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Abstract

The parameters of experimentally obtained exponentials are usually found by least-squares fitting methods. Essentially, this
is done by minimizing the mean squares sum of the differences between the data, most often a function of time, and a
parameter-defined model function. Here we delineate a novel method where the noisy data are represented and analyzed
in the space of Legendre polynomials. This is advantageous in several respects. First, parameter retrieval in the Legendre
domain is typically two orders of magnitude faster than direct fitting in the time domain. Second, data fitting in a low-
dimensional Legendre space yields estimates for amplitudes and time constants which are, on the average, more precise
compared to least-squares-fitting with equal weights in the time domain. Third, the Legendre analysis of two exponentials
gives satisfactory estimates in parameter ranges where least-squares-fitting in the time domain typically fails. Finally,
filtering exponentials in the domain of Legendre polynomials leads to marked noise removal without the phase shift
characteristic for conventional lowpass filters.
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Introduction

Processes with linear first order kinetics, i.e. dy=dt~{ay, are

ubiquitous in all fields of science, above all in the life sciences,

chemistry, physics and engineering. Noisy exponentials are

therefore among the most common experimental outcomes.

Typically, noise removal is done by conventional lowpass filtering,

and the function’s parameters, ie, amplitudes and time constants,

are retrieved by nonlinear least squares fitting (NLLSQ) such as

the Levenberg - Marquardt algorithm (LMA) [1–3]. However,

lowpass filters in the Fourier domain distort the signals by

introducing phase shifts, and the LMA is too time-consuming in

cases where the parameters need to be obtained rapidly or,

equivalently, where exponentials need to be fitted in parallel. We

therefore set out to find a faster method of filtering and fitting

exponentials with the same or higher precision. The goal was to

transform noisy signals such as exponentials into a space where

signal and noise are mapped essentially onto different subspaces. It

turned out that the method described herein is not only faster but

in many practical applications also more precise than the LMA. In

addition, it allows effective noise removal.

Results

Legendre filter
Consider the outcome of the stopped-flow experiment shown in

Fig. 1a as well as its Legendre spectrum (b), obtained by the finite

Legendre transform (fLT, see Methods). As Legendre polynomials

are orthogonal on the interval [21, 1] (Fig. S1), the first and the

last sample of the time function are assumed to occur at -1 and 1,

respectively (for scaling and re-scaling of time, time constants and

amplitudes, see Methods). The Legendre spectrum (b) is plotted

for the first 17 components, each of which indicates the

contribution of a specific Legendre polynomial to the signal (eq.

4). While the inverse finite Legendre transform (ifLT) of the entire

spectrum would, of course, reconstruct the original noisy function

(a), the ifLT of the first, e.g. eight, components of the spectrum

results in considerable noise removal (a, red). In analogy to Fourier

theory, and for the sake of brevity, we name this filter Legendre

lowpass. Its effectiveness is due to the fact that smooth signals such

as exponentials are mainly represented by lower Legendre

polynomials, i.e., by lower order components of the Legendre

spectrum, while the signals’ noise is mapped predominantly to

higher order components (Fig. 1 and Fig. S2).

In practical cases, the output of a linear experimental device is

affected by the system’s response function, r(t). Often the response

function is a lowpass so that r(t) is an exponential itself. This can

be neglected if its time constant tr is much smaller than the t
under investigation (as in the case of Fig. 1a). Generally, however,

an experimental outcome y(t) is the convolution of the signal, x(t)
(Fig. 2a), with the response function, i.e., y(t)~x(t) � r(t). Fig. 2e
and f show that the convoluted exponential y(t) (e, noisy trace)

can be approximated by Legendre filtering (f, gray, and e, red,

cont.). Moreover, in many cases one is interested in the parameters

of the original, non-convoluted function x(t) rather than in y(t).
Obtaining these in the time domain (t-domain) from y(t) would

require a deconvolution, which is notoriously inaccurate for noisy

functions, and often not feasible. In contrast, an approximation of

x(t) can readily be obtained in the Legendre domain (L-domain).

To this end we calculate the Legendre spectrum of x(t) from r(t)
and the Legendre spectrum of y(t) using eq. 8. The inverse
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transform of its lowpass-filtered spectrum (f, red bars) gives an

approximation of x(t) (e, red, dashed; eq. 5).

The marked reduction of noise observed could also be observed

when a sum (Fig. 3) or a product (Fig. 4) of noisy exponentials

was analysed. The product of exponentials could serve as a model,

e.g., for excitatory postsynaptic potentials (EPSPs) of neurons.

Here it is interesting to compare the Legendre lowpass-filtered

EPSP (Fig. 4c, dashed, red, calculated from the lower compo-

nents of the EPSP’s Legendre spectrum, b) with the conventionally

lowpass-filtered EPSP, which exhibits the characteristic phase shift

of Fourier lowpass-filters (c, gray). For obtaining parameters such

as time-to-peak and time constants, the Legendre lowpass clearly

appears to be more appropriate than the Fourier lowpass.

The noise removal effect of Legendre filters is by no means

limited to the above functions as shown for the autocorrelation

function (ACF) of an fluorescence correlation spectroscopy (FCS)

experiment (Fig. 1c). Its Legendre spectrum as well as the

Legendre lowpass-filtered ACF are shown in d and c (red),

respectively. Though this cannot replace the fitting of FCS data, it

allows a filtered online representation of the ACF.

