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Non-normal transient growth of disturbances is considered as an essential prerequisite
for subcritical transition in shear flows, i.e. transition to turbulence despite linear
stability of the laminar flow. In this work we present numerical and analytical
computations of linear transient growth covering all linearly stable regimes of Taylor–
Couette flow. Our numerical experiments reveal comparable energy amplifications in
the different regimes. For high shear Reynolds numbers Re, the optimal transient
energy growth always follows a Re2/3 scaling, which allows for large amplifications
even in regimes where the presence of turbulence remains debated. In co-rotating
Rayleigh-stable flows, the optimal perturbations become increasingly columnar in
their structure, as the optimal axial wavenumber goes to zero. In this limit of
axially invariant perturbations, we show that linear stability and transient growth are
independent of the cylinder rotation ratio and we derive a universal Re2/3 scaling
of optimal energy growth using Wentzel–Kramers–Brillouin theory. Based on this,
a semi-empirical formula for the estimation of linear transient growth valid in all
regimes is obtained.
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1. Introduction
The flow of viscous fluid between two coaxial independently and uniformly rotating

cylinders, Taylor–Couette flow, is a paradigmatic system to study the stability and
dynamics of rotating shear flows. For simplicity, we assume here that the system is
infinite in the axial direction so that the annular geometry is uniquely determined by
the dimensionless radius ratio η of the inner and outer cylinders. A sketch of the
Taylor–Couette system is shown in figure 1(a).

The laminar Couette flow is determined by the inner and outer Reynolds numbers
Rei and Reo, which are proportional to the rotation frequencies of the cylinders,
Ωi and Ωo, respectively (see figure 1a). It is well known that the stability of
Couette flow not only depends on the magnitudes of Rei and Reo, but also changes
qualitatively with their ratio. In particular, Couette flow is stable to infinitesimal
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FIGURE 1. (Colour online) (a) Sketch of the studied Taylor–Couette geometry. A viscous,
incompressible fluid is confined between two coaxial independently rotating cylinders. The
system is assumed to be infinite in the axial direction. (b) Taylor–Couette flow regimes in
the Rei–Reo plane following the parametrization of Dubrulle et al. (2005) (η= 0.5). The
rotation number RΩ uniquely determines the regimes I to IV, whereas the shear Reynolds
number gives the magnitudes of Rei and Reo, as visualized in the plot (annotated RΩ
values correspond to the regime boundary lines; see table 1 for details). The laminar flow
is linearly stable/unstable below/above the stability boundary.

inviscid disturbances if and only if the fluid particles’ angular momentum increases
in the radial direction. This result is known as Rayleigh’s criterion (Rayleigh 1917).
Consequently, inviscid instabilities solely depend on the ratio Rei/Reo. Throughout
this work, the term Rayleigh (un)stable is used to refer to the stability of Couette
flow to inviscid disturbances. For viscous disturbances, there is a complex interplay
of shear and centrifugal mechanisms determining the stability of the laminar flow
(solid curve in figure 1b). Herein we use the expression linearly (un)stable to refer
to the viscous case. In an attempt to separate the different effects that govern viscous
stability, we adopt the parametrization introduced by Dubrulle et al. (2005), using
shear Reynolds number Re and rotation number RΩ to parametrize the Rei–Reo plane
(see figure 1b). As the name suggests, Re∼Ωo −Ωi is a measure for the (absolute)
shear in the flow, whereas RΩ depends solely on the ratio Ωo/Ωi.

In the Rayleigh-stable regimes I and II in figure 1(b), the flow is also linearly
stable. The remaining regimes III and IV are Rayleigh-unstable. Here viscosity has
a stabilizing effect and the laminar flow first develops linear instabilities at finite
non-zero Reynolds numbers. These already appear at moderate Re = O(102–103),
except when approaching the boundaries of regimes I and II (Taylor 1923). Indeed,
the viscous linear stability boundary in figure 1(b), determined from our numerical
eigenvalue computations, shows that regime IV contains a relatively large range of
moderate Reynolds numbers (Reo, Rei) just above the Reo axis, in which the viscous
laminar flow is linearly stable. Note that Rei= 0 defines the boundary to regime I, as
the sign of Reo is irrelevant here. In contrast, the region of linear stablity in III turns
out to be negligibly small. Therefore, this regime is not studied in the present work,
as the focus lies on linearly stable flows.

