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Abstract

The use of statistical potentials in NMR structure calculation improves the accuracy of the final structure but also raises
issues of double counting and possible bias. Because statistical potentials are averaged over a large set of structures, they
may not reflect the preferences of a particular structure or data set. We propose a Bayesian method to incorporate a
knowledge-based backbone dihedral angle potential into an NMR structure calculation. To avoid bias exerted through the
backbone potential, we adjust its weight by inferring it from the experimental data. We demonstrate that an optimally
weighted potential leads to an improvement in the accuracy and quality of the final structure, especially with sparse and
noisy data. Our findings suggest that no universally optimal weight exists, and that the weight should be determined based
on the experimental data. Other knowledge-based potentials can be incorporated using the same approach.
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Introduction

Structural data measured by NMR spectroscopy are never

complete. Even the most carefully collected data will by themselves

not allow us to determine the three-dimensional structure of a

biomolecule with atomic resolution. Rather, we need to interpret

the data in the light of prior knowledge that is typically encoded in

a potential function or force field [1].

Potential functions quantify the forces and interactions within a

biomolecule and with its environment. Two fundamentally

different approaches of designing potential functions are com-

monly used [2]. Physics-based force fields [3] aim to approximate

the underlying physical laws. Statistical or knowledge-based

potentials [4] are learned from a structure database and describe

the effective forces resulting from all interactions including those

with the solvent. Physical and statistical potentials are comple-

mentary in the sense that some interactions cannot be broken

down easily into fundamental, physical contributions but are

captured more effectively by potentials derived from known

structures.

In NMR structure calculation, potential functions are used to

guide the calculation towards structures of high quality and

accuracy [1]. This guidance is needed because NMR measure-

ments by themselves do not allow us to determine the three-

dimensional structure of an entire macromolecule. To ‘‘let the

data speak for themselves’’ and also for reasons of computational

efficiency, one tends to use minimalist force fields that ignore

complex effects such as electrostatic screening or solvent interac-

tions. If additional potentials such as dihedral angle [5,6] or

hydrogen bonding potentials [7] are used, their force constants are

set ad hoc and held fixed during the structure calculation.

However, it might be necessary to adjust the force constants for

each data set. Because knowledge-based potentials represent

averages over large sets of structures, they are not universally

transferable and may not represent the preferences of a particular

structure. Think of a backbone dihedral angle potential, a

‘‘Ramachandran potential’’, as an example. The minimal energy

configuration of the Ramachandran potential is completely alpha-

helical. Therefore it seems more appropriate to choose a higher

weight for helical proteins than for all-beta proteins.

Here we introduce an objective, data-driven approach to find

the optimal force constant for a given protein and data set. Our

method is based on statistical mechanics and Bayesian inference

and allows us to incorporate knowledge-based potential functions

without biasing the structure calculation.

Results

Statistical potential for backbone dihedral angles
Protein backbone dihedral angles and y show a typical

correlation pattern, an observation made by Ramachandran et al.

[8] assuming only hard-sphere steric repulsion between atoms.

Standard nonbonded energies used in NMR structure determina-

tion [9] do not fully capture all aspects of =y distributions

observed in high-resolution crystal structures [10].The dihedral

angle distributions obtained from nonbonded interactions do not

reproduce the empirical distribution (see the bottom row of

Figure 1 and Figures S2–S4 in File S1). Depending on the quality

of the data, NMR structures can show dihedral angles outside the

allowed regions of the Ramachandran plot [11,12]. For this reason

it is common practice [13] to assess the Ramachandran statistics of

NMR structures by programs such as Procheck [14], MolProbity
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[15] and WhatCheck [16]. To obtain more regular NMR

structures, various dihedral angle potentials derived from database

statistics have been developed [5,6]. The functional forms of these

potentials range from two-dimensional histograms [17] to

continuous representations based on linear interpolation, cubic

splines and statistical density estimation [18–20]. Some of these

models ignore that =y distributions are smooth and periodic,

which can result in artifact in the refinement [21].

