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Abstract

Background: In many applications, a family of nucleotide or protein sequences classified into several subfamilies has
to be modeled. Profile Hidden Markov Models (pHMMs) are widely used for this task, modeling each subfamily
separately by one pHMM. However, a major drawback of this approach is the difficulty of dealing with subfamilies
composed of very few sequences. One of the most crucial bioinformatical tasks affected by the problem of small-size
subfamilies is the subtyping of human immunodeficiency virus type 1 (HIV-1) sequences, i.e., HIV-1 subtypes for which
only a small number of sequences is known.

Results: To deal with small samples for particular subfamilies of HIV-1, we introduce a novel model-based information
sharing protocol. It estimates the emission probabilities of the pHMM modeling a particular subfamily not only based
on the nucleotide frequencies of the respective subfamily but also incorporating the nucleotide frequencies of all
available subfamilies. To this end, the underlying probabilistic model mimics the pattern of commonality and variation
between the subtypes with regards to the biological characteristics of HI viruses. In order to implement the proposed
protocol, we make use of an existing HMM architecture and its associated inference engine.

Conclusions: We apply the modified algorithm to classify HIV-1 sequence data in the form of partial HIV-1 sequences
and semi-artificial recombinants. Thereby, we demonstrate that the performance of pHMMs can be significantly
improved by the proposed technique. Moreover, we show that our algorithm performs significantly better than
Simplot and Bootscanning.

Background
Information sharing protocol
Profile Hidden Markov Models (pHMMs) are widely
employed to model nucleotide or protein sequence fam-
ilies, in particular for database search [1,2]. In numerous
applications (see e.g. [3-5]), a sequence family classi-
fied into subfamilies is given, with each subfamily being
modeled separately by one pHMM (i.e. only the informa-
tion comprehended in the respective subfamily is used).
If enough information is available about each subfamily
(i.e. it consists of a sufficient number of sequences) this
approach is feasible. Otherwise, the model is unable to
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detect sequences stemming from subfamilies composed of
too few sequences [4].

To overcome this drawback, one can use an information
sharing protocol which makes use of the information
available about other subfamilies to model subfamilies
composed of only a few sequences. Although they
are usually named differently, information sharing pro-
tocols are a widely used concept in bioinformatics and
other fields. For example, deducing pseudocounts [6] or
Dirichlet mixtures [7] from a complete multiple sequence
alignment to model a prior distribution for position-
wise nucleotide or protein emission probabilities, consti-
tutes a protocol for sharing information between different
columns of the multiple sequence alignment (MSA). In
speech recognition, using the same parameters for differ-
ent HMMs within complex systems of HMMs in order
to reduce the complexity of the system is called parame-
ter tying [8]. In fact, if a prior distribution in a Bayesian
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framework [9] is deduced from a superordinate entity,
one can regard the estimation of probabilities character-
izing a subordinate part of this entity by application of
the estimated prior distribution as an information sharing
protocol.

Sjölander et al. [3] suggested such a protocol for auto-
mated protein subfamily identification and classification.
Their approach to model the emission frequencies of
a protein subfamily S is based on the idea to add the
nucleotide frequencies of other subfamilies T (in weighted
form) to the ones of S as done with pseudocounts. Hereby,
the added frequencies of T are weighted by the probability
of the amino acid frequencies of T under a model whose
emission probabilities are constructed based only on the
frequencies of S.

HIV classification
HIV-1 is classified into the four main phylogenetic groups
M, N, O, and P. All four were introduced into humans
by separate zoonotic events, whereby the sources were
different simian immunodeficiency viruses from chim-
panzees [10] and gorilla [11], respectively. The M group
is the most intensively studied one as it is responsible
for the HIV pandemic. This group is further divided into
ten subtypes, whereby Subtype A and F are further sub-
divided into sub-subtypes [12]. Inter-subtype recombina-
tion is very frequent among HIV-1 subtypes [13]: Up to
now, 55 circulating recombinant forms (CRFs) have been
reported [14], i.e., recombinant forms exhibiting at least
three epidemiological independent sequences.

The subtypes of HIV-1 Group M can be divided into
two groups: On the one hand, the ones for which at least
30 full-length sequences are available (subtypes A–G), on
the other hand, subtypes H, J, and K, for which up to
now only four (subtypes H and J) or two (Subtype K),
respectively, complete-length sequences have been sam-
pled. Thus, we refer to the first group – subtypes A–G –
as “large-size” subtypes and to the second one – subtypes
H–K – as “small-size” subtypes in what follows. Moreover,
11 full-length and about 1000 partial sequences have been
labeled as “unknown”. That is, these sequences do not
form an independent subtype or CRF. One can expect that
by further sampling activities new small-size subtypes will
be found, by finding sequences which are closely related
to sequences of an unknown subtype already known, as
well as by discovering sets of epidemiological indepen-
dent sequences which are unrelated to the sequences now
available [11].

jpHMM
Up to now, roughly 50 tools have been developed for the
purpose of recognition of recombinants and breakpoint
detection in HIV-1 sequences. Examples are Bootscan-
ning [15], Simplot [16], Recco [17], the REGA HIV-1

Subtyping Tool [18], and MaxChi2 [19]. In 2006, Schultz
et al. developed the jumping profile Hidden Markov
Model (jpHMM), an algorithm for subtyping, recombina-
tion analysis, and breakpoint detection, which we applied
to HIV-1 and hepatitis C virus sequences [4]. The jpHMM
is composed of one pHMM for each viral subtype. In
addition to the usual transitions within these pHMMs,
it allows for so-called jumps between different pHMMs
at nearby positions. Thus, it is possible to jump between
states associated with different subtypes, depending on
the local similarity of the query sequence to the subtypes.
Although performing well for most input sequences, it did
not correctly predict the HIV-1 subtypes of smaller size H,
J, and K. Further analysis revealed that this deficit was due
to the lack of an appropriate inter-subtype information
sharing protocol, i.e., no information from the large-size
subtypes was used to model the small-size subtypes.

