K)

Iκ
γ (p) = li(xκ−γ+1) ·

∑
n�1

cC(n)ϕγ (n)

nκ−γ+1[L(ζn) : K] + O

(
li(xκ−γ+1)

(log log x)
κ(κ−γ )

2κ−γ
−ε

)
,

where the implied constant depends on L, γ , κ and ε, and the sum over n is convergent
and positive.

As Theorem 4 will show, the asymptotic constant and the error terms in Theorem 3 (i) and
(iii) can be simplified and improved, respectively, and Theorem 3 (ii) can be replaced by an
asymptotic formula under GRH, if one additionally assumes that L and K are both normal
over Q. We conjecture that such an asymptotic formula holds in general.

THEOREM 4. With the above notations assume that L and K are normal over Q, and let
m be some positive integer such that Lab, the abelian part of L, is contained in Q(ζm). Set

Aκ
γ := Aκ

γ (L / K, C) := |C |
[L : K]

∑
d|m

cC (d)�0

[L � Q(ζd) : Q]ϕγ−κ+1

(
m
d

)
aκ

γ (m, d)

mdγ−κ
,

with certain positive real numbers aκ
γ (m, d) given by Euler products which only depend on

κ , γ , m and d and will be defined in Lemma 13. Then Aκ
γ is positive and we have:

(i) if γ > κ , then

∑
p∈PC(x,L / K)

Iκ
γ (p) = ζ(γ − κ + 1)Aκ

γ li(x) + O

(
li(x)

(log x)
γ (γ−κ)

6γ−3κ
−ε

)
,
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where ζ(s) denotes the Riemann zeta function and the implied constant depends on L,
γ , κ and ε;

(ii) if γ = κ and one assumes the GRH for the fields L(ζn), n � 1, then∑
p∈PC(x,L / K)

Iγ
γ (p) = Aγ

γ x + OL

(
x log log x

log x

)
;

(iii) if γ < κ , then

∑
p∈PC(x,L / K)

Iκ
γ (p) = ζ(κ − γ + 1)Aγ

κ li(xκ−γ+1) + O

(
li(xκ−γ+1)

(log x)
κ(κ−γ )

6κ−3γ
−ε

)
,

where the implied constant depends on L, γ , κ and ε.

Remark 5. Although not obvious from its definition the constant Aκ
γ in Theorem 4 does

not depend on the choice of m as will become clear in Section 3·3. Moreover, if κ = 1
then a1

γ (m, d) = 1 holds for any γ and all d | m (cf. Lemma 13) which simplifies Aκ
γ

substantially.

Theorem 4 supports (1·3) and Wagstaff’s heuristic in particular. Theorem 4 (ii) re-
mains true unconditionally if Proposition 11, a generalisation of the classical Bombieri–
Vinogradov Theorem, may be applied. This is the case, if L � Q(ζn) = Q holds for all
positive integers n, and the largest abelian subgroup H of Gal(L / Q) for which H � C �∅

has index � 4 inside Gal(L / Q) (see Section 3·3 for more details). Hence, Theorem 4 (ii)
generalises a recent result of Felix [6] who independently proved the statement for γ = 1
and L = Q.

At last, Theorem 3 (i) and (iii) hold with the better error terms of Theorem 4 if there
exists a field tower Q = M0 ⊂ M1 ⊂ · · · ⊂ Ms = K in which each field is normal over the
preceding one. This is a consequence of stronger upper bounds for possible Siegel zeroes of
Dedekind zeta functions (cf. Proposition 9). Further explanations will be provided at the end
of Section 3·1.

2·3. Structure and methods of this paper

In Section 3 we proceed with the proofs of Theorems 3 and 4. The basic idea to estim-
ate the average of Iκ

γ over the designated set of prime ideals of K is to interchange the
summation order and then estimate the sizes of occurring sets of prime ideals by the Brun–
Titchmarsh inequality [28, p. 73] and effective versions of the Čebotarev Density Theorem.
In case γ � κ it suffices to apply an unconditional version of the latter (cf. Proposition 8),
whereas in case γ = κ one needs to resort to a stronger version under GRH (cf. Proposi-
tion 12) to tackle the arising difficulties. These difficulties may in certain cases be overcome
by the Bombieri–Vinogradov Theorem [7, p. 170] or an appropriate number field analogue
thereof (cf. Proposition 11). All occurring implied constants which depend on L may also
depend on K and C .

Theorems 1 and 2 are addressed in Section 4. The key ingredient underlying Theorem 1
is the estimate ind�(a) � ϕ(a)/λ(a)γ , where ϕ(a) and λ(a) denote order and exponent of
(OK / a)∗, respectively. We establish lower bounds for moments of ind�(a) by constructing
sufficiently many highly composite ideals a for which this ratio becomes exceptionally large,
thereby generalising a result of Luca and Sankaranarayanan [18]. Theorem 2 is proved by
adapting classical ideas of Balog [2] and Friedlander [8] to number fields. The quality of
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this adaption, and hence the accuracy of the admissible values in Theorem 2, again depends
on the effective versions of the Čebotarev Density Theorem and number field analogues of
the Bombieri–Vinogradov Theorem, respectively, one may apply.

To conclude with we note that the average behaviour of the order, in some sense the
counterpart of the index, has been studied intensively and often appears to be the easier
problem. In [13] Kurlberg and Pomerance have established sharp upper and lower bounds
for the average order of orda(n) over all integers n on the one hand, and on the other hand
they proved an asymptotic formula for the average order of orda(p) over primes p subject
to the GRH for certain number fields. Using the same methods, these results seem to admit
similar statements in the more general setting of a number field K and a finitely generated
subgroup � of K∗.