Taken together, the finite Legendre transform compresses the

data from the number of samples in the t-domain to a small

number of Legendre components. Second, considerable noise

reduction can be achieved by Legendre lowpass-filtering, and

third, deconvolution of noisy exponentials can conveniently be

carried out in Legendre space.

At this point the question arises whether the parameters A and t
of noisy exponentials can be retrieved in the L-domain, and

whether this is faster and as least as precise as fitting in the t-

domain. Our strategy to analyze these questions is illustrated in

Fig. S2. A noisy exponential, which might look similar to part g of

the figure, is first transformed (fLT) to its Legendre spectrum. The

lower components of the Legendre spectrum are then fitted to the

corresponding, amplitude- and time constant-dependent compo-

nents of a pure exponential (eq. 4). For the comparison of this

method with the LMA in the t-domain, we simulated noisy

exponentials (g). First, we defined the amplitude and time constant

of an exponential (a) and then we added Poisson noise (c) as well as

an offset with gaussian noise (e) to it. The right column of the

figure clearly shows that the Legendre spectrum of (a) has only low

components, while the transforms of (c) and (e) are characterized

predominantly by high components. The LMA fit of the resulting

noisy exponential in the t-domain (g) now gives estimates At and tt

for the true amplitude A and true time constant t, while the LMA

fit of its lower Legendre components (h) gives estimates AL and tL

for A and t in the L-domain.

Figure 1. Filtering exponentials and Legendre lowpass. (a) Double exponential decay x(t) during a stopped-flow recording. The reaction
monitored is the interaction of ruthenium complexes with DNA, scaled to the interval [21, 1]. For the experimental details of the system, see [12]. (b)
The first 17 components of the Legendre spectrum of x(t). The inverse fLT of the components Lo through L7 of the spectrum (b) gives the red curve
in (a). Note that the sharp peak in the noisy trace is virtually not reflected in the filtered curve. (c) Autocorrelation curve (gray) resulting from an
experiment where the diffusion constant of tetramethylrhodamine was measured (own data). In this example, fLT and ifLT are performed for non-
equidistant samples, and we re-scaled the x-axis to correlation delays. (d) Legendre spectrum of the ACF shown in (c). The red curve in (c) is the
inverse fLT of the components Lo through L7 of the Legendre spectrum.
doi:10.1371/journal.pone.0090500.g001
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Accuracy and precision of A and t retrieval: t-domain versus
L-domain

To assess and compare the precision and accuracy of fitting in

the t-domain versus the L-domain, we used simulated data as

described and applied the LMA with equal weights in both

domains, thereby obtaining At and tt as well as AL and tL. Either

way of fitting can be done with the pure signal x(t) or with x(t)
being convolved with a system response function r(t). Fig. 5a
shows the exponential with the true paramters A and t together

with the LMA fit of its noisy variant in the t-domain, yielding At

and tt. On the other hand, Fig. 5b shows the Legendre spectrum

of the noisy exponential (gray bars) along with the LMA fit in the

L-domain (adjacent red bars), yielding AL and tL. In this example we

obtain At~2999:034 and tt~0:6025 on the one hand and

AL~2999:761 and tL~0:6012 on the other. Both pairs

approximate the real values A~3000 and t~0:6, whereby, in

this case, AL and tL come closer to A and t. Another realization of

the same experiment (same A and t) would, of course, lead to a

different pair of ‘best fits’ and the LMA in the t-domain might

come closer to A and t this time. We therefore analyzed a large

number of realizations (5000) of the same experiment, fitted them

using either method, and plotted the distributions of the

normalized fitted values ÂAt~At=A and ÂAL~AL=A (Fig. 5c) as

well as t̂tt~tt=t and t̂tL~tL=t (Fig. 5d). Both amplitudes and

time constants are estimated with higher precision in the L-

domain, the effect being more pronounced for the time constants.

The precision of fitting A and t in the L-domain or the t-domain

can be quantified by the Gaussian sum of variances, resulting in

the joint errors eL and et (see Methods, eq. 14a,b). The probability

for the error in the L-domain, eL, to be smaller than et varied as a

function of t and was found to lie in the range between 57:7% and

73:4%.

In the above comparison, we have used the LMA with equal

weights, wi~1, for all samples. Thereby we have implicitly

assumed a type of measurement, where no a-priori knowledge is

available concerning the measurement and its noise. In such cases

and in particular when it is unclear whether the data contain one

or two exponentials, and one of them might be suppressed by the

importance weighting, all weights should be set to 1. Only in cases

where reasonable assumptions on measurement errors can be

made, which is, of course, the case for our simulated data, an

appropriate weighting should be chosen, since this improves the

estimation of the parameters. In fact, the comparison of precision

and accuracy of the same data as above but with optimal

weighting for Poisson noise, shows virtually no difference between

the fitting in L- and t-domain (Fig. 5d and e). However,

gradually increasing the gaussian noise renders this way of

importance weighting rapidly sub-optimal (Table 1), and the fit

in the L-domain gives the accurate parameters more frequently.

Fitting in the L-domain thus appears to be equivalent to optimal

weighting in the t-domain. This is useful because the optimal

weights in the t-domain are mostly not known.