Content
The aim of this paper is to develop an information sharing
protocol suitable for the application to HIV-1 Group M
sequences. The introduced protocol is incorporated into
the HIV recombination detection tool jumping profile
Hidden Markov Model [4,20,21], short jpHMM. We inves-
tigate the influence of this modification on the perfor-
mance of jpHMM. This application is of particular interest
as reliable and accurate classification of HIV-1 (and other
viral sequence data) facilitates to understand the influence
of genetic diversity on host immune response, is cru-
cial for epidemiological studies, and provides therapeutic
decision support [22-24].

Methods
Small-size HIV subtypes
The effect of modeling subfamilies with very few
sequences separately is illustrated in Table 1. It depicts this
problem for the emission probabilities of a position in an
alignment of HIV-1 sequences: Constructing a pHMM for
each subtype separately, the emission probability of ade-
nine for Subtype K is nearly 7% lower than the one for
Subtype A.

Since a vast majority of columns in the HIV-1 MSA
are strongly conserved over subtypes, it is very probable
that in fact the most realistic way to model the emis-
sion probabilities in this example consists of using a joint
emission probability for all subtypes. Hence, the mod-
eled emission probabilities of Subtype K should be much
closer to the ones of Subtype A and C. They should still
be smaller (but to a lesser extent) since one has to account
for the following (rather improbable) scenario: The
nucleotide frequencies of Subtype K only coincidentally
suggests that all subtypes should be modeled jointly, but
the real emission probabilities are, in fact, considerably
different.
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Table 1 The effects of a small subtype size

Subtype Nucleotide Frequency Probability

A

A 89 99.83%

C 0 0.06%

G 0 0.06%

T 0 0.06%

C

A 392 99.71%

C 1 0.27%

G 0 0.01%

T 0 0.01%

K

A 2 93.18%

C 0 2.27%

G 0 2.27%

T 0 2.27%

Nucleotide frequencies and the derived emission probabilities for one column in
an alignment of HIV-1 Group M sequences without using an information sharing
protocol. The emission probabilities are estimated from the nucleotide
frequencies using the pseudocounts �α = (0.05, 0.05, 0.05, 0.05). We here restrict
ourselves to 3 subtypes, A, C, and K.

Existing approaches
A workaround for this kind of situation consists of
using the same emission probabilities for all subtypes
in case a column is completely conserved (notice that
in our example this does not apply to the column
under consideration). But given that there are about 2000
non-recombinant full-length HIV-1 Group M genomes
reported by now, almost all columns in an alignment
composed of all these sequences are not 100% conserved.

In a preparatory step, Sjölander’s approach performs a
sequence weighting based on the total numbers of inde-
pendent counts. Unfortunately, this procedure results in
sequence weights that are far too low if applied to HIV
nucleotide sequence data instead of protein amino acid
data. Trying to circumvent this problem by leaving this
step out causes the influence of other subtypes to become
too strong. Since Sjölander’s approach is, in addition, an
ad hoc one and aims at protein sequence data which
are considerably more variable than HIV-1 sequences, we
developed an alternative algorithm. This new algorithm
is suitable for HIV-1 nucleotide sequence data and is
derived from a probabilistic model of the interdependence
of different HIV-1 subtypes.

Biological motivation
Our model of the emission probabilities is based on the
observation that for almost all sites in an HIV-1 MSA
at least some of the subtypes share the same emission
probabilities. In fact, for the majority of sites, it would
be most plausible to assign equal emission probabilities
to all subtypes. Neglecting the trivial case of all subtypes
having the same emission probability assigned to them,

the phenomenon that some but not all of the subtypes
exhibit equal emission probabilities could be explained
biologically as follows: Assume a site allows for more
than one nucleotide to be present (i.e. at least two alleles
are observed). Then, there are only very few characteris-
tics of the virus which determine which degree of fitness
the virus has for the different nucleotides possible at the
respective site. Moreover, these characteristics take only
very few values. As the characteristics and their values at
a particular site are small in number, the number of dif-
ferent nucleotide distributions observed at the respective
site is also small.

To clarify this reasoning, let us assume that for a site
i in the MSA the dependence of the virus fitness on the
nucleotide at site i is determined by a binary characteris-
tics (values 0 and 1) of the virus. For example, it could be
the case that some part of the virus can assume two dis-
tinct shapes, influencing which nucleotides can be present
at site i such that the virus is able to survive. Then, the fol-
lowing might hold for the nucleotide distributions of the
subtypes:

• If the characteristics takes the value 0, it might be
that the virus can only survive if adenine is present at
site i. This leads to a nucleotide distribution where
adenine has a probability very near to one.

• In case it takes the value 1 the virus might also be able
to survive if cytosine is present, but with a significant
disadvantage with respect to its fitness. This might
lead to a nucleotide distribution where adenine has a
probability of, say, about 90% and the one of cytosine
is about 10%.

In this case we would observe two different nucleotide
distributions at site i: One part of the subtypes will show
one nucleotide distribution and the other subtypes will
show another. In the following, we will call the different
nucleotide distributions (resp. emission probabilities) at
the site “source”. That is, in the example just given there
are two sources.