3. Averaging over prime ideals

To start with, we note that

Iκ
γ (p) = 1

(N p −1)γ

∑
d|N p −1

dκ
∑

f |N p−1
d

μ( f )hγ,p

(N p −1

d f

)
,

where hγ,p(n) denotes the number of γ -tupels (a1, . . . , aγ ) ∈ (OK / p)∗γ for which the
order of 〈a1, . . . , aγ 〉 divides n. Since (OK / p)∗ is cyclic one clearly has hγ,p(n) = nγ for
any divisor n of N p −1. Hence

Iκ
γ (p) =

∑
d|N p −1

1

dγ−κ

∑
f |N p−1

d

μ( f )

f γ
. (3·1)

Summing over p ∈ PC(L / K) we thus obtain∑
p∈PC(x,L / K)

Iκ
γ (p) =

∑
p∈PC(x,L / K)

∑
d|N p −1

1

dγ−κ

∑
f |(N p−1)/d

μ( f )

f γ
. (3·2)

This formula turns out to be a vital tool in case γ � κ . In case κ > γ , however, the term
1/dγ−κ causes troubles, and it is more convenient to consider∑

p∈PC(x,L / K)

Iκ
γ (p)

(N p −1)κ−γ
=

∑
p∈PC(x,L / K)

∑
d|N p −1

1

dκ−γ

∑
f |d

μ( f )

f γ
, (3·3)

which is easily derived if one exchanges the roles of d and (N p −1)/d in (3·1). We start
with the proof of Theorem 3 and first consider parts (i) and (iii), as it turns out to be more
convenient to treat the cases κ = γ and κ � γ separately.

3·1. Proof of Theorem 3 (i) and (iii)

Rearranging the right-hand sides of (3·2) and (3·3) yields∑
p∈PC(x,L / K)

Iκ
γ (p) =

∑
f �x

μ( f )

f γ

∑
d�x

1

dγ−κ

∑
p∈PC(x,L / K)
N p≡1 (d f )

1, (3·4)

in case γ > κ , and∑
p∈PC(x,L / K)

Iκ
γ (p)

(N p −1)κ−γ
=
∑
f �x

μ( f )

f κ

∑
d�x

1

dκ−γ

∑
p∈PC(x,L / K)
N p≡1 (d f )

1, (3·5)
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for γ < κ . Observing (3·4) and (3·5), we notice that the respective right-hand sides are
almost identical, only κ and γ have swapped their roles. It therefore suffices to study the
case γ > κ by the right-hand side of (3·4), and transfer the results to the case κ > γ later
on.

Henceforth we thus assume γ > κ until further notice. To get rid of the terms for large d
and f we prove the following lemma.

LEMMA 6. For any positive parameters 1 < y, z � xα with 0 < α < 1/2 we have∑
f �x

μ( f )

f γ

∑
d�x

1

dγ−κ

∑
p∈PC(x,L / K)
N p≡1 (d f )

1 =
∑
f �y

μ( f )

f γ

∑
d�z

1

dγ−κ

∑
p∈PC(x,L / K)
N p≡1 (d f )

1

+ O

(
x2/3 + x

xα(γ−κ)
+ li(x)

yγ
+ li(x)

zγ−κ

)
,

where the implied constant depends on K, γ and κ .

Proof. The sum over p is trivially bounded from above by [K : Q]x/(d f ). Recalling that
γ � 1 and γ > κ we thus obtain∑

f >xα

μ( f )

f γ

∑
d�x

1

dγ−κ

∑
p∈PC(x,L / K)
N p≡1 (d f )

1 �K x
∑
f >xα

1

f γ+1

∑
d�x

1

dγ−κ+1
�γ,κ x1−γα �

x

xα(γ−κ)

and ∑
f �x

μ( f )

f γ

∑
d>xα

1

dγ−κ

∑
p∈PC(x,L / K)
N p≡1 (d f )

1 �K x
∑
f �x

1

f γ+1

∑
d>xα

1

dγ−κ+1
�γ,κ

x

xα(γ−κ)
.

It remains to estimate the terms with d, f � xα and f > y or d > z. The contribution of
non-linear prime ideals of K is bounded by OK(x2/3) as one can easily see from (3·2) and
standard estimates for divisor functions. Writing π(x; a, q) for the number of primes up to
x in the arithmetic progression a modulo q the Brun-Titchmarsh inequality yields∑

y< f �xα

μ( f )

f γ

∑
d�xα

1

dγ−κ

∑
p∈PC(x,L / K)
N p≡1 (d f )

1 �K

∑
y< f �xα

μ( f )

f γ

∑
d�xα

π(x; 1, d f )

dγ−κ
+ x2/3

�γ,κ

li(x)

yγ
+ x2/3.

Here we used the trivial estimates ϕ(mn) � ϕ(m)ϕ(n) for Euler’s totient function and∑
n�x 1/(nrϕ(n)) = Or (x−r ) valid for any r > 0. In the same way one deduces∑

f �xα

μ( f )

f γ

∑
z<d�xα

1

dγ−κ

∑
p∈PC(x,L / K)
N p≡1 (d f )

1 �K,γ,κ

li(x)

zγ−κ
+ x2/3,

and the assertion follows.

Now choose parameters 1 � y, z � x1/3 which we specify later. Lemma 6 then yields∑
p∈PC(x,L / K)

Iκ
γ (p) =

∑
f �y

μ( f )

f γ

∑
d�z

1

dγ−κ

∑
p∈PC(x,L / K)
N p≡1 (d f )

1 + O

(
x2/3+ x

x (γ−κ)/3
+ li(x)

yγ
+ li(x)

zγ−κ

)

(3·6)
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with an implied constant depending on K, γ and κ . For any positive integer n we set Kn :=
K(ζn) and Ln := L(ζn), both being finite normal extensions of K. By a standard argument
from algebraic number theory, the condition N p ≡ 1 (d f ) is equivalent to the complete
splitting of p in the normal extension Kd f / K (cf. [23, p. 50]). Thus the prime ideals p ∈
PC(L / K) which satisfy N p ≡ 1 (d f ) are exactly those which are unramified in Ldf and

satisfy
[

Ldf |K
p

]
⊂ C(d f ), where

C(n) := {σ ∈ Gal(Ln / K) : σ |L ∈ C, σ |Kn = id}
for any positive integer n.