Figure 2. Filtering exponentials convolved with a system response function. (a) Exponential on the interval [21, 1] with Poisson noise
added. Amplitude, A~10, time constant t~0:9. (b) Legendre spectrum of x as resulting from eq. 5. (c) Mean vx(t)w of x(t) (continuous) and
inverse fLT (dashed, eq. 6) of Lo through L5 of the spectrum shown in b. (d) Legendre spectrum of the mean vx(t)w, largely lacking higher noise
components. (e) Noisy curve is the convolution of x(t) with R exp({t=tR ),R~0:018 and tR ~0:1. R was chosen such that the curve overlaps with x(t)
for large t. (f) Legendre spectrum (gray bars) of convoluted noisy exponential shown in e (continuous curve). The lowpass-filtered inverse transform is
shown in e (continuous curve) and approximates the convoluted noisy exponential. In addition, f shows the Legendre spectrum of x(t), obtained
through eq. 9. The lowpass-filtered inverse transform of this spectrum is shown as the red dashed curve in e and approximates the original non-
convoluted exponential, from which the noisy convoluted curve was generated.
doi:10.1371/journal.pone.0090500.g002
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Figure 3. Legendre filter of the sum of two exponentials. (a) Noisy double exponential and its mean (A1~2,t1~0:4,A2~4,t2~0:9). (b, d)
Legendre spectra of the noisy double exponential (b) and its mean (d). (c) Mean of a (cont.) and lowpass-filtered Legendre spectrum in b (red,
dashed).
doi:10.1371/journal.pone.0090500.g003

Figure 4. Legendre lowpass-filtered EPSP. (a) Noisy EPSP and its mean simulated as A(1{e{t=ton )e{t=t , with ton~0:1, A~100 and t~0:7. (b, d)
Legendre spectra of the noisy EPSP (b), and its mean (d). (c) Inverse transform of L0 through L10 of b approximating the EPSP’s mean (dashed, red).
Gray curve in c, Fourier lowpass (t~0:1) of the noisy EPSP.
doi:10.1371/journal.pone.0090500.g004

Fitting and Filtering in Legendre Space

PLOS ONE | www.plosone.org 4 March 2014 | Volume 9 | Issue 3 | e90500



Optimal number of Legendre components
In the above, we used the first eight components of a Legendre

spectrum for calculating the inverse transform (Fig. 1a,b) and for

the comparison of accuracies in the t- and L-domain (Fig. 5c,d).

However, the spectral amplitudes’ decays in the latter figure

suggest that five or six components might have been sufficient to

obtain the same result. This and similar observations led us to

analyze the question of how many Legendre components should

be taken into account for the LMA in the L-domain. The answer

turned out to depend on the ratio of t and the time Tr over which

the record was taken. This can be seen qualitatively by comparing

the Taylor series representation of exponentials with the Legendre

representation, and quantitatively by calculating the coefficient of

variation of Legendre components (Fig. 6). Specifically, the

Taylor series representation of an exponential (eq. 9) shows that

the terms of the Taylor series decay with n as 1=n!, but that small

time constants t counteract this decay, since (1=tn) increases with

decreasing t. As a consequence, for the same accuracy smaller t0s

Figure 5. Comparison of fitting in time- and Legendre - domain. (a) LMA fit (dashed, red) and mean (cont.) of a noisy exponential with offset
in the time domain. Poisson noise; offset, 100; gaussian offset noise with s~10. (b) Legendre spectrum of the same noisy exponential (gray) and LMA
fit in the Legendre space (red). (c,d) Probability density function giving the frequency with which the fitted amplitude, normalized to the true value
(c), or with which the fitted time constant, normalized to the true value (d)occurs in 5000 trials. True values assumed in c,d: A = 3000, tau = 0.1. All
weights set to 1. The red and gray curves give the frequencies resulting from the fits carried out in the time (gray) or Legendre (red) domain,
respectively. (e,f) Probability density functions as in (c,d), except that the data were weighted with wi~1=

ffiffiffiffi
xi
p

. The four calculated pdf’s in c through
f are fitted by Gaussians.
doi:10.1371/journal.pone.0090500.g005

Table 1. Comparison of fitting in L-domain and t-domain of
simulated noisy exponentials defined by parameters A and t,
superimposed Poisson noise and stationary gaussian noise
with different standard deviations s.

s=A wi p(eLvet)

0:01 1=
ffiffiffiffi
yi
p

0:55

0:05 1=
ffiffiffiffi
yi
p

0:56

0:10 1=
ffiffiffiffi
yi
p

0:68

0:15 1=
ffiffiffiffi
yi
p

0:92

p is the probability that the fitting parameters obtained in the L-domain
approximate the true values better than those obtained in the t-domain (i.e.,
p~p(eLvet)) under the indicated noise condition. With optimal importance-
weighting for Poisson noise (1=

ffiffiffiffi
yi
p

), the comparison is carried out for four

different levels of gaussian noise, given as a s=A (1%,5%,10%,or15%).
doi:10.1371/journal.pone.0090500.t001
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require higher orders of the Taylor series. Clearly, as there is a

unique mapping from the Taylor series representation to the

Legendre polynomial representation of exponentials (eq. 12), the

number of Legendre components required increases for decreasing

time constants.