We use nonparametric density estimation to derive a backbone

potential and expand the joint =y distribution into a Fourier

series [22]. This representation is inherently smooth and periodic

and has the advantage that it can easily represent multimodal

distributions. Each distribution is a linear combination of 80 two-

dimensional cosine and sine functions resulting from the combi-

nation of five frequencies in the and y dimensions. The

estimated distributions capture features such as the alpha-helical

peak and regions corresponding to parallel and anti-parallel beta

sheets. Also rare secondary structures such as left-handed helices

are represented accurately. Figure 1 shows the estimated dihedral

distribution of three representative amino acids and the corre-

sponding empirical histograms (see Figure S2 in File S1 for the full

set of dihedral angle distributions).

Figure 1. Backbone dihedral angle distributions of amino acids estimated from high-resolution crystal structures. Density maps of
=y distributions for Alanine (left column), Proline (middle column) and Glycine (right column) as approximated by the maximum entropy

distribution (top row). The middle row shows the empirical =y distribution computed over a non-redundant structure database. The bottom row
shows the =y distribution obtained by sampling structures from the nonbonded force field.
doi:10.1371/journal.pone.0100197.g001
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Data-driven weighting of the backbone potential
We use the probabilistic Inferential structure determination

approach (ISD) [23,24] to determine protein structures from

experimental data. In a standard ISD calculation, one explores the

posterior probability Pr (hDD)!Pr (DDh) Pr (h) of all conforma-

tional degrees of freedom h given the experimental data D. The

posterior distribution itself is proportional to the likelihood function

Pr (DDh)! expf{wdataEdata(h)g and the prior probability Pr (h).
The likelihood is the probability of the data given the structure and

involves Edata(h), a measure of the goodness-of-fit between the data

and a particular structure h; the weight wdata allows us to balance

the data against the prior probability. The prior distribution is

typically a Boltzmann distribution at inverse temperature

wphys~1=kBT , Pr (h)! expf{wphysEphys(h)g resulting from

the force field Ephys. We incorporate the newly derived back-

bone potential Erama(h) by extending the prior distribution:

Pr (hDwrama)! expf{wphysEphys(h){wramaErama(h)gwhere wrama

is the weight of the backbone potential.

The weight of the backbone potential wrama is unknown and has

to be chosen somehow. Naively, we would set it to one (wrama~1).

But this is problematic because some aspects of the Ramachan-

dran plot are already captured by the force field. Figures 1 and S3

in File S1 show that structures calculated on the basis of the

nonbonded force field Ephys already reproduce the rough outline

of the =y basins. But there are more subtle aspects such as

optimal hydrogen bonding geometry [25] that result in pro-

nounced peaks, which are not reproduced by the force field alone.

As a consequence, the force field and the backbone potential are

not independent of each other but are positively and negatively

correlated depending on the energy range (Figure 2A). Setting the

=y weight to a large value risks that we overemphasize these

contributions in the combined potential. In the limiting case, we

will force the structure into a helical conformation, whereas with

too small wrama the effect of the backbone potential becomes

negligible. Therefore, we need to adjust wrama according to the

experimental data and the structure.

We have introduced a Bayesian approach to estimate the weight

of the experimental data wdata relative to the prior probability

[26]. This approach exploits the fact that for every conformation

we can calculate how well it agrees with the data and that its

goodness-of-fit determines the weight of the data wdata. The same

is not possible for wrama, because the statistics reflected by the

backbone potential recapitulate an ensemble property, and

therefore we need to assess how well the entire ensemble agrees

with the Ramachandran statistics. Thus it is computationally

much more demanding to adjust wrama than wdata.