LEMMA 7. C(n) is either empty or a conjugacy class in Gal(Ln / K), and we have

|C(n)| = cC(n),

where cC(n) is as defined in the statement of Theorem 3.

Proof. Clearly |C(n)| � 0 implies cC(n) � 0. If cC(n) � 0, let σ lie in the inter-
section of C and Gal(L / L � Kn). Since Ln / L � Kn is the direct product of the exten-
sions L / L � Kn and Kn / L � Kn , there exists a lift σ̃ of σ in Gal(Ln / L � Kn) satisfying
σ̃ |Kn = id (cf. [10, p. 131]). Hence σ̃ ∈ C(n) showing that C(n) is empty if and only if
cC(n) = 0.

Assume that C(n) is not empty and let σ ∈ C(n). Note that C(n) is clearly closed
under conjugation because L and Kn are normal over K. Since τστ−1|L runs through C
as τ runs through Gal(Ln / K), C(n) contains a conjugacy class of Gal(Ln / K) with at
least |C | elements. On the other hand the map C(n) → C, σ �→ σ |L is injective be-
cause Ln = L Kn . This yields |C(n)| � |C | and proves that C(n) must be a conjugacy
class.

Thus the sum over p on the right-hand side of (3·6) may be written as πC(d f )(x, Ld f / K).
Such quantities are estimated using effective versions of the Čebotarev Density Theorem as
provided by the following result due to Lagarias and Odlyzko [14].

PROPOSITION 8 (Lagarias–Odlyzko). Let L′ / K′ be an arbitrary normal extension of
number fields and C ′ ⊂ Gal(L′ / K′) a conjugacy class or empty. Then there exist abso-
lute constants c1, c2 > 0 such that, if log x � 10[L′ : Q](log �L′)2, then∣∣∣∣πC ′(x, L′ / K′) − |C ′|

[L′ : K′] li(x)

∣∣∣∣ � |C ′|
[L′ : K′] li(xβ0(L

′)) + c1xe−c2

(
log x

[L′ :Q]
)1/2

,

where �L′ denotes the discriminant of L′, and β0(L
′) constitutes the only possible zero of

the Dedekind zeta function ζL′(s) of L′, s = σ + i t , in the strip

1 − (4 log �L′)−1 � σ � 1, |t | � (4 log �L′)−1,

which must therefore be simple and real.
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Now choose y and z according to the condition log x �L (yz)3 log2(yz). Invoking Pro-
position 8 and Lemma 7 we infer from (3·6)∑

p∈PC(x,L / K)

Iκ
γ (p) = li(x)

∑
f �y

μ( f )

f γ

∑
d�z

cC(d f )

dγ−κ [Ldf : K] + O

(
li(x)

yγ
+ li(x)

zγ−κ

)
+ E

= li(x)
∑
f �1

μ( f )

f γ

∑
d�1

cC(d f )

dγ−κ [Ldf : K] + O

(
li(x)

yγ
+ li(x)

zγ−κ

)
+ E

= li(x)
∑
n�1

cC(n)ϕκ(n)

nγ−κ+1[Ln : K] + O

(
li(x)

yγ
+ li(x)

zγ−κ

)
+ E (3·7)

with an implied constant depending on γ , κ and L, since

[Ln : K] � [Ln : L] = [Ln : Q(ζn)][Q(ζn) : Q]
[L : Q] �L ϕ(n). (3·8)

The sum in (3·7) clearly converges absolutely because of 0 � cC(n) � |C |, γ > κ and (3·8),
and it is positive because the first summand is so and all others are � 0.

To estimate the error term E coming from Proposition 8 we need upper bounds for
β0(Ld f ) and �Ld f . Sufficient results are given by the next two statements, the first of which
is due to Stark [27, p. 148].

PROPOSITION 9 (Stark). Let L′ be a number field and set mL′ = 4 if L′ / Q is normal,
mL′ = 16 if there exists a field tower Q = M0 ⊂ M1 ⊂ · · · ⊂ Ms = L′ with each
field normal over the preceding one, and mL′ = 4[L′ : Q]! otherwise. Then there exists an
absolute positive constant c3, such that

β0 < max

{
1 − 1

mL′ log �L′
, 1 − 1

c3�
1/[L′ :Q]
L′

}
.

LEMMA 10. Let L′ be a number field, k a positive integer and rad(k) its largest squarefree
divisor. Then there exist positive constants c4, c5 which only depend on L′ such that

�L′(ζk ) �
(

c4ϕ(k) rad(k)
)c5ϕ(k)

.

Proof. Let P be the set of primes which ramify in L′(ζk)
(n), the normal closure of

L′(ζk)/ Q in some algebraic closure, and observe that �L′(ζk ) divides �
(n)

L′(ζk )
(cf. [23, p. 213]).

By [26, proposition 6] we obtain

�L′(ζk ) �
(

[L′(ζk)
(n) : Q]

∏
p∈P

p

)[L′(ζk )
(n):Q]

. (3·9)

Now observe that the degree of L′(ζk)
(n) over L′(ζk) only depends on L′, and P consists of

those primes which divide k or the discriminant of K. The assertion then follows by standard
estimates for degrees of cyclotomic field extensions.

For n large enough we therefore obtain

β0(Ln) � 1 − 1

8[Ln : Q][Ln : Q]! log n
� 1 − 1

(n[L : Q])n[L:Q] (3·10)

by Proposition 9, Lemma 10 and Stirling’s formula. Hence, by Proposition 8, Lemma 10
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and (3·10) there exists a positive constant c depending on L such that

E �L

∑
f �y

1

f γ

∑
d�z

1

dγ−κ

[
1

ϕ(d f )
li(xβ0(Ld f )) + xe

−c
(

log x
[Ldf :Q]

)1/2]
(3·11)

�L li(x) exp

{
− log x

(yz[L : Q])yz[L:Q]

}
+ zxe−c′

(
log x

yz

)1/2

. (3·12)

Here c′ > 0 is another appropriate constant depending on L. In view of (3·7) and (3·12) we
set

y = (log log x)
γ−κ

(2γ−κ)
−ε and z = (log log x)

γ

(2γ−κ)
−ε

,

which yields the asserted asymptotic formula

∑
p∈PC(x,L / K)

Iκ
γ (p) = li(x)

∑
n�1

cC(n)ϕκ(n)

nγ−κ+1[Ln : K] + O

(
li(x)

(log log x)
γ (γ−κ)

2γ−κ
−ε

)
. (3·13)

The corresponding asymptotic formula in case κ > γ may be deduced from (3·5) by the
same methods as above followed by a simple partial summation argument, and the proof of
Theorem 3 is complete.