As a quantitative way of obtaining an appropriate cut-off index

kc of Legendre components we used the coefficient of variation

cv(k)~sLk
=vLkw, which describes, for each k, the ratio of the

standard deviation of Lk to its average, i.e., the ratio of noise to

signal. For a noisy exponential with A~10 and t~0:9, the

Legendre components including their standard deviations are

shown in Fig. 6a (gray). Up to the forth component, the standard

deviations are rather small and can hardly be recognized. The

corresponding cv(k) is plotted in part b of the figure (black).

Assuming cv~1 as threshold for an acceptable signal-to-noise

ratio, we obtain kc~3 as cut-off. In the case of a shorter time

constant t, e.g. 0:3, the standard deviations can virtually not be

recognized in the spectrum (Fig. 6a, red) but the cv(k) clearly

show that up to k~6 the signal dominates the noise. It can be

taken as a rule of thumb, that for t=Tr&0:3 six Legendre

components give optimal results.

Computational cost
For comparing the computational cost in the t-domain versus

the L-domain, we started out with FLIM data from an experiment,

where oxidative stress was measured in cultured hippocampal

neurons using the HyPer sensor and two-photon microscopy

(Fig. 7). For the 150 data samples recorded the computational cost

was 8.78 ms/px (t-domain) versus 0.3 ms/px, amounting to

approx. 575 s (t-domain) versus 19,7 s (L-domain) for the whole

image. Given an image acquisition time of 30 s, the analysis of

exponentials in the L-domain has become feasible in real-time.

As the algorithm does not depend on the specific type of

experiment, this result can readily be generalized to higher sample

sizes. Expectedly, the computational cost of the LMA in the t-

domain is approximately proportional to the number of samples.

On the other hand, fitting in the L-domain requires not only (i) the

fitting in the L-domain but also (ii) the calculation of the finite

Legendre transform (fLT), and the rescaling of the parameters (see

Methods). The first step is much more time-consuming than (ii)

and (iii), but it is independent of the number of samples in the t-

domain. We analyzed this quantitatively and carried out both

fitting procedures for increasing numbers of experimental samples.

Under our conditions (Intel i7, 2.3 GHz, Python/Numpy),

fitting in the L-domain took less than 350ms=fit and was indeed

independent of sample size (Fig. 7, black dots), whereas fitting in

the t-domain was approximately 12 to 100 times slower for 1024 to

8192 samples, respectively (Fig. 7, black asterisks). In case the

recorded function y(t) is a convolution, y(t)~x(t) � r(t), fitting in

the t-domain takes approximately four times longer (Fig. 7, red

asterisks). This is because a convolution of the model function with

r(t) has to be carried out for each minimization step, as the direct

deconvolution of y(t) is often not practicable due to the

superimposed noise.

On the other hand, fitting the Legendre spectrum of

y(t)~x(t) � r(t) is almost as efficient as fitting x(t), since this

Figure 6. t- dependence of the required number of Legendre components. (a) Legendre spectra of noisy exponentials with t~0:9 (gray)
and t~0:3 (red). Shown are the average Legendre amplitudes obtained from 100 trials. Error bars, standard deviation of the respective component.
(b) Coefficient of variation of the components for the two spectra shown in a.
doi:10.1371/journal.pone.0090500.g006
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requires only one additional step, namely a matrix multiplication

(eq. 8). As this operation involves the samples size, the

computational cost increases accordingly, though rather moder-

ately (Fig. 7, red dots). The same applies to the computation of the

fLT itself, which took from 45ms (128 samples) to 210ms (8192
samples) for seven components.

Finally, the computational cost depends also on the initial

parameter values used. It turned out that calculating the Legendre

spectrum of the experimental outcome and solving the first three

lines of the system eq. 12 gives a first guess of the three parameters,

A,t, and offset, which can be used as starting values, also for the

fitting of double exponentials.

Double exponential decay
The analysis of double exponential decays is relevant in many

instances but unfortunatety, at least in many biological recordings,

the underlying molecular processes are non-stationary so that the

experiment cannot be repeated under identical conditions. A typical

situation is a decay curve from experimental data which at first

glance seems to be a double exponential and which needs to be

analyzed. However, when analyzed in t-domain and L-domain,

the same data usually give different results for the parameters as

shown in Fig. 8a and b. It was therefore indispensable to analyze

which of the two methods is superior in the sense that the resulting

parameters come closer to the true values. We therefore generated,

on the basis of two known amplitudes and time constants, a large

number (1000) of double exponentials, added Poisson and

gaussian noise as above, and fitted them in both the t- and L-

domain using the LMA in either domain. In addition to having the

resulting x2 values as a measure to judge the quality of fits, we also

used the individual errors et or eL as a measure of how much the

individual fitted parameter values deviated from the (known) true

ones at minimized x2. This way, the fitting result can be observed

separately for amplitudes and time constants.

As four parameters A1, A2, t1 and t2 have to be taken into

account now (rather than two as above), the corresponding terms

for A2 and t2 need to be added to eq. 14a and b, respectively.