We subdivide the Rayleigh-stable regime according to the angular velocity profile
ΩB of the base flow. The quasi-Keplerian regime II is characterized by ∂rΩ

B < 0,
i.e. radially decreasing angular velocity, whereas regime I is defined by a positive
gradient, ∂rΩ

B > 0. In figure 1(b) these domains are separated by the solid-body line
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given by Rei = ηReo. Because of the absence of shear, for these configurations ΩB

is constant, corresponding to a solid-body rotation flow profile. The transition from
regime II to III defines the Rayleigh line where Rayleigh’s stability criterion ceases
to be fulfilled and a centrifugal (linear) instability of the laminar flow emerges. In
experiments, this results in the formation of a new stationary flow, characterized by
the famous toroidal Taylor vortices (Taylor 1923). Similar instabilities and associated
patterns occur in the counter-rotating regime IV above the linear stability boundary
plotted in figure 1(b). For moderate Re, very good agreement between this theoretical
curve and experimentally observed instabilities has been achieved.

However, similarly to plane Couette and Poiseuille flow (cf. Davey 1973; Romanov
1973; Drazin & Reid 1981), certain Taylor–Couette flows may undergo subcritical
transition to turbulence in the absence of unstable eigenvalues. This phenomenon has
been observed both by Coles (1965) in the Rayleigh-unstable counter-rotating regime
IV as well as by Wendt (1933) and Taylor (1936) for a stationary inner cylinder (i.e.
at the lower boundary of the Rayleigh-stable regime I; see figure 1b). Recent studies
by Borrero-Echeverry & Schatz (2010) have confirmed the rapid lifetime increase
of turbulent spots with the Reynolds number in the latter setting. Hence, we may
infer the existence of subcritical turbulence within regime I in spite of the lack of
experimental and numerical data for such flows.

On the other hand, the existence of turbulence remains controversial in the equally
Rayleigh-stable quasi-Keplerian regime II (Yecko 2004; Ji et al. 2006; Balbus 2011;
Paoletti & Lathrop 2011). As the name suggests, these flows are of great importance
in modelling astrophysical objects with Keplerian velocity profiles, such as accretion
disks (for details, see Pringle (1981)). However, endcap effects render this regime
difficult to explore experimentally. In fact, Avila (2012) has shown state-of-the-art
Taylor–Couette apparatus to be possibly unsuited to adequately produce the respective
flow fields at the required Reynolds numbers. Based on Re bounds derived from
a variational formulation of the stability problem, Busse (2007) conjectured that
turbulence cannot exist in the quasi-Keplerian regime. Yet, this result is predicated on
the hypothesis that the extremizing vector fields are independent of the streamwise
coordinate. To the best of our knowledge, there is no general proof ruling out the
existence of turbulence in the literature.

Whether linear or nonlinear, stability analysis boils down to the evolution of initial
perturbations to a stationary state. For stationary flows, the development of the
perturbation energy is given by the Reynolds–Orr equation, which is valid for both
fully nonlinear and linearized dynamics (Schmid & Henningson 2001). Remarkably,
this implies that nonlinear instabilities may exist only if the linearized Navier–Stokes
equations have solutions that grow in energy, i.e. transition requires linear growth.

At first glance, this theory seems contradictory to subcritical transition being a
manifestation of nonlinear instability despite linear stability. However, the apparent
paradox is resolved by the non-normality of the linearized Navier–Stokes operator,
i.e. the non-orthogonality of its eigenmodes (Kato 1995). This potentially allows for
transient growth of infinitesimal perturbations (Boberg & Brosa 1988; Trefethen et al.
1993), i.e. temporary energy growth even in the case of linear stability (as illustrated,
for example, by Grossmann (2000)). As in other flow geometries, the non-normality
of the Taylor–Couette operator grows with the shear Reynolds number Re, so that
the maximum energy amplification, Gmax, may reach several orders of magnitude at
sufficiently large Re (Reddy & Henningson 1993). For instance, numerical simulations
by Yecko (2004) of the rotating plane Couette geometry showed an asymptotic scaling
of Gmax ∼ Re2/3 for one quasi-Keplerian flow configuration in the limit Re→∞.
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Hristova et al. (2002) and Meseguer (2002) were the first to study transient
growth in the Taylor–Couette system. Both studies investigate counter-rotating
flows. The former focuses on the growth behaviour of a single axisymmetric
mode, whereas the latter computes optimal linear energy amplifications at the
subcritical stability boundary ReT(RΩ) measured by Coles (1965). Most prominently,
Meseguer (2002) partly observes a strong correlation and finds a sharp threshold
value Gmax,T = 71.58 ± 0.16 for relaminarization in the experiments. These results
reinforce the potential significance of non-normal growth in subcritical transition.