While we are on the subject of error terms, let us for the ease of readability include at
this point the corresponding estimations in the situation of Theorem 4 and briefly show how
to improve the error term in (3·13) if we assume the existence of a field tower Q = M0 ⊂
M1 ⊂ · · · ⊂ Ms = K in which each field is normal over the preceding one. In this case,
such a tower exists for any Ln , too, and Proposition 9 and Lemma 10 provide the stronger
bound β0(Ln) � 1 − (c3n2)−1 instead of (3·10), if n is large enough. From (3·11) we thus
derive

E �L li(x)e
− log x

c3(yz)2 + zxe−c′
(

log x
yz

)1/2

.

Collecting error terms and recalling the condition log x �L (yz)3 log2(yz), an optimization
of y and z provides the choice

y = (log x)
γ−κ

(6γ−3κ)
−ε and z = (log x)

γ

(6γ−3κ)
−ε

and yields

∑
p∈PC(x,L / K)

Iκ
γ (p) = li(x)

∑
n�1

cC(n)ϕκ(n)

nγ−κ+1[Ln : K] + O

(
li(x)

(log x)
γ (γ−κ)

6γ−3κ
−ε

)
. (3·14)

Just as above, it is easy to derive an analogous error term in case κ > γ . In this way we
have confirmed the remark in the last paragraph of Section 2·2 and already proved half of
Theorem 4, too.

3·2. Proof of Theorem 3 (ii)

From (3·1) we initially infer the estimate

Iκ
γ (p) �

∑
d|N p −1

dκ−γ � max{1, (N p −1)κ−γ }τ(N p −1) (3·15)
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valid for arbitrary γ � 1 and κ > 0, where τ(n) is the number of divisors of n. Now assume
γ = κ . The asserted upper bound follows by a famous result of Linnik (cf. [16]):∑

p∈PC(x,L / K)

Iγ
γ (p) �K

∑
N p�x
p linear

τ(N p −1) + x2/3 �K

∑
p�x

τ(p − 1) + x2/3 � x .

Invoking (3·2) we find

∑
p∈PC(x,L / K)

Iγ
γ (p) =

∑
d�x

ϕγ (d)

d

∑
p∈PC(x,L / K)

d|N p −1

1 �
∑
d�x

ϕ(d)

d

∑
p∈PC(x,L / K)

d|N p−1

1. (3·16)

To estimate the sum over p in (3·16) we quote the following generalisation of the classical
Bombieri–Vinogradov Theorem which combines a result of Murty and Murty [20] and a
recent generalisation thereof due to Murty and Petersen [21]. This result allows appropriate
unconditional estimates for the error term in Proposition 8 on average over large moduli.

PROPOSITION 11 (Murty–Murty–Petersen). Let L′ / K′ be an arbitrary normal extension
of number fields and C ′ ⊂ Gal(L′ / K′) a conjugacy class or empty. For integers a and q > 0
let πC ′(x; a, q) denote the number of prime ideals p of K′ which are unramified in L′ and

satisfy N p � x, N p ≡ a (q) and
[

L′|K′
p

]
= C ′. Let H be the largest abelian subgroup

of Gal(L′ / K′) such that H � C ′ � ∅ and denote by M′ the fixed field of H. Finally, set
η = max{[M′ : Q] − 2, 2} and Q = x

1
η
−ε. Then for any A > 0 we have

∑
q�Q

L′ � Q(ζq )=Q

max
(a,q)=1

max
y�x

∣∣∣∣πC ′(y; a, q) − |C ′|
ϕ(q)[L′ : K′]π(y)

∣∣∣∣�ε,A
x

logA x
.

If K′ = Q this result remains true with Q = x
1
η log−B x, where B = B(A) is a positive

constant depending on A.

To apply this result we need to restrict the range of the moduli d in (3·16) a little further.
Any positive integer d for which (d, �L) = 1 holds also satisfies (�Q(ζd ), �L) = 1 (cf. [30,
proposition 2·7]). Hence, [Ld : L] = ϕ(d) and L � Q(ζd) = Q hold whenever (d, �L) = 1
(cf. [9, p. 98]). Since primes dividing �K must divide �L the same holds for Kd / K. Thus
we deduce that [L � Kd] = K (cf. [10, p. 131]) and hence |C(d)| = |C | by Lemma 7. For
0 < α < 1/2 sufficiently small we finally obtain

∑
p∈PC(x,L / K)

Iγ
γ (p) �

∑
d�xα

(d,�L)=1

ϕ(d)

d

∑
p∈PC(x,L / K)

d|N p −1

1 �L π(x)
∑
d�xα

(d,�L)=1

1

d
�L x,

by Proposition 11 and Möbius inversion.