Fig. 8c shows for the relevant range of t0s that the double

exponential fit in L-domain is more likely to give a better

approximation than the corresponding fit in t-domain, and Fig. 8d
shows how much the error in the t-domain differs from that in the

L-domain. We calculated, for either domain, the success rate ps of

the fit. ps was obtained as the frequency, with which the algorithm

results in two different amplitudes and time constants, while the

correponding failure rate, 1{ps, describes the cases, in which the

algorithm converges to only one time constant or where it does not

converge at all. The success rate ps for t1~0:2 (dashed vertical

line in Fig. 8c) is plotted in e. Clearly, for t2~0:6, both methods

converge to double exponentials in 100% of all trials. With

decreasing t2, however, the success rate decreases too, the

decrease being more pronounced in the t-domain (e, dashed). In

Fig. 8c,d we have marked the 50% and the 95% - thresholds of

the success rate by continuous or dashed lines, respectively. In

these regions, the probability pLt
of more accurate results in the L-

domain varied between 58:8% and 81:8% (ps~50%) and between

66:7% and 81:8% (ps~95%). Taken together, for the parameter

region where both ways of analysis (i.e., t-domain and L-domain)

are successful, the fitting results in the L-domain come, on the

average, closer to the true double exponential decay parameters.

Furthermore, the minimum ratio of t2=t1 that can be differen-

tiated is smaller for the fit in the L-domain (2:2 vs. 2:6).

Discussion

The method proposed herein consists of two steps, first the

deterministic transform of the signal into the L-domain, and

second, NLLSQ/LMA fitting of the lower Legendre components.

The major advantage of the method is the gain in analysis speed,

which is primarily brought about by the fact that the LMA is

applied to K Legendre components rather than to the N samples

in the t-domain, with KvvN. At the same time, the method

yields the accurate parameters with high precision, which is

essentially brought about by largely separating signal and noise in

the L-domain with subsequent parameter estimation from a

truncated Legendre spectrum.

The situation may be compared to a spectrally narrow-banded

signal buried in noise, e.g., a very faint radar or radio carrier

frequency, where the carrier can be detected in Fourier space or

by cross-correlation, because the noise power is small that falls into

the signal’s spectral range. Likewise, exponentials can be well

Figure 7. Computational cost of fitting in time - and Legendre -
domain. Dots and asterisks indicate the computational cost in
Legendre - and time - domain, respectively, on a logarithmic scale.
Black and red curves refer to whether (red) or not (black) a system
response function was taken into account. Each point or asterisk is the
average duration of 100 computations. As the analysis in the time -
domain is fastest when using the Fast Fourier Transform, we choose the
sample sizes to be powers of 2, starting with 256. Inset, left, FLIM image
of a mouse hippocampus neuron probed for oxidative stress using the
hydrogen peroxide sensor HyPer [13] and, right, fluorescence lifetime
function for one pixel in the middle of the cell (150 samples, data
courtesy K. Kizina and M. Müller, CNMPB, Göttingen).
doi:10.1371/journal.pone.0090500.g007
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detected in the L-domain, because the noise power that falls into

the lower components, where the signal is mapped, is low.

Legendre polynomials are important functions in many areas of

physics [4]. They are orthogonal on the interval [21,1] which

allows expansion of any function that is continuous on this interval

into its spectral Legendre components. The operation by which

the spectrum is obtained has been called Legendre transform (e.g.

[5,6]). Though this usage of the term appears straightforward, it is

ambiguous, since in the canonical language of physics and

chemistry, Legendre transformations are well-known and widely

used to express a function z(t) in terms of its derivative rather than

in terms of its independent variable t [7]. We therefore follow Jerri

[4] and Méndez-Pérez and Morales [6], and name the operation

by which the Legendre spectrum is obtained (eq. 4) finite Legendre

transform (fLT), in close analogy to the finite Fourier transform,

which is also carried out over a finite interval.

The Legendre spectra of a noisy exponential and its noise-free

variant differ in the amplitudes of their components. While the

higher components vary considerably with the noise in the time

function, the lower components contain little noise, so that

backtransforming them into the t-domain results in effective noise

removal. In analogy to conventional lowpass filtering in the

Fourier domain [8], this filter should be called Legendre lowpass.

Evidently, not only exponentials can be lowpass filtered this way.

We have, for instance, successfully checked this for the product of

two exponentials (Fig. 4), for bleaching time courses in LSM

imaging (not shown), and for fluorescence correlation spectroscopy

data, where, in the simplest case, the autocorrelation function

takes on the form g(t)~(N(1zt=tdiff )){1, N and tdiff being

constants (Fig. 1c). However, as this paper is concerned with

exponentials, we did not investigate which other classes of

functions can advantageously be Legendre lowpass filtered.

Apart from Legendre filtering, the lower Legendre components

can also be used to obtain the exponentials’ parameters by finding

the Legendre spectrum that fits best, in the least squares sense, the

fLT of the data. In practice this means that the LMA is applied to

the lower Legendre components of an experimental record (or our

simulation) using the correspondigly truncated and parameter-

dependent Legendre spectrum of a noiseless exponential as the

model. Prior to the actual fitting, an appropriate record length Tr

as well as a good guess of the A0s and t0s involved must be

determined. The cases t%Tr and t&Tr can be excluded for

analysis, because in either regime the samples considered carry too

little infomation about the exponential. Satisfactory fitting results

are obtained in the range 0:1vt=Trv1, and the ratio t=Tr^0:3
turned out to be the best choice. In a next step, we find a good

guess for the initial values A and t by comparing the Legendre

representation of an exponential with its Taylor series. Both

representations involve the powers of time, t0, t1, …, and the

comparison of the respective coefficients leads to a system of linear

equations, which allows calculating A and t from the Legendre

spectrum of the signal and the constant coefficients of the matrix P

of Legendre polynomials. Due to the noise in the signal’s Legendre

components and the finite size of the system (eq. 12), these values

for A and t are, of course, mere approximations, but as such they

are optimal starting values for the fitting procedure. (Obviously,

the same initial values A and t could also be used for least squares

fitting in the t-domain.)