To estimate wrama, we compare the differences between the

expected backbone energy SEramaT where S:T denotes an

ensemble average. SEramaTno data
summarizes how the force field

and the backbone potential are correlated independent of any

data. To obtain this ensemble average, structures are sampled

based on the combined energy wphysEphyszwramaErama. This value

is contrasted with the expected backbone energy obtained with

data SEramaTdata
. To calculate this ensemble average, structures are

sampled based on the full energy wdataEdatazwphysEphysz

wramaErama. If SEramaTdata
vSEramaTno data

, the addition of the

experimental data improves the backbone energy, and we can

increase wrama because the data comply with the Ramachandran

statistics. If the data contradict the backbone potential,

SEramaTdata
wSEramaTno data

, we must lower the weight because

the backbone potential biases the ensemble. The optimal weight

achieves

SEramaTdata
~SEramaTno data

: ð1Þ

This rule can be derived rigorously [27] by maximization of the

model evidence, Pr (DDwrama), which is the probability of observing

the data for a particular value of wrama and whose computation

involves an ensemble average. It can be shown that the derivative

of the model evidence is the difference between the average

Ramachandran potential under the posterior and the prior (i.e.

with and without data) [27]. At the maximum evidence the

derivative vanishes, therefore both energies are the same and the

curves cross. If we choose the weight from this region, we bias our

ensembles the least.

Bayesian weighting with high-quality data
We used Bayesian weighting to analyze the high-quality data for

ubiquitin (PDB code: 1d3z). We estimated the optimal weight from

the NOE-based distances and used the additional scalar and

dipolar data for validation. Figure 2B shows the model evidence

Pr (DDwrama), which peaks at the optimal weight satisfying

equation (1). Assuming a uniform prior probability for wrama,

the estimated weight of the backbone potential is

wrama~0:94+0:09. An additional control for evaluating the

Bayesian choice of the Ramachandran weight are the residual

dipolar couplings (RDCs) and scalar coupling measurements that

are available for ubiquitin. For each of the 11 RDC sets, we

calculated the average Q-factor obtained for different choices of

wrama. Figure 2C shows that the Bayesian choice of the

Ramachandran weight improves the Q-factor to

Q~0:19+0:04. Similarly, we see an improvement in the fit with

the scalar coupling measurements (Fig. 2D).

Bayesian weighting with incomplete data
Next, we studied how the weight changes for sparse versions of

the ubiquitin data. To do so, we introduce a completeness

parameter l, which controls the amount of data [28]. For lv1,

the effective number of observations is reduced. As observed

before [27], the model evidence broadens and shifts towards

smaller values if we reduce the number of observations (Fig. 3).

The estimated weights are: wrama~0:94+0:09 (l~1:0),

wrama~1:00+0:09 (l~0:1), wrama~0:92+0:1 (l~0:01), and

wrama~0:84+0:15 (l~0:005). If we reduce the number of data

further, the system undergoes a phase transition because the

posterior no longer peaks at the native ensemble, and wrama is

pushed toward zero. For all values of l, the optimal weight falls in

the range that results in a minimal RMSD to the crystal structure.

The Bayesian choice of wrama generates the most accurate

structures.

Impact on structure ensembles from sparse and noisy
NMR data

So far, we studied how Bayesian weighting of the backbone

potential impacts the conformational ensemble under artificially

sparsified data. We also looked at challenging real-world structure

determination problems, a sparse set of distances for the Fyn-SH3

domain [23,29] and noisy distance bounds measured with solid-

state NMR on the a-spectrin SH3 domain [30]. We estimated the

Ramachandran weight for both data sets and obtained

wrama~0:76+0:11 and wrama~0:3+0:13 for the sparse and

noisy distances, respectively (see also Figure S7 in File S1).

Incorporation of the backbone potential can significantly

improve the accuracy of the ensemble as measured by the RMSD
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to the crystal structure (Figure 4). But we also observe that an

overly strong backbone potential can do more harm than good.