3·3. Proof of Theorem 4

Let us now assume that L / Q and K / Q are both normal. The advantage here is the
additional action of Gal(K / Q) and Gal(L / Q) on the prime ideals of K and L, respectively.
By the same arguments as in Section 3·1 we may without loss of generality assume γ � κ .
To begin with we note that one may neglect non-linear prime ideals of K, since there are
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only OK(
√

x) such prime ideals with norm � x , whence∑
p∈PC(x,L / K)

Iκ
γ (p) =

∑
p∈PC(x,L / K)

p linear

Iκ
γ (p) + OK(x2/3)

by (3·15) and a trivial estimate for the divisor function.
Now let σ ∈ C and let C be the conjugacy class of σ in Gal(L / Q). Clearly, we have

C ⊂ C ⊂ Gal(L / K) because K / Q is normal. If Z(σ ) denotes the centraliser of σ in
Gal(L / Q), let R be a set of representatives of right cosets of the subgroup Z(σ ) Gal(L / K)

in Gal(L / Q). Then C is the disjoint union

C =
⋃
ν∈R

Cν, (3·17)

where Cν is the conjugacy class of νσν−1 in Gal(L / K). If p1, . . . , p[K:Q] are linear prime
ideals of K lying over the same prime p, unramified in L, one can easily verify (see e.g. [17,
p. 126f]) the equivalence

∃i :
[

L | K

pi

]
= C ⇐⇒

[
L | Q

p

]
= C .

In this case we deduce from (3·17) that the number of such prime ideals is exactly
|C |[K : Q]/|C |. Thus we obtain∑

p∈PC(x,L / K)

Iκ
γ (p) = |C |[K : Q]

|C |
∑

p∈PC (x,L / Q)

Iκ
γ (p) + OK(x2/3). (3·18)

In case γ > κ , combining (3·18) with the observation (3·14) made at the end of Section 3·1
yields

∑
p∈PC(x,L / K)

Iκ
γ (p) = li(x)[K : Q]

∑
n�1

cC(n)ϕκ(n)

nγ−κ+1[L(ζn) : Q] + O

(
li(x)

(log x)
γ (γ−κ)

6γ−3κ
−ε

)
, (3·19)

since cC (n) = (|C |/|C |)cC(n), as one can easily derive from Lemma 7. The implied con-
stant in (3·19) depends on γ , κ , L and ε. Let us now consider the case γ = κ and postpone
the computation of the sum in (3·19). In that case (3·2) yields∑

p∈PC (x,L / Q)

Iγ
γ (p) =

∑
p∈PC (x,L / Q)

∑
d|p−1

∑
f |(p−1)/d

μ( f )

f γ
.

Here the terms for large d cannot be neglected any more. Let y = log2 x , and recall that
γ � 1. Rearranging summation we obtain∑

p∈PC (x,L / Q)

Iγ
γ (p) =

∑
f �x

μ( f )

f γ

∑
p∈PC (x,L / Q)

f |p−1

∑
d| p−1

f

1

=
∑
f �y

μ( f )

f γ

∑
p∈PC (x,L / Q)

f |p−1

∑
d| p−1

f

1 + O

(
x

log x

)
,

by the same arguments used in the proof of Lemma 6, and∑
n�x

1

ϕ(n)
= O(log x) (3·20)
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(cf. Lemma 15). Using the classical estimate∑
d|n

1 = 2
∑
d|n

d<
√

n

1 + O(1)

and the Brun–Titchmarsh inequality we get

∑
p∈PC (x,L / Q)

Iγ
γ (p) = 2

∑
f �y

μ( f )

f γ

∑
p∈PC (x,L / Q)

f |p−1

∑
d| p−1

f

d<

√
p−1

f

1 + O

(
x

log x

)
.

The above error term could be improved for γ > 1. Since there occur larger error terms in
the sequel, however, we neglect this precision. Now we rearrange the sum again and get

∑
p∈PC (x,L / Q)

Iγ
γ (p) = 2

∑
f �y

μ( f )

f γ

∑
d<

√
x
f

∑
p∈PC (x,L / Q)

p>d2 f +1
d f |p−1

1 + O

(
x

log x

)
.

By the Brun–Titchmarsh inequality and (3·20) one easily deduces

∑
f �y

μ( f )

f γ

∑
d<

√
x
f

∑
p∈PC (d2 f,L / Q)

d f |p−1

1 = O

(
x

log x

)
.

Let now B be a positive parameter. Proceeding as before we get rid of the terms with√
x/ logB x � d f <

√
x f and obtain

∑
p∈PC (x,L / Q)

Iγ
γ (p) = 2

∑
f �y

μ( f )

f γ

∑
d f <

√
x

logB x

∑
p∈PC (x,L / Q)

d f |p−1

1 + O

(
x log log x

log x

)
. (3·21)

Due to the large moduli d f in (3·21), Proposition 8 is not applicable to estimate the right-
hand side of (3·21) and Proposition 11 is not strong enough in general. Thus we assume the
GRH for the fields Ld f and apply the following result due to Lagarias and Odlyzko [14].

PROPOSITION 12 (Lagarias–Odlyzko). Let L′ / K′ be an arbitrary normal extension of
number fields and C ′ ⊂ Gal(L′ / K′) a conjugacy class or empty. If the GRH for L′ holds
true, then∣∣∣∣πC ′(x, L′ / K′) − |C ′|

[L′ : K′] li(x)

∣∣∣∣� |C ′|
[L′ : K′] x1/2 log

(
�L′ x [L′ :Q]

)
+ log(�L′)

holds for every x > 2, where the implied constant is absolute.

By Proposition 12, Lemma 7 and Lemma 10, or by Proposition 11 if applicable, we find

∑
p∈PC (x,L / Q)

Iγ
γ (p) = 2|C |

|C | li(x)
∑
f �y

μ( f )

f γ

∑
d f <

√
x

logB x

cC(d f )

[Ldf : Q]+E+O

(
x log log x

log x

)
(3·22)
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with

E �
∑
f �y

1

f γ

∑
e<

√
x

logB x

[
cC(e)

[Le : Q] x
1
2 log

(
�Le x [Le :Q])+ log(�Le)

]
(3·23)

�L log log x
∑

e<
√

x

logB x

[
x

1
2 log (x) + [Le : Q] log(x)

]
�

x log log x

(log x)B−1
.