Emission probabilities
For the reasons just explained, we model the emission
frequencies of the subtypes jointly (see Figure 1 for exam-
ples). In the following, we refer to subtypes being modeled
jointly as sharing the same source. Moreover, an assign-
ment of each subtype to its respective source is called a
“source combination”. That is, if at a given site Subtypes
A, C, G, and H are modeled by one source, B and K by
another and D, F, and J by a third one, the assignment
{A, C, G, H} → 1, {B, K} → 2, {D, F , J} → 3 consti-
tutes the source combination of the respective site. In a
more general context, the source combinations are called
the set of partitions (which play a role e.g. in determining
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Figure 1 Examples of the calculation of the emission probabilities. Simplified example of position- and subtype-wise nucleotide frequencies of
HIV and the emission probabilities derived from them using the presented information sharing protocol. For three sites the subtype-wise nucleotide
frequencies for the four subtypes A-D are given on the left side of the table. Below them, the emission probabilities estimated based only on the
frequencies of the respective subtype are shown, using pseudocounts �α = (0.1, 0.1). The colors indicate which subtypes should be jointly modeled
in order to get the most likely source combination. The nucleotide frequencies of the sources (i.e. the aggregated frequencies of the subtypes
belonging to it) as well as the emission probabilities estimated based on these frequencies are given on the right side of the table (using the same
�α). For the sake of simplicity, we assume only the nucleotides G and T occur. Apart from this simplification and the restriction to four subtypes, this
example is taken from actual HIV-1 sequences.

the number of state-context trees of parsimonious higher-
order HMMs [25]). Since the number of source combina-
tions grows fast in the number of subtypes, we have to
restrict the search space when determining the optimal
source combination (see Subsection ‘Methods - Details on
the information sharing protocol’).

In order to estimate the emission probabilities of the
subtypes, we iterate through all possible source combina-
tions for each position. For each source combination we
estimate the emission probabilities of each source based
on the nucleotide frequencies of the subtypes assigned to
it using a Dirichlet priora [7]. We obtain the emission prob-
abilities of a subtype by averaging over all source combi-
nations, taking for each source combination the emission
probabilities of the source the subtype is assigned to.
Hereby, we weight each source combination by its like-
lihood. Further details are provided in the Subsection
‘Methods - Details on the information sharing protocol’.

Transition probabilities
In HIV, the distribution of gaps in the MSA provides lit-
tle help in distinguishing different subtypes. Most parts
of the genome are highly conserved, possessing nearly no
insertions and deletions. In contrast, small parts are highly
variable (possessing lots of gaps), but they vary so strongly
that they provide little information for distinguishing dif-
ferent subtypes. For this reason, we estimate the transition
probabilities (using a Dirichlet distribution as prior) for
all subtypes jointly from the complete MSA. The same
approach was applied by [7] for subfamilies belonging to
the same protein family.

jpHMM
The recombination and breakpoint detection tool
jpHMM requires a pre-calculated MSA of the HIV-1 sub-
types as input (see Figure 2). Each subtype in the MSA is
modeled by a separate pHMM (see Figure 3). In addition
to the usual transitions within these pHMMs, the model

allows for so-called jumps between different pHMMs at
nearly any position in the MSA. That is, the model allows
to jump between states associated with different subtypes,
depending on the local similarity of the query sequence
to the different subtypes. The complete model including
the setting of the hyper-parameters is detailed in [4].

In order to determine the recombination pattern of a
query sequence, the so-called Viterbi path [26] is com-
puted, i.e., the most probable path of hidden states
through the model generating this sequence. In this way,
each position of the query sequence is assigned to exactly
one parental subtype since i) each state of the model is
assigned to exactly one pHMM (ignoring the special states
at the begin and end of the model) and ii) each position
of the query sequence is generated by one state of the
model. The recombination breakpoints correspond to the
positions of the jumps between different subtypes.

Details on the information sharing protocol
Notation Let 1, . . . , F be the subtype (or, more generally,
subfamily) indices. The individual sources in a source
combination are indexed by 1, . . . , R. The space of all
source combinations is denoted by S, the source of sub-
type i by si. For each source j of a source combination �s =
{s1, . . . , sF}, we denote the subtypes assigned to source j by{

i(j)1 , . . . , i(j)mj

}
. That is, if F = 4 and the subtypes 1, 2, and

4 are assigned to Source 1, and the Subtype 3 to Source
2, we have m1 = 3, m2 = 1,

{
i(1)
1 , i(1)

2 , i(1)
3

}
= {1, 2, 4},

and
{

i(2)
1

}
= {3} (Notice that R and the i(j)k are defined for

a particular source combination, but that for the sake of
readability we do not indicate that source combination by
an additional index, in case several source combinations
are considered). The number of nucleotides, denoted by
N , is equal to 4.

Prior probability of number of sources We denote the
probability of a given number of sources j by P(R= j)=ρj.
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Figure 2 Outline of the information flow of jpHMM. As input, jpHMM expects an MSA partitioned into subtypes as well as an (unaligned) query
sequence. Furthermore, the model parameters, based on which different details of the underlying model are determined, have to be set by the user.
That is, the emission and transition probabilities and certain parts of the topology of the model are set based on the parameters. jpHMM then
derives the most probable path through its pHMMs. As output, jpHMM assigns each position of the query sequence to a subtype of the MSA. Here,
three possible outputs are shown.

These probabilities are estimated as described in [27]:
For each column in the alignment of all full-length HIV-
1 Group M sequences, we decide based on the AIC
(Akaike Information Criterion) by how many sources the
nucleotide frequencies of that column are modeled in
the most likely way. Then, the prior probability of a given
number of sources R is estimated by the relative frequency
of for how many alignment columns R was found to be
the most likely number of sources. Since the frequencies
for R > 6 are zero or near to zero, we set the maximum
number of sources Rmax to 6. The estimated values are
(ρj)j=1,..., 6 = (0.37, 0.30, 0.20, 0.097, 0.029, 0.0047).