For large wrama values, the RMSD distribution deteriorates and

even shows multiple peaks in case of the sparse data set. With an

optimally weighted backbone potential also the accuracy of the

mean structure is consistently higher than the accuracy of the

individual members of the structure ensemble (see Table S1 in File

S1). This indicates that the structure ensembles are better defined

when using the backbone potential. Figure 4 shows that the model

Figure 2. Bayesian weighting of the backbone potential for ubiquitin inferred from high-quality distance data. A: Correlation between
backbone potential and nonbonded force field. Shown is the joint distribution of physics- and knowledge-based contributions in the absence of any
structural data. (The energies of the crystall structure are Ephys~{455:5 and Erama~187:3.) B: Model evidence Pr (DDwrama) as a function of the
Ramachandran weight wrama . C: Influence of the Ramachandran weight on the average Q-factor (red dashed line) calculated for 11 RDC data sets that
were not used in the structure calculation. The Q-factor reflects the agreement between experimental and calculated RDCs. The dotted black line
indicates the average Q-factor of the crystal structure (PDB code: 1ubq). D: Influence of the Ramachandran weight on the fit with scalar coupling
measurements (red dashed line). Six three-bond scalar coupling data sets are available for ubiquitin and have not been used in the structure
calculation. The dotted black line indicates the average Q-factor of the crystal structure (PDB code: 1ubq). The grey distribution indicates the model
evidence Pr (DDwrama).
doi:10.1371/journal.pone.0100197.g002
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evidence peaks where the average RMSD to the crystal structure

shows a minimum.

Figure 5 shows the structure ensembles obtained with the sparse

SH3 data for different choices of wrama. If the weight is zero or too

small, the ensemble is still quite heterogeneous, especially in the

loops. When incorporating the backbone potential with an optimal

weight, the ensemble becomes very regular and accurate: the

average structure is surprisingly close to the reference structure

(1.05 Å RMSD) given the sparseness of the data set. For too large

weight, we introduce conflicts between the preferences of the

statistical potential and the data by introducing helical structure in

beta strands. The corresponding Ramachandran plots illustrate

these findings. For wrama~5, the Ramachandran plot becomes

artificially narrow and peaks in the helical region. Another

indication that the Bayesian choice of wrama is optimal, is provided

by the behavior of additional model parameters. Figure S8 in File

S1 shows that the estimated weight of the data wdata [26] is largely

unaffected if we incorporate the knowledge-based contribution.

That is, we do not compromise the data by downweighting them

upon integration of the backbone potential.

In Figure 6 we plot the effective potential function (i.e. the

negative log-posterior probability) incorporating the force field, the

backbone potential and the goodness-of-fit for different values of

wrama corresponding to the ensembles shown in Figure 5. The

results indicate that optimal weighting helps to guide the

simulation towards more accurate structures. Without the

Figure 3. Impact of incomplete ubiquitin data on wrama. Shown is the model evidence as a function of wrama (grey) and the average RMSD
(dots). The sparsity increases from the top left panel to the bottom right panel.
doi:10.1371/journal.pone.0100197.g003
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backbone potential, structures at the bottom of the energy funnel

show a broad range of RMSDs between 1.5 and 2.5 Å. For

optimal wrama, the funnel narrows and selects structures with an

RMSD below 1.5 Å. With too large wrama we observe a negative

correlation between the RMSD and the negative log-posterior

probability.

Impact on structure quality
Figure 7 shows the average values of several validation criteria

for structures generated at different weights (a full report of the

Procheck and WhatCheck quality criteria can be found in Table

S1 in File S1). All reported criteria are z-scores that provide an

assessment of how a particular structure compares to the average

of all known protein structures in terms of standard deviations.

That is, a z-score of {0:5, say, means that the quality criterion of

this particular structure is half a standard deviation below the

average.

As expected, the Ramachandran score (RAMCHK) improves

with increasing wrama and shows no saturation, which demon-

strates that it is not a valid indicator for selecting wrama. The effect

of the backbone potential on the NQACHK score is small; only

for ubiquitin it agrees with the Bayesian choice of wrama.

WhatCheck’s packing score QUACHK shows a different behav-

ior, it increase steadily with increasing wrama. BBCCHK assesses

the regularity of the backbone and shows a steady increase with

increasing wrama indicating a high correlation with the potential

Figure 4. Impact on structure ensembles from sparse and noisy NMR data. Panels A, C show the results for the sparse Fyn-SH3 data set.
Panels B, D show the results for the solid-state data. The top row displays the RMSD distributions with wrama~0 (white), wrama~5 (black) and optimal
wrama (grey). The grey distribution shown in the bottom panels is the model evidence as a function of the weight wrama .
doi:10.1371/journal.pone.0100197.g004
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Figure 5. Influence of the weight wrama on the structural ensemble of Fyn-SH3 inferred with sparse NMR data. Shown are the
conformations and backbone dihedral distributions generated with different wrama . Panels A–C display structure ensembles comprising ten randomly
selected conformations (grey) superimposed onto the crystal structure (red). Panels D–F show in black a maximum entropy distribution fitted to the
backbone torsion angles of the structures generated with ISD. The backbone dihedral angles of the crystal structure are marked by red dots. Panels A,
D show the results for wrama~0:0, panels B, E: wrama~0:76 (optimal weight), panels C, F: wrama~5:0 (maximum weight probed during replica-
exchange simulations).
doi:10.1371/journal.pone.0100197.g005