This article is concerned with transient growth in all regimes of linearly stable
Taylor–Couette flows, identifying universal properties, especially in the limit of
high Reynolds numbers. After briefly presenting the governing equations of the
Taylor–Couette problem and our numerical formulation in §§ 2 and 3, we discuss
some tests of the method and numerical issues of transient growth computations
in § 4. In § 5 the main numerical results for the asymptotic scaling Gmax ∼ Reα of
optimal transient growth and the corresponding optimal perturbations are presented.
Furthermore, a semi-empirical formula for the estimation of Gmax by Re and the
cylinder radius ratio η is obtained. The latter is revealed to be universal by
the analytical results for axially independent perturbations derived in § 6. For
such disturbances we further verify the characteristic scaling Gmax ∼ Re2/3 via
a Wentzel–Kramers–Brillouin (WKB) approximation to the linearized evolution
equations in § 7. In the final section, § 8, we discuss our results and draw some
conclusions concerning subcritical instability.

2. The linearized Taylor–Couette problem
2.1. Principal equations

We consider an incompressible Newtonian fluid with kinematic viscosity ν confined
between two coaxial independently rotating cylinders with radii r′i < r′o that are
infinite in the axial direction. The annular geometry and its governing parameters
are visualized in figure 1(a). Non-dimensionalized with the gap width d := r′o − r′i as
length scale, viscous time ν−1d2 and the pressure scale ν−2d2, the system is governed
by the dimensionless incompressible Navier–Stokes equations and continuity equation

∂tv =−(v · ∇)v −∇p̃+1v, (2.1a)
∇ · v = 0, (2.1b)

where p̃ is the reduced pressure and v is the velocity field of the fluid.
The independent variables are the viscous time t and the spatial vector x

parametrized in cylindrical coordinates x=: (r, ϕ, z)T (see figure 1a). The dimensionless
geometry parameters are given by ri := r′id

−1, ro := r′od−1 and the radius ratio η := rir−1
o .

Let Ωi and Ωo be the (constant) angular velocities of the inner and outer cylinder,
respectively. Defining the inner and outer Reynolds numbers Rei := (d/ν)r′iΩi and
Reo := (d/ν)r′oΩo, the no-slip boundary conditions at the inner and outer cylinder
walls read

v|r=ri = Reieϕ and v|r=ro = Reoeϕ, (2.2)

where er=: (1, 0, 0)T, eϕ =: (0, 1, 0)T and ez=: (0, 0, 1)T denote the orthonormal radial,
azimuthal and axial unit vectors. The unusual appearance of the Reynolds number in
the boundary conditions is due to the non-dimensionalization with the viscous time
scale d2/ν.
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A well-known solution of the boundary value problem (2.1) and (2.2) is laminar
Couette flow (vB, p̃B), given by

vB =
(

Ar+ B
r

)
eϕ and p̃B = 1

2
A2r2 + 2AB ln(r)− B2

2r2
, (2.3a)

A := Reo − ηRei

1+ η and B := η(Rei − ηReo)

(1− η)(1− η2)
. (2.3b)

In order to investigate its stability, equations (2.1) are linearized about (vB, p̃B),
yielding the linearized Navier–Stokes equations for the evolution of an infinitesimally
small perturbation (ũ, q̃):

∂tũ=−(vB · ∇)ũ− (ũ · ∇)vB −∇q̃+1ũ, (2.4a)
∇ · ũ= 0, (2.4b)

ũ|r=ri = ũ|r=ro = 0. (2.4c)

By a Fourier ansatz in the azimuthal and axial coordinates ũ(r, ϕ, z) := u(r)ei(nϕ+kz),
q̃(r, ϕ, z) := q(r)ei(nϕ+kz) for k ∈R, n ∈Z, the evolution equation can be written as

∂tu=L u−∇cq. (2.5)

Herein a subscript c for an operator T denotes the conjugate with ei(nϕ+kz), i.e. Tc :=
e−i(nϕ+kz)T ei(nϕ+kz). The operator L is given by (Meseguer 2002)

L u=−(vB · ∇)cu− (u · ∇)vB +1cu=:



Lrr Lrϕ 0
Lϕr Lϕϕ 0

0 0 Lzz






ur
uϕ
uz


 , (2.6a)