Fitting in the L-domain is much faster than in the t-domain,

particularly if the exponentials under investigation are convolved

with a system response function (Fig. 7). The computaional costs

in time and L-domain correspond, in a good approximation, to

O(Nt) and O(NL), with Nt and NL being the number of values to

be fitted, respectively. This is highly relevant for time-sensitive

Figure 8. Double exponential decay analysis in time- and
Legendre-domain. (a,b) The interaction of Ru(II) complexes with DNA
(same as in in Fig. 1) shows double exponential decay([12], data
courtesy of F. Secco, Univ Pisa,I). Same data fitted in t- (a) and L-domain
(b). (c) Probability for the fitting error in the L-domain, eL, to be smaller
than that in the t-domain, et, represented as a function of t1 and t2 .
Color code of the probability is shown beneath the plot. For each pair
(t1,t2) 1000 trials were computed. (d) Relative difference of fitting
errors, (et{eL)=et, as a function of t1 and t2 . Color code beneath the
plot. 1000 trials per pixel. Left of the solid and dashed white lines in a
and b, the success rate of the fit in the L-domain is larger that 50% and
95%, respectively. Left of the solid and dashed black lines in c and d,
the success rate of the fit in the t-domain is larger that 50% and 95%,
respectively. Relative error differences were calculated only for
successful trials. (e) Success rate of fitting in the L-domain (solid) and
t-domain (dashed) along the vertical line in c, i.e., as a function of t2

with t1 kept at 0:2.
doi:10.1371/journal.pone.0090500.g008
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applications such as fluorescence lifetime imaging (FLIM) or in

patch clamp experiments.

In addition to being faster, the fits in the L-domain have the

same or a higher probability of giving the accurate paramters A
and t. Without importance weighting of the data, fitting in the L-

domain is always better (Fig. 5). Accordingly, fitting in the the L-

domain is also superior to earlier algorithms which either do not

converge as well as the LMA or are less precise than the LMA [9].

Regarding the comparisons of precision, a note of caution is

necessary. Whenever assumptions on measurement errors can be

made, an appropriate weighting should be chosen, since this

improves the estimation of the parameters. However, in cases with

little or no a-priori knowledge on measurement errors, optimal

weights cannot be found, and fitting in the L-domain is more

precise.

When analyzing double exponential decays, the probability for

obtaining better parameter approximations is always higher in the

L-domain. In addition, there is a range of the parameter space

where fitting in the L-domain still gives satisfactory estimates,

while the analysis in the t-domain fails to converge.

At the beginning of our study we also considered alternative

filtering methods such the wavelet transform, Chebychev or

Laguerre polynomials. However, the wavelet transform is slower

than the fLT and also more appropriate for a different kind of

signal, being defined in a given time and frequency window, while

the Chebychev and (associated) Laguerre polynomials, albeit

similar to the Legendre polynomials, are only orthogonal, when a

weighting function applying to the inner product, which makes

their use computationally less efficient.

Experimental outcomes often show an offset, which has to be

taken into account when using the LMA in the t-domain. In

Legendre space, the offset is simply added to the first component,

i.e., the first component of the Legendre fit gives the constant

amplitude plus the offset. A good guess for the offset can be

calculated from eq. 10, where three equations, which have to

include the first one, need to be solved to obtain estimates for the

offset as well as for A and t (the first equation then results in A plus

the offset).

Historically, Legendre appears to play a double role in

exponential fitting, since, apart from the fast parameter retrieval

described herein, he was the first to publish the idea of least

squares fitting in 1806 (though this method is mostly attributed to

Gauss, who claimed the first usage of it) [10].

Materials and Methods

Simulated data and rationale of their usage
To simulate a set of noisy exponentials having the same

amplitude and time constant, we first defined the amplitude A and

the time constant t for this set. We then calculated the exponential

x(t) and added Poisson noise to it. Where indicated, we also added

an offset and gaussian noise. We name the (noiseless) exponential

x(t) and the trials, which differ only in their noise, x(t). By

definition, we thus have a-priori knowledge of A, t, Ao, and x(t).
The sample size N was chosen to be 1000, except for the

comparison of computational costs.

Simulated data and thus the a-priori knowledge of A and t are

necessary, since we need to compare the fitting results in both the

t- and the L-domain with the real values of the parameters Atrue

and ttrue. On the one hand, the direct application of the LMA to a

noisy exponential x(t) (ie, LMA in the t-domain) yields specific

values At and tt, on the other, transforming the exponentials into

the L-domain and applying the LMA to the lower components of

the Legendre spectrum gives values AL and tL. Thus, for every

generated noisy curve we get four parameters At, tt, AL and tL.