Figure 6. Energy funnels obtained with the sparse Fyn-SH3 data at different Ramachandran weights (left: wrama~0:0, middle:
wrama~0:76, right: wrama~5:0). The full ISD energy (negative log-posterior probability) is plotted against the RMSD to the Fyn-SH3 crystal structure.
doi:10.1371/journal.pone.0100197.g006
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Ramachandran potential. Although the ubiquitin data are of a

high quality, the structure ensemble still improves upon incorpo-

ration of the backbone potential. As for ubiquitin, we observe an

overall improvement in the quality of the ensembles obtained with

the sparse and noisy SH3 data. The slight decrease of the average

NQACHK score for the optimal weight ensemble in the case

alpha-spectrin is within the ensemble spread; again the score is

only weakly affected by the Ramachandran weight (see Figure S5

in File S1).

The WHATCHECK validation criteria by themselves are

unable to choose a wrama that would lead to a global improvement

of the structural quality as well as the accuracy of the ensemble.

Moreover, although some of the scores seem to be highly

correlated (e.g. RAMCHK and BBCCHK, see Figure S6 in File

S1) it is not clear whether it is possible to maximize all scores

simultaneously. Rather we have to find a comprise between the

different quality criteria, and this is exactly what our weighting

scheme achieves.

Discussion

We outline a new formalism to integrate physics- with

knowledge-based potential functions in biomolecular structure

calculation. Our approach is founded on Bayesian principles and

allows us to incorporate prior knowledge derived from structure

databases. The new method is data-driven and adaptively weighs

knowledge-based contributions relative to the force field and the

experimental data thereby reducing potential bias and artifact. We

show that even simple terms such as knowledge-based backbone

potentials have a significant effect on the quality of the structure

ensemble. The optimally weighted dihedral angle potential

improves not only the Ramachandran appearance but also the

backbone normality and packing scores. Moreover, it systemati-

cally produces more accurate and more precise structure

ensembles. The combination of physics- and knowledge-based

potential functions is particularly powerful for sparse and noisy

NMR data and shifts the ensemble closer to the native structure.

Figure 7. Influence of the Ramachandran weight on various quality criteria. Shown is the impact of wrama on WhatCheck validation criteria.
Each column reports the results for a different data set (left column: ubiquitin, middle column: Fyn-SH3 domain, right column: a-spectrin SH3
domain). Each row shows the evolution of a quality score with increasing wrama (each dot marks the average over 100 structures that were randomly
selected from the ISD ensemble, dashed lines are added to guide the eye). The first row reports the Ramachandran appearance as assessed by
RAMCHK. The second and third row show WhatCheck’s packing scores. The last row reports the regularity of the backbone (BBCCK). The grey
distribution indicates the model evidence Pr (DDwrama) as a function of wrama.
doi:10.1371/journal.pone.0100197.g007
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Our findings suggest that there is no universal weight that can be

transferred to all proteins and data sets. Rather, the method of

choice is to estimate the weight in the course of the structure

calculation.

For the solid-state SH3 data, we find the smallest weight

wrama&0:3; for the ubiquitin data we estimate the largest weight

wrama&1. We can rationalize this behavior as follows. For high-

quality data (high completeness, low noise level), the optimal

weight adopts a large value and drops as noise and sparseness

increase [27]. This behavior seems counterintuitive at first sight

but is sensible: The forces that pull the ensemble towards the

correct structure are weaker with low-quality than with high-

quality data. We therefore have to soften the backbone potential to

not overwhelm the data.