Choosing B � 2 we finally arrive at

∑
p∈PC (x,L / Q)

Iγ
γ (p) = 2|C |

|C | li(x)
∑
f �y

μ( f )

f γ

∑
d f <

√
x

logB x

cC(d f )

[Ldf : Q] + OL

(
x log log x

log x

)

= 2|C |
|C | li(x)

∑
f �1

μ( f )

f γ

∑
d f <

√
x

logB x

cC(d f )

[Ldf : Q] + OL

(
x log log x

log x

)

= 2|C |
|C | li(x)

∑
n�

√
x

logB x

cC(n)ϕγ (n)

n[Ln : Q] + OL

(
x log log x

log x

)

= 2|C |
|C | li(x)

∑
n�√

x

cC(n)ϕγ (n)

n[Ln : Q] + OL

(
x log log x

log x

)
. (3·24)

In the light of (3·19) and (3·24) it suffices to compute an asymptotic formula for the sum

∑
n�√

x

cC(n)ϕκ(n)

nγ−κ+1[Ln : Q]

with arbitrary γ � κ to prove both, Theorem 4 (i) and (ii). Choosing a positive integer m
such that Lab ⊂ Q(ζm), we obtain

∑
n�√

x

cC(n)ϕκ(n)

nγ−κ+1[L(ζn) : Q] =
∑
d|m

∑
n�√

x
(n,m)=d

cC(n)ϕκ(n)[L � Q(ζn) : Q]
nγ−κ+1ϕ(n)[L : Q]

= |C |
[L : Q]

∑
d|m

cC (d)�0

[L � Q(ζd) : Q]
∑

n�√
x

(n,m)=d

ϕκ(n)

nγ−κ+1ϕ(n)

since Q(ζk) � Q(ζl) = Q(ζ(k,l)). The subsequent lemma eventually completes the proof in
case γ � κ as the obtained sum on d is positive, since all summands are non-negative, and
the term associated to d = 1 is not zero. As in Section 3·1 the case γ < κ again follows by
swapping γ and κ and applying a simple partial summation argument.

LEMMA 13. Let γ � 1 be an integer, and κ > 0 a real number satisfying γ � κ . For any
two positive integers m, d with d | m we define aκ

γ (m, d) to be the product

∏
p�m

(
1+ 1 − p1−κ

(p − 1)pγ−κ+1

)∏
p|d

(
1+ 1 − p1−κ

(p − 1)pγ−κ

)∏
p| m

d
p�d

(
1 + (1 − p1−κ)(pγ−κ − 1)

(p − 1)pγ−κ(pγ−κ+1 − 1)

)
.
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This product is absolutely convergent and positive. If γ = κ , we have

∑
n�x

(n,m)=d

ϕκ(n)

nγ−κ+1ϕ(n)
= ϕγ−κ+1(

m
d )aκ

γ (m, d)

mdγ−κ
log x + Om(1),

and, if γ > κ , then

∑
n�x

(n,m)=d

ϕκ(n)

nγ−κ+1ϕ(n)
= ϕγ−κ+1(

m
d )aκ

γ (m, d)ζ(γ − κ + 1)

mdγ−κ
+ Om,γ,κ (xκ−γ ).

Proof. By Möbius inversion we initially obtain∑
n�x

(n,m)=d

ϕκ(n)

nγ−κ+1ϕ(n)
=
∑
e| m

d

μ(e)
∑
n�x
ed|n

ϕκ(n)

nγ−κ+1ϕ(n)
. (3·25)

The function ϕκ(n)/ϕ(n) is clearly multiplicative and may be written as

ϕκ(n)

ϕ(n)
=
∑
s|n

μ2(s)ξκ(s) (3·26)

with a multiplicative function ξκ(s) which fulfils

ξκ(p) = 1 − p1−κ

p − 1
(3·27)

for any prime p. Note that

|ξκ(p)| �
{

1
ϕ(p)

, if κ � 1,

1, otherwise
(3·28)

holds for all all primes p. By (3·26) the right-hand side of (3·25) equals

1

dγ−κ+1

∑
e| m

d

μ(e)

eγ−κ+1

∑
s�x

μ2(s)ξκ(s)(s, ed)

sγ−κ+1

∑
n� x

[s,ed]

1

nγ−κ+1
.

As one can easily verify using (3·28), the sum on n may be extended to all n ∈ N if γ > κ ,
and to n � x if κ = γ , which effects the asserted error terms. In both cases the sum on n
thereby becomes independent of the other terms and yields the respective factors ζ(γ −κ+1)

and log x in the assertion. By analogue arguments one may extend the sum on s to all s ∈ N.
Thus it remains to compute

∑
e| m

d

μ(e)

eγ−κ+1

∑
s�1

μ2(s)ξκ(s)(s, ed)

sγ−κ+1
. (3·29)

The sum on s can be expressed as an Euler product, so that (3·29) becomes∑
e| m

d

μ(e)

eγ−κ+1

∏
p|ed

(
1 + ξκ(p)

pγ−κ

) ∏
p�ed

(
1 + ξκ(p)

pγ−κ+1

)
(3·30)

=
∏
p�d

(
1 + ξκ(p)

pγ−κ+1

)∏
p|d

(
1 + ξκ(p)

pγ−κ

)∑
e| m

d

μ(e)

eγ−κ+1

∏
p|e
p�d

(
1 + ξκ (p)

pγ−κ

1 + ξκ (p)

pγ−κ+1

)
.
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The sum on e is clearly multiplicative, and equals

∏
p| m

d
p|d

(
1 − 1

pγ−κ+1

)∏
p| m

d
p�d

(
1 − 1 + ξκ (p)

pγ−κ

pγ−κ+1 + ξκ(p)

)
. (3·31)

Combining (3·30) and (3·31) one easily checks that (3·29) equals

∏
p�m

(
1 + ξκ(p)

pγ−κ+1

)∏
p|d

(
1 + ξκ(p)

pγ−κ

)∏
p| m

d

(
1 − 1

pγ−κ+1

)∏
p| m

d
p�d

(
1 + ξκ(p)(pγ−κ − 1)

pγ−κ(pγ−κ+1 − 1)

)
.