Lrr =Lϕϕ =Lzz − 1
r2
=D+D − n2 + 1

r2
− k2 − in

r
vB
ϕ ,

Lrϕ = 2
r
vB
ϕ −

2in
r2
,

Lϕr = 2in
r2
−D+vB

ϕ , (2.6b)

with the abbreviations D := ∂r and D+ := ∂r+ 1/r. The domain of admissible velocity
fields u= (ur, uϕ, uz)

T in (2.5) is the twice continuously differentiable subspace

V := {v ∈H3 ∩C 2((ri; ro)) : v(ri)= v(ro)= 0, ∇c · v = 0} (2.7)

of the Hilbert space H3. Here we define H :=L2((ri; ro)) with the inner product

〈·, ·〉 :H×H→C, (q1, q2) 7→
∫ ro

ri

q∗1q2 rdr, (2.8)

where the superscript ∗ denotes the conjugate transpose of a scalar, vector or matrix.
For simplicity, we likewise denote the canonical inner product in H3, (u1, u2) 7→
〈u1,r, u2,r〉+ 〈u1,ϕ, u2,ϕ〉+ 〈u1,z, u2,z〉, by 〈·, ·〉. The induced norm squared ‖u‖2 := 〈u,u〉
is proportional to the total kinetic energy of a perturbation u and is therefore denoted
as the energy norm.
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Regime I Regime II Regime III Regime IV Solid-body line Rayleigh line

RΩ ∈
(

1− η
η
;∞
)
(−∞;−1) (−1; η− 1)

(
η− 1; 1− η

η

)
{±∞} {−1}

TABLE 1. Parametrization of the Taylor–Couette flow regimes by the rotation number RΩ
as visualized in figure 1(b); lines of constant RΩ are axes meeting in the origin.

A modal ansatz in the time coordinate t, i.e. u := uλeλt and q := qλeλt for λ ∈ C
yields the eigenvalue problem

λuλ =L uλ −∇cqλ, (uλ, qλ) ∈V×H. (2.9)

For the axisymmetric case n = 0, DiPrima & Habetler (1969) have shown the
discreteness of the eigenvalues {λ} and completeness of the corresponding generalized
eigenfunctions in V. If we assume that this remains true for n 6= 0, then the laminar
Couette flow (2.3) is linearly stable if and only if all eigenvalues of (2.9) have
negative real parts.

2.2. The parameter space for transient growth
In addition to the experimental parameters Rei, Reo and η, the evolution problem (2.5)
depends on the azimuthal and axial wavenumbers n and k. Owing to the cylindrical
symmetry of the Taylor–Couette geometry, the parametric analysis may be confined to
Rei, n, k > 0 (for details, see Meseguer & Marques (2000)). The parameter η ∈ (0, 1)
determines the curvature of the system and thus the rotational influence. The limit
η→ 1 corresponds to plane Couette flow as demonstrated with respect to transient
growth by Hristova et al. (2002), whereas η→ 0 implies infinite curvature at the inner
cylinder wall.

For reasons discussed in §1, we introduce the shear Reynolds number Re and the
rotation number RΩ . Assuming Rei > 0 and Rei 6= ηReo, the mapping (Rei, Reo) 7→
(Re, RΩ) is one-to-one so that the flow parameters A and B can be expressed via Re
and RΩ :

Re := 2|ηReo − Rei|
1+ η and RΩ := (1− η)(Rei + Reo)

ηReo − Rei
, (2.10a)

A= sgn(RΩ)Re
2

(RΩ + 1) and B=−sgn(RΩ)ηRe
2(1− η)2 . (2.10b)

The parametrization of the different Taylor–Couette flow regimes in figure 1(b) by RΩ
is summarized in table 1. As can be seen from (2.10b), only the parameter A, which
governs the solid-body rotation part ∝Ar of the base flow (see (2.3a)) depends on the
rotation number RΩ . The shear term ∝B/r is independent of RΩ modulo sign, which
will be essential for the results of §§ 6 and 7. On the other hand, we have A,B∝Re,
so that the shear Reynolds number determines the overall magnitude of the flow.