Restricting the search space In [27], we restricted our
site-wise search in S to (Sr)r≤3, where Sr is the space of
source combinations composed of r sources. Since |Sr| =
S(F , r) (with S() the Stirling numbers of the second kind)

and |S| = B(F) (with B() the Bell numbersb) a brute
force search in the entire space S would imply a consid-
erable computational burden: Increasing Rmax from 3 to
6 would result in an increase of the computational effort
by about a factor of 6. Hence, we restrict the search in
S by the following procedure, illustrated in Figure 4. We
search (Sr)r≤6 successively, starting with S1, which only
contains one source combination. Before searching Sr , r ≥
2, we determine the most likely element of Sr−1 (calling
it �smax

r−1 ). Then we restrict our search in Sr to those source
combinations which can be obtained from �smax

r−1 by divid-
ing one of its sources into two, thus obtaining �smax

r . We
denote the subset of Sr in which we conduct the search
by S̄r .

Estimation of emission probabilities In case we only
have one subtype, we use the following Bayesian approach
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Figure 3 The underlying model of jpHMM. This model is illustrated using a toy example. It is built from a DNA MSA composed of two subtypes,
with the first subtype having three sequences and the second one two sequences. For each match and insert state, a vector of emission probability
values for the nucleotides is given. For the sake of clarity, the majority of transitions between the two subtypes is omitted. Moreover, the delete state
directly right to the begin state B (from which one can go to each match state) as well as the delete state directly left to the end state E (to which
one can go from each match state) were left out. High transition probabilities are represented by fat lines, low probabilities by thin lines, and the
jumps between the subtypes by dashed lines. The Viterbi path with regards to the query sequence is colored in blue, i.e., the first two positions of
the query are assigned to Subtype 1 and the last two to Subtype 2.

to estimate the emission probabilities �̂p of the sub-
type at a fixed site given the nucleotide frequencies
�n at that site: We assume that the a priori distri-
bution on the emission probabilities �p is a Dirich-
let distribution (see [7]), with parameter �α (estimated
in [4]). The parameter may be interpreted as pseudo
counts which are added to the nucleotide frequencies.
The emission probabilities then are the correspond-
ing relative frequencies of these modified nucleotide
frequencies.

For the general case of more than one subtype, we here
restrict ourselves to the estimation of the emission prob-
ability of nucleotide ν ∈ {1, . . . , N} of Subtype 1 for the
sake of simplicity. We denote the probability to be esti-
mated by p̂1,ν , with the 1 being the index of the subtype.
Without loss of generality, we can assume that this sub-
type is always assigned to Source 1. Moreover, we denote
the nucleotide frequencies of subtype i at the position
under consideration by �ni and the emission probabili-
ties of source r by �qr . Then, we estimate the emission
probability of Subtype 1 by

p̂1,ν =
Rmax∑
r=1

∑
�s∈Sr

p̂(s)
1,νP(�s |�n1, . . . �nF) (1)

with

p̂(s)
1,ν =

∫
�q1

q1,νP
(
�q1 |�ni(1)

1
, . . . �ni(1)

m1
,�s

)
d�q1.

That is, we estimate the emission probability of Subtype
1 for each fixed source combination�s by p̂(s)

1,ν . Then we sum
these estimates over all possible source combinations,
weighting the summands by the probability of the respec-
tive source combination given the observed nucleotide
frequencies.

We now consider the two factors in (1). In this, we
assume that {i(1)

1 , . . . i(1)
m1} = {1, . . . , m}, i.e., Source 1 is

composed of the subtypes 1 to m:

1. In [27] (last equation on p. 6), we showed that

p̂(s)
1,ν =

∑m
k=1 nk,ν + αν∑m
k=1 |�nk| + |�α| . (2)

2. Applying Bayes’ rule, we obtain

P (�s |�n1, . . . , �nF) = P (�n1, . . . , �nF |�s) P(�s)
P (�n1, . . . , �nF)

=
∏r

l=1 P
(

�ni(l)1
, . . . , �ni(l)ml

|�s
)

P(�s)
P (�n1, . . . , �nF)

(3)
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Figure 4 Restricted search of the space of source combinations.
The heuristics described in Section ‘Details on the information sharing
protocol - Restricting the search space’ is illustrated. In this example,
we assume 4 subtypes A, B, C, and D. In each line a source
combination is given, with the source combination in each S̄i being
grouped. The most likely source combinations in each S̄i is colored in
red. The arrows indicate how the spaces S̄1, . . . , S̄4 are traversed
during the search process.

By the first equation after Equation 4 in [27], we have

P(�n1, . . . , �nm|�s) =
( m∏

k=1

�(|�nk | + 1)∏N
j=1 �(nk,j + 1)

)

× �(|�α|)∏N
j=1 �(αj)

∏N
j=1 �

(∑m
k=1 nk,j + αj

)
�

(∑m
k=1 |�nk | + |�α|) .

(4)

Moreover, we introduce

K = P(�n1, . . . , �nF), (5)

as K is a constant independent of the source
combination. In fact, we do not need to calculate K
because we can make use of the fact that

Rmax∑
r=1

∑
�s∈Sr

P(�s |�n1, . . . , �nF) = 1.

Finally, we assume that all source combinations
composed of the same number of sources share the
same prior probability, i.e.,

P(�s) = ρr
|Sr| , (6)

Now, plugging (2), (4), (5), and (6) into (1), we obtain

p̂1,ν = 1
K

Rmax∑
r=1

ρr
|Sr|

(
�(|�α|)∏N
j=1 �(αj)

)r ∑
�s∈Sr

( r∏
l=1

φ
(r)
ν,l

)

×
∑m1

k=1 ni(1)

k ,ν + αν + 1∑m1
k=1 |�ni(1)

k
| + |�α| + 1

(7)

with

φ
(r)
ν,l =

⎛
⎜⎝ ml∏

k=1

�
(
|�ni(l)k

| + 1
)

∏N
j=1 �

(
ni(l)k ,j + 1

)
⎞
⎟⎠

∏N
j=1 �

(∑ml
k=1 ni(l)k , j + αj

)
�

(∑ml
k=1 |�ni(l)k

| + |�α|
) .