By (3·28) this product is positive, and inserting (3·27) yields the assertion.

4. Averaging over all ideals

4·1. Proof of Theorem 1

For an ideal a of K let ϕ(a) and λ(a) denote order and exponent of (OK / a)∗, respectively.
As in the classical case ϕ(a) is multiplicative on ideals by the Chinese Remainder Theorem
and satisfies

ϕ(a) = N a
∏
p|a

(
1 − 1

N p

)
. (4·1)

As for λ(a) we have

λ(a) = lcm(ϕ(p) : p | a) (4·2)

if a is composed of distinct prime ideals. For an ideal a which is divisible by the square of
some prime ideal the situation is more complicated, for it depends on the inertia degree of p

over Q whether or not (OK / pk)∗ is cyclic for k > 1 (cf. [22, p. 268]). One clearly has the
trivial lower bound

ind�(a) �K

ϕ(a)

λ(a)γ
. (4·3)

The implied constant accounts for the torsion part of �, and depends only on K. Hence, to
obtain a lower bound for κ-th moments of ind�(a), it suffices to establish one for the average
order of ϕ(a)κ/λ(a)γ κ over ideals a which satisfy � ⊂ (OK / a)∗. In this regard we state the
following number field analogue of a statement of Luca and Sankaranarayanan [18].

PROPOSITION 14. Let K be a number field and � a finitely generated subgroup of K∗ of
rank γ � 1. For any κ > 0, any r > 0 and any δ > 0 which is admissible in the sense of
Theorem 1 we have ∑

N a�x
�⊂(OK / a)∗

ϕ(a)κ

λ(a)r
� x1+κ−δ+o(1),

where the implied constant depends on κ , γ , r and K.

Proposition 14 is proved by a simple number field adaption of the original proof in [18].
In fact, it suffices to replace primes by prime ideals p of K satisfying � ⊂ (OK / p)∗ therein,
and utilise (4·1), (4·2) and ϕ(a) � ϕ(N a) �N a/log logN a (cf. [28, p. 84]).
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4·2. Proof of Theorem 2

We will now verify the admissible values for δ asserted in Theorem 2. Our proof combines
ideas of [2] and [8]. In the sequel L will denote Q(ζm) if K(n) is abelian and contained in
Q(ζm). Otherwise we set L = K(n). A prime number which splits completely in L necessarily
lifts to linear prime ideals in K. Hence

�Pδ,K(y) � �
{
p linear : N p � y, P+(N p −1) < yδ

}
� �

{
p � y : p splits completely in L, P+(p − 1) < yδ

}
. (4·4)

Proceeding as in the original work of Balog [2], we let ε > 0 be sufficiently small and define

g(p) := �{p − 1 = kn : P+(kn) � yδ, N1 < n � N2}
with

N1 = y
1
2 +ε and N2 = y

1
2 +2ε.

Then (4·4) and the Cauchy–Schwarz inequality yield

�Pδ,K(y) �
( ∑

p∈PC(y,L / Q)

g(p)

)2( ∑
p∈PC(y,L / Q)

g(p)2

)−1

, (4·5)

where C = {id} ⊂ Gal(L / Q) and PC(y, L / Q) is defined as in Section 2·2. Thus we need
a good lower and upper bound for the numerator and the denominator, respectively.

As for the denominator the Brun–Titchmarsh inequality yields

∑
p∈PC(y,L / Q)

g(p)2 �
∑
p�y

( ∑
k|p−1

k�(y−1)/N1

1

)2

�
∑

k1,k2� y−1
N1

π(y; 1, [k1, k2])

�
y

log y

∑
k1,k2� y−1

N1

1

ϕ([k1, k2]) .

By (3·20) we obtain

∑
a,b�z

1

ϕ([a, b]) �
∑

a,b,c�z
(a,b)=c

1

ϕ
(

a
c

)
ϕ
(

b
c

)
ϕ(c)

�
(∑

n�z

1

ϕ(n)

)3

� log3 z

and hence ∑
p∈PC(y,L / Q)

g(p)2 � y log2 y. (4·6)

As for the numerator we clearly have

g(p) = �{p − 1 = kn : P+(k) � yδ, N1 < n � N2} −
�{p − 1 = kn : P+(k) � yδ, P+(n) > yδ, N1 < n � N2}

� �{p − 1 = kn : P+(k) � yδ, N1 < n � N2} −
�{p − 1 = kql : yδ < q, N1 < ql � N2},

where the letter q is reserved for primes. Hence∑
p∈PC(y,L / Q)

g(p) � S1 − S2
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with

S1 =
∑
k�y

P+(k)�yδ

∑
p∈PC(y,L / Q)

k|p−1
N1<

p−1
k �N2

1 and S2 =
∑
yδ<q

∑
N1<ql�N2

∑
p∈PC(y,L / Q)

ql|p−1

1.

4·2·1. The sum S1

We must establish a lower bound for S1. We do so in detail for part (i) and (ii) of Theorem
2 and briefly discuss the case (iii) at the end of Section 4·2·2. To start with we observe that

S1 �
∑

y
N2

<k� y
N1

P+(k)�yδ

∑
p∈PC(y,L / Q)

p>N1k+1
k|p−1

1 =
∑

y
N2

<k� y
N1

P+(k)�yδ

∑
p∈PC(y,L / Q)

k|p−1

1 + O

(
y

log y

)

holds by the Brun–Titchmarsh inequality, since∑
y

N2
<k� y

N1
P+(k)�yδ

∑
p∈PC(y,L / Q)

p�N1k+1
k|p−1

1 �
∑

k� y
N1

π(N1k + 1; 1, k) �
N1

log y

∑
k� y

N1

k

ϕ(k)
�

y

log y
.