Computing the commutator of the operator L given by (2.6) with its adjoint L ∗,
[L ∗,L ]=O(Re2), reveals its non-normality, scaling with the shear Reynolds number.
The eigenspaces are therefore non-orthogonal to one another (Kato 1995), which
potentially allows for significant transient growth at large Re. Detailed discussions of
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n= 0, k= 0 n= 0, k 6= 0 n 6= 0, k= 0 n 6= 0, k 6= 0

u1
m :=




0
hm
0







0
hm
0






−ingm
D(rgm)

0






−ingm
D(rgm)

0




u2
m :=




0
0

hm






−ikrgm

0
D+(rgm)







0
0

hm







0
−ikrhm

inhm




TABLE 2. Spectral basis functions for m∈N used for the discretization of the eigenvalue
problem (2.9) via (3.1) and (3.3) according to Meseguer et al. (2007).

this mechanism can be found in Grossmann (2000) and Schmid & Henningson (2001,
pp. 99–101).

As a consequence, initial perturbations u(0) may temporarily grow in energy before
they ultimately decay – even if L has only stable eigenvalues λ ∈C with Re(λ) < 0.
The maximum transient growth at time t > 0 is given by G(t) := sup‖u(0)‖=1 ‖u(t)‖2.
The evolution of u may be written as a linear equation of the form ∂tu= L̃ u (where,
strictly speaking, L̃ 6=L due to the remaining pressure dependence in (2.5)). Thus
G can be expressed using the operator norm (Trefethen et al. 1993):

G(t) := sup
‖u(0)‖=1

‖u(t)‖2 = sup
‖u(0)‖=1

‖ exp(L̃ t)u(0)‖2 = ‖ exp(L̃ t)‖2. (2.11)

If ‖ · ‖ denotes the energy norm, G(t) is equal to the greatest kinetic energy
amplification that an initial perturbation u(0) ∈V can attain at time t > 0.

For a Taylor–Couette flow configuration given by the parameters Rei, Reo and η,
the optimal transient growth is defined by Gmax := supt,n,k G(t). A perturbation u with
‖u(0)‖= 1 is called optimal if ‖u(t)‖2=Gmax for some t > 0. Note that Gmax is finite
if and only if all eigenvalues of L̃ are stable.

3. Numerical formulation and implementation
3.1. The Galerkin method

The eigenvalue problem (2.9) is numerically solved using a Galerkin method. The
implementation is similar to the Petrov–Galerkin method described by Meseguer
& Marques (2000) and Meseguer et al. (2007), but based on Legendre rather than
Chebyshev polynomials so that trial and projection basis are identical.

The basis choice is U := {uj
m}j=1,2

m∈N0
, where u1

m and u2
m are defined according to table 2

for different wavenumbers n and k. The functions hm and gm are given by

hm(r) := r(1− x2)Lm(x) and gm(r) := r(1− x2)2Lm(x) for r ∈ [ri; ro], (3.1)

where Lm is the Legendre polynomial of degree m and x := 2r − (1 + η)(1 − η)−1.
Then every uj

m satisfies both the continuity condition ∇c · uj
m = 0 and the boundary

conditions by definition, since we have by construction

hm(ri)= hm(ro)= gm(ri)= gm(ro)= g′m(ri)= g′m(ro)= 0. (3.2)
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The problem is discretized by truncating U at the polynomial resolution N ∈ N,
i.e. defining UN := {uj

m}j=1,2
m<N , and expanding possible solutions uλ to the eigenvalue

problem (2.9) in terms of UN , uλ :=
∑

m<N, j=1,2 aj
muj

m. Plugging this ansatz into (2.9)
and projecting on some ui

l yields

λ
∑

m<N
j=1,2

〈ui
l, uj

m〉aj
m =

∑

m<N
j=1,2

〈ui
l,L uj

m〉aj
m − 〈ui

l,∇cq〉︸ ︷︷ ︸
= 0

. (3.3)

The pressure terms vanish due to the boundary and divergence conditions.
Thus, equations (3.3) for all l<N, i= 1, 2, can be written in the form of a 2N× 2N

generalized eigenvalue problem

λGa= Ha with G := (〈ui
l, u j

m〉), H := (〈ui
l,L uj

m〉) (3.4)

for the coefficient vector a := (a1
0, . . . , a1

N−1, a2
0, . . . , a2

N−1)
T, where G and H are 2N×

2N matrices, with G being Hermitian positive definite (Meseguer & Marques 2000).

3.2. Computation of transient growth
Now let Q := {q1, . . . q2N} be the eigenfunctions corresponding to the eigenvalues
λ := {λ1, . . . λ2N} and eigen- (coefficient) vectors {a1, . . . a2N} solving the generalized
eigenvalue problem (3.4). Consider some perturbation expanded in Q, i.e. u =∑2N

i=1 biqi, where b = (b1, . . . , b2N)
T denotes the time-dependent coefficient vector.