(8)

With these two formulas, p̂ν is calculable using only
known quantities. An example illustrating the details on
the calculation of the emission probabilities is given in
Figure 5. We provide further details on the calculations
presented in this subsection in the Additional file 1:
Supplements.

Figure 5 Detailed calculation of the emission probabilities.
Simplified example of the detailed derivation of the emission
probabilities from the nucleotide frequencies. At the top, the
nucleotide frequencies for each subtype are given and, at the
bottom, the emission probabilities derived from these frequencies are
provided. In between, for each source combination, the probability of
the respective source combination given the nucleotide frequencies
is shown on the left side, whereas the emission probabilities of each
subtype for the particular source combination is given on the right
side. The coloring indicates to which source each subtype belongs for
the respective source combination. For example, the third column in
the middle block represents the source combination, for which
Subtype A and C belong to one source (green) and Subtype B to
another (red), yielding emission probabilities of 0.844 and 0.156,
respectively, for the green source and of 0.082 and 0.918, respectively,
for the red one (we elaborate on some details in this table in the
supplements). The simplification made consists of the restriction to 3
subtypes and 2 nucleotides.
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Results
Test data
We evaluate our algorithm on two sets of test sequences,
Trec and Tpure (see Figure 6).

The sequences in Trec are semi-artificial recombinants
of real-world subtype sequences. The purpose of Trec
is to test the sensitivity of our algorithm with respect
to the detection of segments originating from small-size
subtypes. The sequences in Trec are composed of three
segments, each of length 250 bps. The first and last seg-
ment stem from a regular-size subtype (A-D, F, and G),
the middle part stems from one of the small-size subtypes
(H, J, and K). The choice to group the subtypes this way
into normal- and small-size ones, is canonical since the
subtypes H, J, and K contain only 2 resp. 3 sequences,
whereas the other subtypes contain 30+ sequences. For
each pair composed of a normal- and a small-size subtype,
Trec contains 10 semi-artificial recombinants composed
of sequences from the respective pair of subtypes. That
is, we have 180 sequences in total. The first position
of the 750 bps long genome part from which a semi-
artificial recombinant is constructed is chosen randomly
between position 1007 and 8501 with respect to the HIV-1
reference sequence HXB2 (see [28]).

The set Tpure is composed of parts of sequences from
regular-size pure subtypes, i.e. partial subtype sequences.
The purpose of Tpure is to test the specificity of our
algorithm with respect to the detection of segments orig-
inating from small-size and regular-size subtypes. Each
sequence in Tpure has a length of 2000 bps. For each
subtype, Tpure contains 20 partial sequences, i.e. 180
sequences in total. The starting position of the sequence
part taken is chosen randomly between position 1007 and
8501 with respect to HXB2.

Performance measures
We evaluate the performance of our algorithm by two
measures: i) the fraction spos of sequence positions cor-
rectly classified, ii) the conformance ssegm of the predicted
and the correct subtype pattern. Hereby, ssegm is computed

CC CJ

H

Figure 6 Example sequences of the test data. Sequences of the
test dat sets Tpure (upper) and Trec (lower) are shown.

like follows (see Figure 7). All segments of the correct sub-
type pattern are trimmed by 50 bps on both ends. If a
segment is too short for this procedure, only its middle
point is kept. Then each of these trimmed segments is
checked whether all its position coincide with the subtype
in the predicted pattern. The same is done with the roles
of the correct and the predicted pattern switched. The
score ssegm is then defined as the fraction of all trimmed
segments which match their counterpart.

The motivation for using the two measures spos and ssegm
consists in each concentrating on a different type of clas-
sification error: the primary purpose of spos is to identify
smaller shifts of the breakpoints, under the assumption
that the predicted recombination patterns are correct. On
the contrary, ssegm does not aim for these errors, but is
designed for detecting different recombination patterns.
Furthermore, these scores are suitable for being used in
an automatic evaluation. In contrast to that, using the dis-
tances between the correct and the predicted breakpoints
(which is a more canonical approach) would require to
deal with differences in the recombination patterns (like
the recombination patterns AGA and AGAGA) manually.
We use the arithmetic mean of spos and ssegm as an overall
score for a single test sequence, denoting it stot .

Notice that applying the introduced measures on the
two test sets does not exactly measure what we stated
as purpose of the test sets (sensitivity resp. specificity
to detect segments originating from small-size subtypes):
For Trec we also consider misclassification in the first and
last segment and for Tpure we do not distinguish between
wrongful inserts of segments of normal- and small-size
subtypes. One can rather view Trec and Tpure as bound-
aries between which all reasonable application scenarios
lie: No standard user will want to emphasize sensitiv-
ity more than measured by one of the introduced scores
on Trec and, analogously, no one specificity more than
measured on Tpure.

Versions of jpHMM
We compare four different versions of jpHMM, as sum-
marized in Table 2. Since we have already shown in
[29] that the performance of jpHMM can be improved
by jointly modeling the transition probabilities for all
subtypes, we do not consider the original version of
jpHMM in our evaluation, which models them sepa-
rately for each subtype. We compare four approaches to
estimate the emission probabilities: i) jpHMMprob: the
probabilistic model utilizing an information sharing pro-
tocol introduced in this paper, ii) jpHMMml: the reg-
ularized linear discriminant learning presented in [29],
iii) jpHMMscal: a heuristic approach scaling the pseu-
docounts depending on the number of sequences in a
subtype already evaluated in [29], and iv) jpHMMsemi: the
original algorithm introduced in [4].
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AAC K

A C AC

C AA

Figure 7 Calculation of ssegm between two subtype-wise segmentations. The arrows show how the segments of both classifications are
trimmed. Hereby, the colored bar between two arrows on the bottom side of the upper classification indicates which positions of the upper
classification have to be assigned to a subtype as given by the bar such that the corresponding segment of the lower classification is counted as
conforming to the upper classification (same applies with the roles of the lower and upper classification being switched). Segments which do not
conform to the other classification are shaded.