In the future, we plan to extend our method to weigh multiple

statistical energy terms simultaneously in the course of a structure

calculation. However, this will require a more efficient algorithm

for estimating multi-dimensional densities of states, because the

computational complexity of the approach becomes prohibitive.

The naive extension of the presented approach would involve a

multi-dimensional replica-exchange simulation in which replicas

are introduced for every combination of the weights that we want

to estimate. Therefore the computational burden grows expo-

nentially in the number of weights such that with our current

algorithm it is only possible to estimate up to two or three

weights. The final goal is to design an efficient, unbiased but

highly informative conformational prior distribution that allows

the calculation of high quality ensembles from very sparse data

sets.

Materials and Methods

Data sets
Backbone dihedral angles were extracted from PDBselect25

[31] and used to estimate angular distributions for all amino acids

using the maximum entropy method (see next section). We

illustrate the impact of the backbone potential on three NMR

data sets. The first data set (PDB code: 1d3z) comprises high-

quality data for ubiquitin. All distance data were reduced to 1444

non-redundant restraints, additional data (scalar coupling con-

stants, residual dipolar couplings) were not included in the

structure calculation but used for validation. The second data set

comprises sparse distance data for the Fyn-SH3 domain [23,29]

(PDB code: 1zbj). The third data set has been measured with

solid-state NMR on the a-spectrin SH3 domain [30] (PDB code:

1m8m). The solid-state data are very generous distance bounds

ranging from 4.5 Å to 7.5 Å out of which 90% are equal or

greater than 6 Å, which is the largest distance bound obtained in

standard solution NMR.

Maximum entropy distributions for backbone dihedral
angles

Following Pertsemlidis et al. [22], we use a maximum entropy

distribution with a Fourier basis to describe the distribution of

backbone dihedral angles:

p( ,y)~
1

Z(a,b,c,d)
expf{Erama( ,y)g ð2Þ

where the Ramachandran potential Erama( ,y) is given by

Erama( ,y)~
Xk

i,j~1

½aij cos (i ) cos (jy)zbij cos (i ) sin (jy)

zcij sin (i ) cos (jy)zdij sin (i ) sin (jy)�,

ð3Þ

Z(a,b,c,d) normalizes the dihedral angle distribution, and k~5 is

the order of the Fourier expansion (see Figure S1 in File S1). We fit

the expansion coefficients a,b,c,d to observed =y pairs by using

the maximum entropy method, which, in this case, is equivalent to

maximum likelihood parameter estimation. We approximate the

normalization constant Z(a,b,c,d) using the two-dimensional

trapezoidal rule. To avoid over-fitting of the =y distributions,

we introduce a Gaussian prior with unknown precision l over the

expansion coefficients:

p(a,b,c,d Dl)~
l

2p

� �2k(k{1)

exp {
l

2

Xk

i~1

Xk

j~1

(a2
ijzb2

ijzc2
ijzd2

ij)

( )
ð4Þ

The precision of the prior l is not known and is estimated

simultaneously with the expansion coefficients. We use an iterative

scheme in which we cycle through updates of the expansion

coefficients and of the precision. For fixed precision, the negative

log-posterior probability of the expansion coefficients is a convex

function, which we optimize using the Powell minimizer [32]. The

update of the precision can be calculated analytically.

Inferential structure determination
Inferential structure determination (ISD) [23,24] is a probabi-

listic framework for biomolecular structure calculation from

experimental data. ISD uses Bayes’s theorem to obtain a posterior

distribution over all unknown parameters including the confor-

mational degrees of freedom h (typically main and side chain

torsions) and all additional model parameters a [33]. The posterior

distribution is proportional to the product of two terms, the

likelihood function and the prior probability distribution. The

likelihood function, Pr (DDh,a), is the conditional probability of the

experimental data D viewed as a function of the parameters h and

a. Here we consider NMR distance measurements, which we

model using the lognormal distribution [34]. This introduces two

model parameters, the distance scale and error, that we estimate

simultaneously with the structure. We use the lognormal model for

the analysis of the 1d3z and 1zbj data, which provide distance

restraints. In case of the solid-state data (PDB code: 1m8m), only

lower and upper distance bounds are given. We apply a new

probabilistic model (Habeck, in preparation) that estimates a set of

experimental distances falling between the lower and upper

bounds. For given estimated experimental distances, the lognor-

mal model is used to relate the distance data with the structure.