Since the qi are (approximate) solutions to the eigenvalue problem (2.9), it follows
that

b(t)= exp(diag(λ)t)b(0), (3.5)

where diag(λ) denotes the diagonal matrix constructed from λ and exp is the matrix
exponential. Thus the evolution of the perturbations kinetic energy reads

‖u‖2 = 〈u, u〉 =
2N∑

i,j=1

b∗i bj〈qi, qj〉 = b∗Mb= ‖Fb‖2
2 = ‖F exp(diag(λ)t)b(0)‖2

2. (3.6)

Here M is the Hermitian positive definite Gramian matrix M := (〈qi, qj〉), M = F ∗F is
a Cholesky decomposition and ‖ · ‖2 denotes the standard 2-norm on C2N . Hence, the
maximum transient growth at time t > 0 is given by (see Meseguer 2002)

G(t) = sup
‖u(0)‖=1

‖u(t)‖2 = sup
‖Fb‖2=1

‖F exp(diag(λ)t)b‖2
2

v=Fb= sup
‖v‖2=1

‖F exp(diag(λ)t)F−1v‖2
2 = ‖F exp(diag(λ)t)F−1‖2

2. (3.7)

So G(t) is equal to the squared maximum singular value σ 2
0 of F exp(diag(λt))F−1.

Moreover, if v0 denotes the corresponding right-singular vector, Fv0 is the initial
Q-coefficient vector of a perturbation that attains optimal transient growth at time t.
By means of singular value decomposition, we thus obtain both maximum transient
growth G(t) and corresponding perturbations in the finite-dimensional subspace
spanned by Q. This yields a lower bound to the maximum attainable by arbitrary
initial conditions in V. As discussed in § 4.2 we find convergence of this estimate to
the total maximum.
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3.3. Outline of the code
By definition of UN only integrals over polynomial functions have to be evaluated in
order to calculate G and H. Hence, these are computed exactly using Gauss–Legendre
quadrature with Gauss–Lobatto collocation points of degree M, where M > N + 6
(see Canuto et al. 2006, pp. 69ff.). Moreover, the derivatives in the operator L are
implemented by means of the corresponding differentiation matrices given in Canuto
et al. (2006, p. 76).

The code used in this work is based on the scientific computing package Scipy
for the interactive language Python. The linear algebra algorithms are provided
by the package Scipy.Linalg based on the standard ATLAS, LAPACK and BLAS
implementations.

The optimization of G in the time coordinate t ∈ [0; tcut] and in the continuous
wavenumber k ∈ [0; kcut] are performed via the Scipy.Optimize implementation of
Brent’s method (for details, see Press et al. (2007, sec. 9.3)). With respect to the
discrete wavenumber n∈ {0, 1, . . . , ncut}, G is optimized by brute force. If the optimal
transient growth is found at the upper boundary of the considered domains, i.e. for
t = tcut, k = kcut or n = ncut, the respective intervals are enlarged in subsequent steps
until a local maximum is located in their interior.

4. Numerical issues
In this section, the performance of the numerical implementation presented in

§ 3 is tested by comparison to results in the literature. Furthermore, eigenvalue and
transient growth convergence are studied for test cases in order to justify the choice
of polynomial resolution N used to obtain the numerical results in § 5. We find that
the optimal transient growth may converge without the Y-shaped spectrum being
properly resolved. This observation suggests a minor significance of the spectrum in
transient growth computations, disagreeing with the conclusions drawn by Reddy &
Henningson (1993) for channel flows.

4.1. Eigenvalue decomposition
Our discretization of the eigenvalue problem (2.9) has been tested against the results
on eigenvalue-critical Reynolds numbers presented in Krueger, Gross & DiPrima
(1966, table 2) as well as by replication of the plotted spectra given by Gebhardt &
Grossmann (1993, figure 3a–d). Agreement within the respective accuracies has been
found. Additionally, we have compared our Galerkin method to the Petrov–Galerkin
scheme of Meseguer et al. (2007). No significant deviations are found between the
converged spectra.

For these methods we study the convergence of the approximated least stable
eigenvalue λN

1 as the number N of Legendre or Chebyshev polynomials is increased.
In figure 2 the relative errors |λN

1 − λNref
1 ||λNref

1 |−1 compared to (converged) reference
values λNref

1 are plotted against N. The test parameters are RΩ = −2, η = 0.5, n = 5
and k= 1 at shear Reynolds numbers Re= 8000 for figure 2(a) and Re= 128 000 for
figure 2(b).