Comparison of different versions of jpHMM
We compare the four jpHMM versions jpHMMsemi,
jpHMMscal, jpHMMml, and jpHMMprob on the test
sequence set Tpure and all of them but jpHMMscal on Trec.
The results of this evaluation are illustrated in Figures 8, 9
and 10. jpHMMscal is not tested on Trec since the purpose
of introducing jpHMMscal was to demonstrate that it is
not possible to reach the performance of jpHMMml or
jpHMMprob by employing an arbitrary heuristic approach
to estimate the emission probabilities. For this purpose,
testing only on Tpure is sufficient.

On Tpure, jpHMMsemi classifies 82.2% of the sequences
correctly, jpHMMscal 85.6%, jpHMMml 97.2%, and
jpHMMprob 98.9%. Applying the sign test yields that
jpHMMprob is better than jpHMMsemi with p-value p =
9 · 10−10, than jpHMMscal with p = 6 · 10−8, and than
jpHMMml with p = 0.125.

On Trec, jpHMMsemi achieves an average stot of 0.74,
jpHMMml of 0.83, and jpHMMprob of 0.90. Based on the
Wilcoxon signed rank test jpHMMprob performs better
than jpHMMsemi with p < 2 · 10−16 and outperforms
jpHMMml with p = 3 · 10−6.

Table 2 The evaluated models

Abbreviation Emission Transition Evaluated
probabilities probabilities

jpHMMprob Probabilistic model Joint �
jpHMMml Machine learning Joint �
jpHMMscal Pseudocount scaling Joint �
jpHMMsemi Original Joint �
jpHMMorig Original Separate

The first column gives the abbreviation used for the respective model in what
follows. The second column indicates how the emission probabilities are
modeled: the probabilistic model introduced in this paper, the machine learning
approach presented in [29], a scaling the pseudocounts depending on subtype
size evaluated in [29], or the original algorithm introduced in [4]. The third
column shows whether the transition probabilities are modeled jointly or
separately. The last column indicates whether the respective approach was
evaluated in this paper.

Comparison of jpHMM with Simplot and Bootscanning
Setting Simplot employs a distance-based method,
whereas Bootscanning is based on a phylogenetic
approach. Both can be applied to both single sequences
and groups of sequences, such as HIV-1 subtypes. Sim-
plot as well as Bootscanning require a certain num-
ber of sequences (respectively, groups) as input (three
for Simplot, four for Bootscanning, including the query
sequence).

As neither Simplot nor Bootscanning allow for auto-
matic execution, we restrict our comparison to 84
sequences of Tpure and 36 sequences of Trec. Since it
turned out during our evaluation that correctly classifying
segments from large subtypes is not a challenge for any
algorithm, we compared the methods i) for each large-size
subtype on four randomly selected sequences from Tpure
and ii) on all sequences of Tpure from small-size subtypes.
For the comparison on semi-artificial recombinants, we
randomly picked two sequences for each combination of a
large- and a small-size subtype from Trec.

Results All four methods classify the 24 pure segments
from large-size subtypes correctly. Out of the 60 segments
from the small-size subtypes, jpHMMprob misclassifies 2,
jpHMMml 5, Simplot 11, and Bootscanning 6. Applying
the sign test yields that jpHMMprob performs better than
Simplot with p = 0.006 and better than Bootscanning
with p = 0.11.

On the 36 semi-artificial recombinants taken from Trec,
jpHMMprob achieves an average spos of 0.926, jpHMMml

of 0.863, Simplot of 0.833, and Bootscanning of 0.839.
Hereby, jpHMMprob achieves a higher score than Sim-
plot for 28 sequences with Simplot better performing for
the remaining 8 sequences. Comparing jpHMMprob with
Bootscannnig, jpHMMprob performs better in 32 out of 36
cases, with Bootscanning being better for the rest. Apply-
ing the Wilcoxon signed-rank test yields that jpHMMprob

performs better than Simplot with p = 2 · 10−4 and better
than Bootscanning with p = 2 · 10−6.
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Figure 8 The fraction of correctly classified sequences for Tpure. This fraction is shown for the application of jpHMMml , jpHMMscal , jpHMMsemi ,
and jpHMMprob to Tpure , stratified by subtypes.

Influence of the degree of conservation on the performance
of jpHMM

In order to measure the influence of the variability of the
genome part from which a sequence stems on the per-
formance of jpHMMprob, we evaluate the performance

Figure 9 The performance of different versions of jpHMM on
Trec. The performance of jpHMMml , jpHMMsemi , and jpHMMprob on
Trec for different choices of pjump is shown. It is measured by stot .

of jpHMMprob on semi-artificial recombinants. Since the
results from pure sequences are less conclusive, we restrict
our evaluation to recombinants. As Trec is too small to
achieve significant results in this regards, we employ an
extended version of Trec. Instead of 10 sequences per
subtype pair we use 50. We measure the degree of conser-
vation by the pairwise percentage identity of all sequences
from our input MSA in the genome region from which
the respective semi-artificial recombinant was taken. The
results are shown in Figure 11.

The degree of conservation has an influence on the
performance of jpHMMprob. The score achieved by
jpHMMprob for sequences with identity lower than 70% is
significantly lower than the one for sequences with iden-
tity higher than 70%. Above the threshold of 70%, the
degree of conservation does not seem to have a significant
influence on the prediction performance.