This model has in addition to the set of unknown experimental

distances only one model parameter, the distance error.

Optimization of the potential function
We aim to find an optimal potential function for each dataset by

adjusting the influence of the backbone potential Erama. The

combined potential function is given by wphysEphyszwramaErama

where wphys~1=kBT is the reciprocal temperature involving

Boltzmann’s constant kB and the absolute temperature T . Here

Ephys was set to the Lennard-Jones potential adapted from the

Rosetta software [35]. The only free parameter is the weight of the
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backbone potential wrama. The model evidence Pr (DDwrama) can

be interpreted as the probability of the experimental data for a

particular wrama. The optimization of Pr (DDwrama) is demanding

as the calculation depends an intractable high-dimensional

integral:

Pr (DDwrama)~

ð
Pr (DDh,a,wrama) Pr (hDwrama) Pr (a)dhda:

over all model parameters a and conformational degrees

of freedom h. Here Pr (hDwrama)! expf{wphysEphys(h){

wramaErama(h)g is the combined prior probability of conformation

h for a given weight wrama. We can reduce the computation to a

low-dimensional integral by expressing the above equation using

the density of states gl(Erama)

Pr (DDwrama)~

Ð
g1(Erama)e{wramaErama dEramaÐ
g0(Erama)e{wramaErama dErama

The density of states is given as

gl(Erama)~

ð
d(Erama{Erama(h)) ½Pr (DDh,a)�l

| Pr (a)e
{wphysEphys(h)

dhda

where d(:) denotes the Dirac delta function. Estimates of the

density of states are obtained by applying multiple histogram

reweighting [36,37] as outlined in [27].

Replica-exchange Monte Carlo
To estimate the density of states we generate conformations

using an extended replica-exchange Monte Carlo scheme

(REMC). The idea behind REMC is to simulate a system in

parallel at different temperatures [38]. In our scheme, two

temperature parameters control the force field and the likelihood

function independently [39]. We treat wrama as a third temper-

ature parameter. Across the first 30 replicas wrama decreases from

five to zero while the force field and the data are fully taken into

account. In the remaining 50 replicas, the force field and the data

are gradually switched off as described by Habeck et al. [39]. The

convergence of the method depends on the size of the system as

well as the quality and quantity of the data. In case of the tested

systems, convergence was achieved after 30000 to 100000 replica

transitions corresponding to 2–3 days worth of computation on a

80 node cluster depending on the size of the system.
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1. Brünger AT, Nilges M (1993) Computational challenges for macromolecular

structure determination by X-ray crystallography and solution NMR-spectros-

copy. Q Reviews of Biophys 26: 49–125.

2. Skolnick J (2006) In quest of an empirical potential for protein structure

prediction. Curr Opin Struct Biol 16: 166–171.

3. Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Protein

Chem 66: 27–85.

4. Sippl MJ (1995) Knowledge-based potentials for proteins. Curr Opin Struct Biol

5: 229–235.

5. Kuszewski J, Gronenborn AM, Clore GM (1996) Improving the quality of NMR

and crystallographic protein structures by means of a conformational database

potential derived from structure databases. Protein Sci 5: 1067–1080.

6. Kuszewski J, Gronenborn AM, Clore GM (1997) Improvements and extentions

in the conformational database potential for the refinement of NMR and X-ray

structures of proteins and nucleic acids. J Magn Reson 125: 171–177.

7. Grishaev A, Wu J, Trewhella J, Bax A (2005) Refinement of multidomain

protein structures by combination of solution small-angle X-ray scattering and

NMR data. J Am Chem Soc 127: 16621–16628.

8. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry

of polypeptide chain configurations. J Mol Biol 7: 95–99.

9. Linge JP, Nilges M (1999) Inuence of non-bonded parameters on the quality of

NMR structures: a new force-field for NMR structure calculation. J Biomol

NMR 13: 51–59.
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