The plots in figure 2(a,b) show plateaus of non-convergence for low N, which
are due to the difficulty of identifying the respective eigenvalue in a non-converged
spectrum. For moderate resolutions (N ∈ [20; 45] in figure 2(a) and N ∈ [45; 90]
in 2(b)) spectral accuracy, i.e. exponential convergence rates, is observed for both
methods. Notably, however, the convergence turns out to be significantly quicker
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FIGURE 2. (Colour online) Convergence of the least stable eigenvalue λ1 of L for
RΩ = −2, η = 0.5, n = 5 and k = 1 at (a) Re = 8000 and (b) Re = 128 000 computed
using our Galerkin method (triangles) and the Petrov–Galerkin scheme of Meseguer
et al. (2007) (crosses); λN

1 denotes the approximation to λ1 computed using N Legendre
or Chebyshev polynomials; |λN

1 − λNref
1 |/|λNref

1 | is the relative deviation of λN
1 from the

converged result λNref
1 .
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Meseguer (2002) Present work (N = 50)
Rei Reo nmax kmax Gmax nmax kmax Gmax

591 −2588 10 1.994 71.36 10 1.997 71.58
523 −2975 11 1.996 71.58 11 1.998 71.81
473 −3213 11 1.920 71.64 11 1.922 71.87
405 −3510 11 1.839 71.75 11 1.841 71.99

TABLE 3. Optimal transient growth Gmax := supn,k,t G(t) according to Meseguer (2002, table
1) and present results; parameters are η = 0.881 and N = 50; nmax and kmax denote the
azimuthal and axial wavenumbers that attain optimal transient growth Gmax.

for the Legendre-polynomial-based Galerkin method presented in this work: spectral
accuracy is attained using significantly fewer polynomials and the limiting machine
precision is reached for N = 43 (Re = 8000) and N = 83 (Re = 128 000) compared
to N = 62 and N = 104, respectively, in the case of the Petrov–Galerkin scheme (see
figure 2).

The required resolution N for convergence grows with the shear Reynolds number
Re and – much more significantly – as soon as subsequent, more stable eigenvalues
are considered. In fact, it turns out to be numerically impossible to resolve significant
parts of the eigenvalue spectrum for Re > O(105). This also affects the computation
of transient growth discussed in the next subsection.

4.2. Computation of transient growth
In table 3 our results concerning the optimal transient growth Gmax := supn,k,t G(t)
for η = 0.881 and the corresponding optimal wavenumbers nmax are compared to the
numerical data of Meseguer (2002, table 1). The values of kmax and Gmax differ by
less than 0.3 %.

The convergence of the maximum transient growth G shows remarkable
characteristics, which partly contradict the significance of the linearized Navier–Stokes
operator’s spectrum for such computations claimed, for example, by Reddy &
Henningson (1993).

These features are discussed with reference to the example displayed in figure 3:
for three different resolutions N ∈ {5, 15, 50} (corresponding to figure 3(a,b,c)), the
eigenvalues (top), the evolution of the maximum transient growth G(t) (middle)
and the moduli of the components |ur|, |uϕ| and |uz| of the corresponding optimal
perturbation u(0) (bottom) are plotted for comparison. The example parameters are
Re= 10 000, RΩ =−2.0, η= 0.8, n= 5 and k= 1.

A few aspects are noteworthy. Around its maximum G is already surprisingly well
approximated by only N = 5 Legendre polynomials, whereas the optimal perturbation
is far from its actual shape (see figure 3a). For N= 15 (figure 3b) the curve {(t,G(t))}
is converged within an error 61 % while its maximum is even approximated up to
≈0.01%. Likewise, the optimal perturbation u(0) is practically converged. At the same
time, the characteristic Y-like structure of the eigenvalue spectrum (cf. Gebhardt &
Grossmann 1993) is by no means well resolved for N = 15 not to mention N = 5
(top). In fact, it takes as many as N = 50 polynomials for convergence of the two
meeting branches (see figure 3c). However, this does not seem to affect the transient
growth quantities – even though the converged spectrum in figure 3(c) (top) is even
much more stable as a whole than its approximation for N = 15 (figure 3b).



Transient growth in Taylor–Couette flows 265

Maximum Re 8000 16 000 32 000 64 000 128 000 256 000 512 000 1 024 000 2 048 000

Resolution NRe 31 38 47 58 71 88 107 131 159

TABLE 4. Canonical resolutions NRe for the computation of optimal transient growth Gmax
for Re below the given upper bounds; determined by the convergence of Gmax for η= 0.2.