Application to CRF04
In order to verify that jpHMMprob is capable of handling
full-length sequences which exhibit a recombination pat-
tern observed in a real recombinant, we apply jpHMMsemi,
jpHMMprob, and jpHMMml to the sequence AF119819
classified as recombinant of type CRF04 [30,31] in the
LANL database. CRF04 is one of the CRFs whose genome
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Figure 10 The stratified performance of different versions of jpHMM on Trec . The performance (measured in stot ) of jpHMMml , jpHMMsemi , and
jpHMMprob on Trec is shown, with the semi-artificial recombinant sequences Trec being stratified by which small- and which large-size subtype was
used for the generation of the respective sequence.

Figure 11 The influence of the degree of conservation on the
performance of jpHMMprob. The performance of jpHMMprob

(measured in stot ) on semi-artificial recombinants against the pairwise
percentage identity of the sequences in the genome region from
which the respective semi-artificial recombinant was taken. The
LOESS curve together with its standard deviation (dashed) and the
double of the standard deviation (dotted) is given as red line.

allegedly stems in part from a small-size subtype (subtypes
H and K for CRF04). The segmentation of CRF04 pro-
vided in the LANL database was obtained by Bootscan-
ning. Since for this kind of application, one normally does
not want the subtype-wise segmentation to get too frag-
mented, we use pjump = 10−8 for jpHMMsemi, pjump =
10−6 for jpHMMprob and pjump = 10−7 for jpHMMml.
We here have to use a considerably smaller jump proba-
bility for jpHMMsemi than for jpHMMprob since we have
to smooth out the misclassifications jpHMMsemi does due
to its less performant estimator of the emission probabili-
ties. The results and the classification given on the LANL
website are given in Figure 12.

Notice that subtypes F and K as well as subtypes A,
G, and J, respectively, are closely related [32]. Hence,
one can expect different algorithms to classify a par-
ticular segment as belonging to two different subtypes
of one of these two phylogenetic groups. Furthermore,
the original classification assigns parts of the sequence
to Subtype U (“unknown”). Since the input alignment
of jpHMM does not contain sequences of an unknown
subtype, jpHMM cannot designate any part of a query
sequence as Subtype U.
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Figure 12 The classification of CRF04. The classifications as given on the LANL website (first) and provided by jpHMMsemi (second), jpHMMml

(third), and jpHMMprob (last), respectively. Here, Subtype U stands for an unknown subtype.

We also explored how the results of jpHMMprob change
with different parameter values. Increasing pjump to 10−5

does not change the prediction at all, while for pjump =
10−4 the number of segments is increased by four.
Decreasing pjump to 10−7 or 10−8 yields the same result.
The fragment from Subtype G, predicted in the vif gene,
vanishes and instead Subtype A is predicted in this
location.

Running time
On an Intel Core 2 Duo E8400 with 3 GHz and
4 GB of RAM, the application of jpHMMprob to a
sequence from Trec (length 750 bps) takes about 16
minutes. The lion’s share of the computational time is

due to the calculation of the emission probabilities. It
could be decreased considerably by implementing further
heuristics to neglect source combinations with very low
likelihood.

Discussion and conclusions
In this paper, we presented a novel information sharing
protocol, realized in the form of a probabilistic model,
for estimating the emission probabilities of pHMMs. We
incorporated this protocol into the recombination detec-
tion program jpHMM and applied it to semi-artificial and
real-world HIV-1 Group M sequences. As we were able
to confirm an improvement of the prediction accuracy of
jpHMM by our protocol, we demonstrated the value of the
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protocol for a crucial biological and medical application
employing pHMMs.

Biological/medical relevance
The work of biological and medical researchers can be
supported in various ways by improving the precision of
recombination and breakpoint detection for HIV-1. For
example, discovering recombination-free genome regions
allows for the identification of barriers to genetic crossing
between different viral strains. This kind of barriers then
may help identifying vulnerable aspects of HIV biology
in form of combinations of mutations strongly decreas-
ing the survivability of an HI virus. This can facilitate
finding promising targets for antiviral strategies (Talk of
M. Negroni on HIV Dynamics & Evolution 2011).

Furthermore, recombination analysis and breakpoint
detection do not only play a role for numerous
viruses, e.g., flaviviruses, coronaviruses, alphaviruses,
avian oncoviruses, rotaviruses, and influenza viruses
[23,33-39]. It is also needed for bacteria [40,41] and within
the scope of the detection of 16S rRNA chimera, which
evolve during PCR [42-44]. Moreover, our approach
could also be employed to improve software for remote
homology detection of proteins. A heuristic probabilistic
approach addressing the problem of small protein families
has been introduced in [3].

Testing
We have applied i) the novel version of jpHMM incor-
porating our information sharing protocol, ii) former ver-
sions of jpHMM, and iii) the established recombination
breakpoint detection tools Simplot and Bootscanning to
i) sequences designated (in the LANL HIV database) as
originating from a pure subtype, ii) semi-artificial recom-
binants of two real-world subtype sequences, iii) a full-
length sequence of CRF04. In total, we compared the
novel version of jpHMM with three formerly introduced
ones, differing with regards to how they estimate the emis-
sion probabilities: i) a machine learning approach using
linear discriminant learning, ii) a heuristic approach of
scaling the pseudocounts, iii) the original approach with-
out adaptions for small-size subtypes.

The results were compared using appropriate perfor-
mance measures. On all test sequence sets, the novel
version of jpHMM either significantly outperformed the
other algorithms or achieved better results, but with-
out reaching statistical significance. The latter is mostly
a result of the fact that for most algorithms the task of
correctly classifying segments of large-size subtypes is
not a challenge, thus yielding very similar results for the
corresponding type of test.