The ratios Ai/Atrue, ti/ttrue, i meaning t or L, tell by which factor

the fitted values deviate from the real parameters. A ratio of 1, for

instance, indicates a perfect fitting result. Finally, plotting the

probability density functions of the deviations reveals accuracy and

precision of the fits in the t- and the L-domain (Fig. 2).

Legendre polynomials and finite Legendre transform
(fLT)

Legendre polynomials result from the orthogonalization of the

powers 1, t, t2, … leading to

Pn(t)~
1

2nn!

dn

dtn
(t2{1)n ð1Þ

with P0(t)~1. From this we have a recursive definition

Pnz1(t)~
1

nz1
f(2nz1)tPn(t){nPn{1(t)g ð2Þ

with P0(t)~1 and P1(t)~t. The first five Legendre polynomials

are given by

P0(t) ~1

P1(t) ~t

P2(t) ~
1

2
(3t2{1)

P3(t) ~
1

2
(5t3{3t)

P4(t) ~
1

8
(35t4{30t2z3)

ð3Þ

and plotted in the Fig. S1.

Legendre polynomials are an orthogonal set of functions on the

interval [21,1], so that any function x(t) defined and continuous

on this interval can be transformed into its Legendre spectrum by

using the finite Legendre transform (fLT),

Lx(k)~
2kz1

N

Xt~1

t~{1

x(t):Pk(t) ð4Þ

In our case, t is a discrete variable assuming N values between

21 and 1. The factor (2kz1)=N is a normalization factor.

The time function x(t) can be regained from its Legendre

spectrum Lx(k) by the inverse fLT (ifLT),

x(t)~
Xk~kmax

k~0

Lx(k):Pk(t) ð5Þ

Alternatively, one might consider to use the shifted Legendre

polynomials [11], which are defined as P�k~Pk
:(2x{1) and

orthogonal on the interval [0,1]. While this leads to the same

results, it is computationally inconvenient, because the factor

(2x{1) needs to be taken into account in a number of operations.

Legendre spectrum of exponentials
Let us consider a class of stochastic processes x(t) characterized

by the parameters A and t as well as by non-stationary means

gx(t)~A:et=t, and Poisson-noise fluctuations.
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We conveniently represent the respective experimental out-

comes, i.e., the realizations x(t) of such a process, in the space of

Legendre polynomials Pn. While the fLT Lx of x(t) is a sequence

of random variables Lx(k)~fLx(0),:::,Lx(k),:::g, the fLT of any

particular realization x(t) of x(t) gives a specific Legendre

spectrum, Lx~fLx(0),:::,Lx(k),:::g, i.e., the coefficients of a

linear combination of Legendre polynomials.

The first practical step of data analysis is to map the time

inverval of the experimental results onto the interval [21,1], i.e.,

we redefine the time axis so that the exponentials are spanned over

[21,1] rather than over ½0,Tr�, Tr being the time of the last

sample.

In a second step we calculate the components Lk(x) of the the

Legendre spectrum (eq. 4).

In cases, where an experimental output y(t) is the convolution

of an exponential x(t) and a device response r(t), y(t)~x(t) � r(t),
we can express y(t) as

y(t)~
X

LiPi

� �
� r(t), ð6Þ

whereby the Li are the unknown Legendre spectrum components

of the noisy exponential to be found. This equation can be

rewritten in terms of a matrix PT
r consisting of the transposed

Legendre polynomials each convoluted with r(t)

y(t)~ PT
r

� �
(L), ð7Þ

with L being the vector of (unknown) Legendre coefficients of the

pure, non-convoluted exponential x(t) recorded. Using the

pseudoinverse of PT 0
r , we obtain

L~ PT 0
r

� �
y(t): ð8Þ

The pseudoinverse and the resulting Legendre components L of

the experimental outcome y(t) are calculated once only, prior to

fitting (A,t) - dependent Legendre components to the experimental

spectrum. With increasing sample size the calculation of L

increases accordingly (Fig. 7).

From the inverse transform of the vector L of Legendre

coefficients, an approximation of the non-convoluted exponential

can be obtained.

Direct retrieval of amplitudes and time constants from
Legendre components

The finding that the first spectral Legendre components are

virtually identical for noisy and pure exponentials with the same

parameters suggests a third and analytical way of obtaining A and

t. We start out with the Taylor series of an exponential,

Ae{t=t~A
X?
n~0

1

n!

{t

t

� �n

~A{
A

t
tz

1

2!

A

t2
t2{

1

3!

A

t3
t3

z
1

4!

A

t4
t4{

1

5!

A

t5
t5z

1

6!

A

t6
t6

ð9Þ

and represent the same exponential by the superposition of

Legendre polynomials

Ae{t=t~L(0)P0(t)zL(1)P1(t)zL(2)P2(t)z:::zL(6)P6(t)z:::

~L(0)zL(1)tzL(2)
1

2
(3t2{1)zL(3)

1

2
(5t3{3t)

zL(4)
1

8
(35t4{30t2z3)zL(5)