Invoking Proposition 12 we find

S1 � li(y)
∑

y
N2

<k� y
N1

P+(k)�yδ

1

[L(ζk) : Q] + OK

(
y

log y

)
. (4·7)

If L = Q(ζm), the same follows by the classical Bombieri–Vinogradov Theorem, since we
have πC(y, L / Q) = π(y; 1, m) in this case. Letting m ′ ∈ N satisfy Lab ⊂ Q(ζm ′) we
deduce

S1 � li(y)
∑
d|m ′

1

[L : L � Q(ζd)]
∑

y
N2

<k� y
N1

(k,m ′)=d
P+(k)�yδ

1

ϕ(k)
+ OK

(
y

log y

)
(4·8)

by the same arguments as in Section 3·3. The sum over k is bounded from below by∑
y

N2
<k� y

N1
(k,m ′)=d

1

ϕ(k)
−

∑
yδ<q�y1/2

1

ϕ(q)

∑
y

q N2
<l� y

q N1
(l,m ′)=d

1

ϕ(l)
(4·9)

if we choose y big enough so that (ql, m ′) becomes (l, m ′). To treat sums of this type we
apply the following elementary result which may be obtained by the same arguments used
in the proof of Lemma 13.

LEMMA 15. For positive integers l | k let

b(k, l) := ϕ( k
l )l

ϕ(l)k

∏
p�k

(
1 + 1

p(p − 1)

)
.

Then ∑
n�x

(k,n)=l

1

ϕ(n)
= b(k, l) log x + Ok(1).
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Combining this result with (4·8), (4·9) and Mertens’ Formula [28, p. 16] we finally infer

S1 � li(y) log

(
N2

N1

)(
1 − log

(
1

2δ

))∑
d|m ′

b(m ′, d)

[L : L � Q(ζd)] + OK

(
y log log y

log y

)
. (4·10)

4·2·2. The sum S2

To estimate S2 we must handle sums of π(x; a, q) for q slightly exceeding x1/2. In this
case the Bombieri–Vinogradov Theorem is not applicable and the Brun–Titchmarsh inequal-
ity is too imprecise. To this end we state the following result of Bombieri, Friedlander and
Iwaniec [4] which represents a continuous transition between these two statements.

PROPOSITION 16 (Bombieri–Friedlander–Iwaniec). Let a � 0 be an integer, A > 0 and
2 � Q � x3/4. Let Q consist of all q ∈ N, prime to a, from an interval Q ′ < q � Q. Then

∑
q∈Q

∣∣∣∣π(x; a, q) − li(x)

ϕ(q)

∣∣∣∣
�
[

L

(
θ − 1

2

)2 x

log x
+ OA

(
x log3 log x

log3 x

)]∑
q∈Q

1

ϕ(q)
+ Oa,A

(
x

logA x

)
,

where θ = log Q/ log x and L is an absolute constant.

We treat the cases L = Q(ζm) and L = K(n) separately. If L = Q(ζm), then S2 becomes∑
yδ<q

∑
N1<ql�N2

∑
p�y

[m,ql]|p−1

1

and, for δ > 1/4 + ε, Proposition 16 and Lemma 15 yield

S2 =
∑

yδ<q�N2

∑
N1
q <l� N2

q

li(y)

[L(ζql) : Q] + O(ε2) li(y)
∑

N1<k�N2

1

[L(ζk) : Q]

� li(y)

( ∑
yδ<q�N2

1

ϕ(q)

∑
N1
q <l� N2

q

1

[L(ζl) : Q] + log(N2/N1)O
(
ε2
))

.

Applying the same arguments as in the estimation of S1 it is easily shown that

S2 � li(y) log(N2/N1) log

(
1
2 + ε

δ

)(∑
d|m

b(m, d)

[L : L � Q(ζd)] + O
(
ε2
))

. (4·11)

Now choose m ′ = m in (4·10). Then, for δ > 1/(2
√

e), we have S1 − S2 �K y if y is large
and ε small enough. This proves Theorem 2 (i).

Now assume that L = K(n) and is not contained in any cyclotomic field. Unfortunately
the splitting condition p ∈ PC(L / Q) cannot be translated into an arithmetic progression
condition if K(n) is not abelian. Hence we omit this condition and start with the trivial es-
timate

S2 �
∑

yδ<q�N2

∑
N1<ql�N2

∑
p�y

ql|p−1

1,
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probably loosing a lot. As in the first case we invoke Proposition 16 and deduce

S2 � li(y)

( ∑
yδ<q�N2

1

ϕ(q)

∑
N1
q <l� N2

q

1

ϕ(l)
+ O(ε2)

∑
N1<k�N2

1

ϕ(k)

)

� li(y) log(N2/N1) log

(
1
2 + ε

δ

) (
b(1, 1) + O(ε2)

)
, (4·12)

for δ > 1/4 + ε. Finally, by (4·10) and (4·12), we obtain S1 − S2 �K y if

δ >
1

2
exp

{
−

∑
d|m ′

b(m ′,d)

[L:L � Q(ζd )]
b(1, 1) +∑

d|m ′
b(m ′,d)

[L:L � Q(ζd )]

}

and y and ε are chosen large and small enough, respectively. Since [L : L � Q(ζd)] � [L :
Q] and

∑
d|m ′ b(m ′, d) = b(1, 1) we clearly have∑

d|m ′
b(m ′,d)

[L:L � Q(ζd )]
b(1, 1) +∑

d|m ′
b(m ′,d)

[L:L � Q(ζd )]
� 1

[L : Q] + 1

and Theorem 2 (ii) follows. As for Theorem 2 (iii), we first observe that (4·7) remains true
by Proposition 11, if we restrict to those k for which Q(ζk)�L = Q. If (m ′, k) = d for some
divisor d of m ′ we clearly have Q(ζk) � L = Q(ζd) � L. Hence, (4·8) holds if one restricts
to divisors d of m ′ which satisfy Q(ζd) � L = Q. Proceeding as before in the cases (ii) and
(iii) finally yields the choice

δ0 = 1

2
exp

{
−

∑∗
d|m ′ b(m ′, d)

b(1, 1)[L : Q] +∑∗
d|m ′ b(m ′, d)

}
,

where ∗ indicates the restriction to those d for which Q(ζd) � L = Q.
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