Compared with the machine-learning approach
(jpHMMml) introduced in [29], the method presented in
this paper (jpHMMprob) seems to be considerably better

performing on very small subtypes: On the one hand,
jpHMMml achieves an average score (stot) of 0.87 on the
semi-artificial recombinants constructed from Subtype H
or J, respectively, whereas the average score on recombi-
nants constructed from Subtype K is 0.76. That is, there is
a difference in regard to the average score of 0.11 between
recombinants built from Subtype H and J, respectively,
and Subtype K. On the other hand, for jpHMMprob the
average score is 0.92 for recombinants built from Subtype
H and J, respectively, and 0.87 for Subtype K. That is, a dif-
ference of 0.05 can be observed. Thus, our model-driven
information sharing approach seems in particular more
suitable to model very small subtypes than a machine
learning approach based on regularized linear discrim-
inant learning and a transformation of the resulting
weights into valid probabilities via a softmax function.

Astonishingly, for the tests on semi-artificial recombi-
nants, the phylogenetic distance between the respective
small- and large-size subtypes does not seem to have a
notable influence on the performance of jpHMMprob. The
phylogenetically nearest large-size subtype of Subtype H
is Subtype C, of Subtype J is Subtype A, and of Subtype
K is Subtype F. Nevertheless, only semi-artificial recombi-
nants composed of Subtype J and A achieve considerably
poorer results than recombinants composed of Subtype
J and another large-size subtype. For Subtypes H and K,
recombinants built from Subtypes C and F, respectively,
do not yield a notably low performance. Since Subtypes K
and F are phylogenetically closer than H and C (J and A,
respectively), we can conclude that the low performance
for recombinants built from Subtype J and A is probably
simply coincidental and that the influence of the phyloge-
netic distance is at most weak for recombinants between
HIV-1 Group M subtypes.

The relatively weak performance of jpHMMprob on par-
tial sequences stemming from weakly conserved genome
parts can easily be explained by the fact that jpHMM is
not well suited for this kind of sequences: pHMMs assume
that the group of sequences to be modeled can be well
aligned. If not, the resulting pHMM consists mostly of
insert states which do not constitute a sophisticated model
for unalignable sequences.

One might wonder whether our test setting, with very
short segments, is appropriate if the normal application
requires considerably lower jumping probabilities. That is,
one could suppose that our test setting does not prove
that the algorithm performs well in correctly classifying a
very long fragment (i.e. several thousand bps) stemming
entirely from one subtype. But if the algorithm tended
to assign such a fragment to more than one subtype, it
would also misclassify shorter subfragments. Hence, by
testing it on partial length sequences from one subtype we
have in fact also covered these long fragments from one
subtype.
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Application to CRF04
In order to verify that jpHMMprob is capable of han-
dling real world data, we applied it to a CRF04 sequence.
This application shows – to some extent – why we
stuck to semi-artificial recombinants instead of evaluat-
ing jpHMMprob on CRFs. For CRFs, it is unclear which
classification is the “correct” one. This results from the
scientific community not coming to any consensus on
which subtype classifications are the correct ones. Beyond
that, it is even discussed whether the entire classification
system exhibits flaws: For example, it has been debated
whether Subtype G is in fact a recombinant and CRF02
a pure subtype [45-48]. Moreover, the total number of
CRFs is still quite small and a large fraction of them pos-
sesses only a few breakpoints, i.e., the number of potential
test sequences is limited. Furthermore, it is a widespread
approach to evaluate the performance of recombina-
tion detection tools using (semi-)artificial recombinants
[21,46,49,50]. Therefore, we chose to test jpHMMprob on
semi-artificial recombinants, despite one could perceive
testing on CRFs as more “realistic”.

Outlook
We recently have developed a probabilistic algorithm
called the “Unknown Subtype Finder (USF)” [27] for
the purpose of automatically detecting parts of an input
sequence which stem from a subtype yet unknown. For
USF, the emission probabilities of an unknown subtype are
also calculated employing the concept of sources which is
the base of the information sharing protocol presented in
this paper. Consequently, we plan the integration of USF
and jpHMM into one tool. This tool then could be used
to assign the known subtypes of HIV-1 to a (full- or part-
length) query sequence as well as to detect segments of
the genome originating from a subtype yet unknown.

Beyond this, one might think of several extensions to the
probabilistic model presented in this paper:

• The probability of whether the emission probabilities
of a given set of subtypes are modeled jointly might
depend on the subtypes in the set. Like this, it could
be accounted for the fact that phylogenetic close
subtypes should tend more to be modeled jointly
than phylogenetic distant ones. As the phylogeny of
the subtypes, which subtypes tend to be jointly
modeled might change along the genome.

• The information sharing protocol could be based on
a hierarchical classification system (as it is with
protein families, superfamilies, folds, and classes [51])
instead of a flat classification system (for example,
HÌV-1 Group M subtypes). Similarly, how strongly
the emission probabilities of an entity from the
classification system (e.g. a protein family) is
influenced by another entity could depend on how

close the two entities are in the classification system.
Analogously, one could also allow for unknown
entities differing with regards to how distant they are
to the known entities, e.g., unknown protein families
and unknown protein superfamilies.

• The probability of jumping between subtypes could
be modeled as varying along the genome, motivated
by the fact that the distribution of recombination
breakpoints is not uniform among the genome [52].

Availability
The C++ source code of jpHMM and Matlab code for
evaluating the different versions of jpHMM is available at
http://jphmm.gobics.de.

Endnotes
aThe explanation here emphasizes understandability.

Due to computational efficiency, the actual computations
are carried out in a quite different way.

bThe first ten Bell numbers B(1) through B(10) are 1, 2,
5, 15, 52, 203, 877, 4140, 21147, 115975.
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