1

8
(63t5{70t3z15t)

zL(6)
1

16
(231t6{315t4z105t2{5) ð10Þ

After rearranging with respect to the powers of t, i.e.,

Ae{t=t~ fL(0){L(2)z
3

8
L(4){

5

16
L(6)g

ztfL(1){
2

3
L(3)z

15

8
L(5)g

zt2f3
2

L(2){
30

8
L(4)z

105

16
L(6)g

zt3f5
2

L(3){
70

8
L(5)g

zt4f35

8
L(4){

315

16
L(6)g

zt5f63

8
L(5)g

zt6f231

16
L(6)g

ð11Þ

a coefficient comparison with the Taylor series (9) gives

1 0 {1 0
3

8
0 {

5

16

0 1 0 {
3

2
0

15

8
0

0 0
3

2
0 {

30

8
0

105

16

0 0 0
5

2
0 {

70

8
0

0 0 0 0
35

8
0 {

315

16

0 0 0 0 0
63

8
0

0 0 0 0 0 0
231

16

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

L(0)

L(1)

L(2)

L(3)

L(4)

L(5)

L(6)

~

A

{
A

t
1

2

A

t2

{
1

6

A

t3

1

24

A

t4

{
1

120

A

t5

1

720

A

t6

or

P7 L7~T7, ð12Þ

where the index indicates the cut-off, P stands for the matrix of

Legendre polynomial coefficients, L for the truncated Legendre

component vector, and T for the vector of Taylor series

coefficients. In case the exponential tends to an offset value Ao,

x(t)?Ao for t??, Ao adds to the first term of the Taylor series

and, consequently, to L(0)

Taken together, the analytically derived equation 12 relates, for

a given order, the Legendre components of an exponential to its

paramters A and t. This is useful because it gives a good guess for

A and t from the lower Legendre components.
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Fitting errors
As every fitted exponential x(t) depends on A and t,

x(A,t)~Ae{ti=t, the resulting error of each value xi can easily

be obtained from Gauss’ error propagation, i.e.,

xið Þ2 ~
dxi

dA
A

� �2

z
dxi

dt
t

� �2

[
xi

xi

� �2

~
dA

A

� �2

z
dt

t

� �2
ti

t

� �2

:

ð13Þ

The total errors of a fit in the L- or the t-domain, eL or et, are

thus

eL~
XN

i~1

xi

xi

� �2

L

~N
dAL

A

� �2

z
dtL

t

� �2XN

i~1

ti

t

� �2

ð14aÞ

et~
XN

i~1

xi

xi

� �2

t

~N
dAt

A

� �2

z
dtt

t

� �2XN

i~1

ti

t

� �2

: ð14bÞ

Scaling
If a function is to be fitted in Legendre space, it has to be scaled

to the time interval [21,1],

x(t)~AozA e{t=t,{1ƒtƒ1

where Ao is an offset of the exponential. Prior to fitting this does

not require any computation as we may assume the function’s first

and last value to occur at t~{1 and at t~1 rather than at t~0
and t~Tr. After fitting, the time scaling factor 2=Tr is needed to

obtain the real time constants tr. Likewise, the amplitude needs to

be rescaled by the factor e1=t, since, on the interval [21,1], the real

amplitude Ar is the value at t~{1, while the fit gives the

amplitude value A at the scaled time t~0. The exponential in the

t-domain,

x(tr)~AozAr e{tr=tr ,0ƒtƒTr

can thus be obtained by

tr~
Tr

2
(tz1)

tr~
Tr

2
t

Ar~ A e1=t

Ao~ L0{A

ð15Þ

Software
All calculations were carried out in Python/numpy/C. The code

used in this paper, in particluar filtering routines, fitting routines, the

Legendre polynomials, the fLT, ifLT, are available at the public

‘‘python package index’’ repository (https://pypi.python.og/pypi),

and on our website (https://www.ukmn.gwdg.de/).

Supporting Information

Figure S1 Legendre polynomials. Shown are the first five

Legendre polynomials, their order being indicated at the respective

curve.

(TIF)

Figure S2 Signal and noise in time- and Legendre-domain.
(a) Exponential of known amplitude and time constant. b) Legendre

spectrum of (a). c) Poisson noise corresponding to the amplitude of the

exponential in (a) and d) its Legendre transform. e) Stationary gaussian

noise and f) its Legendre transform. g) Noisy exponential, superpo-

sition of (a), (c), and (e), the latter showing gaussian noise with mean

Ao~5 and standard deviation s~1:5. The mean simulates the offset

of the measurent. h) Legendre transform of (g). For the comparison of

methods, the LMA is applied in both domains, and the respective

results are compared to the known parameters of the simulated data.

At, tt, AL, and tL are estimates of the true values Atrue, ttrue, which, in

the following, we call for short A and t.

(EPS)
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11. Abramowitz M, Stegun IA (1965) Handbook of Mathematical Functions. Dover.

12. Bazzicalupi C, Biagini S, Bianchi A, Biver T, Boggioni A, et al. (2010) DNA
interaction with Ru(ii) and Ru(ii)/Cu(ii) complexes containing azamacrocycle

and dppz residues. a thermodynamic, kinetic and theoretical study. Dalton
Trans 39: 9838–9850.

13. Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, et

al. (2006) Genetically encoded uorescent indicator for intracellular hydrogen
peroxide. J Chem Phys 3: 281–6.

Fitting and Filtering in Legendre Space

PLOS ONE | www.plosone.org 11 March 2014 | Volume 9 | Issue 3 | e90500

∆ ∆ ∆

∆

∆

∆

https://pypi.python.og/pypi
https://www.ukmn.gwdg.de/