In contrast to these observations, Reddy & Henningson (1993) stress the significance
of the two eigenvalue branches and especially their meeting point for transient growth
in channel flows. As for Taylor–Couette flow, this is only confirmed if the Y structure
is resolved in the first place. This turns out not to be necessary, which is a lucky
circumstance in two respects. On the one hand, the two branches consist of O(Reα)
discrete eigenvalues for α ≈ 1

2 , rendering their convergence numerically infeasible for
Re > O(105). This agglomeration of eigenvalues can be explained by the dominance
of the O(Re) convective multiplicative terms in the linearized Taylor–Couette operator
L over the viscous differential contributions in the limit Re → ∞ (see equations
(2.6a) and (2.6b)). The asymptotic degeneracy into a pure multiplication operator, i.e.
a mapping u 7→ Au with a continuous, matrix-valued function A : [ri; ro] → R3×3,
corresponds to a transition from discrete eigenvalues to a continuous spectrum.

On the other hand, the standard Cholesky decomposition of the matrix M (see § 3.2)
tends to fail at large Re if the eigenvalue spectrum is over-resolved. In the example
shown in figure 3, this happens for N > 51 – just as the crucial meeting point is
resolved. Accordingly, one might expect to miss a sudden jump in the maximum
transient growth G if the method breaks down precisely at this point. Note, however,
that no such discontinuity is observed in those cases where the intersection can still
be resolved, i.e. for smaller Re.

We may thus conclude that the transient growth of the linearized Taylor–Couette
operator L is already converged while its approximated spectrum is still far from its
natural shape. Startling at first glance, this is yet another manifestation of transient
growth’s non-modal nature: the non-eigendirections are those of significance.

Nevertheless, numerical artifacts in the form of spurious unstable eigenvalues have
to be avoided by choosing sufficiently high resolutions N. However, N must not
be too large either in order to keep the Cholesky decomposition stable (although
preconditioning or more stable algorithms such as the one presented by Ogita &
Oishi (2012) might be another alternative). For a given set of parameters η, Re,
RΩ , it turns out that resolving the transient growth peak for optimal wavenumbers
n = nmax, k = kmax tends to require the highest resolutions. Moreover, the necessary
N are mostly independent of RΩ and at least of the same magnitude for different η.
Here greater curvature, i.e. η→ 0, results in slower convergence. Consequently, for
practical computations, suitable resolutions NRe are determined for different ranges of
Re by the convergence of (computationally challenging) test cases, more precisely less
than 0.3% deviation in the optimal transient growth for η= 0.2 and N ∈ [NRe− 3;NRe].

For greater η, lower resolutions N may be sufficient and greater Reynolds numbers
than Re = 2 048 000 might be resolvable. However, universal convergence for any
parameters RΩ , η, n and k within about 1% may be assumed if N is chosen
according to the resulting canonical resolutions NRe given in table 4. They are found
to approximately follow a power law of the form NRe =N0Reα with N0 = 2.28± 0.06
and α = 0.293± 0.002.
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Starting from these, N is temporarily reduced in subsequent steps whenever the
Cholesky decomposition fails and temporarily increased if unstable eigenvalues occur
in order to identify possible numerical artifacts. In the case of converged unstable
eigenvalues, the computation of the matrix M and thus of the transient growth is
confined to the stable eigenmodes in Q in agreement with the analysis of Meseguer
(2002).

These computation guidelines have been applied to obtain the numerical results
presented in § 5.

5. Numerical results

In this section the numerical results concerning stability and transient growth in
Taylor–Couette flows are presented.

5.1. Optimal transient growth in various regimes
According to the numerical strategy discussed in §§ 4.2 and 3, the optimal transient
growth Gmax= supn,k,t G(t) is computed for logarithmically equidistant shear Reynolds
numbers 250 6 Re 6 2× 106 and η ∈ {0.2, 0.5, 0.8}.

By studying test cases, we find that t ∈ [0; τ0] with τ0 = 2π/[Reα(1 − η)] and
α= 0.85 is a suitable choice to determine the transient growth maximum in time for
all considered parameter regimes. Optimization in the wavenumbers is carried out by
default in the range n∈ {0, 1, . . . , 8} and 06 k6 5. Additionally, as discussed in § 3.3,
the ranges for t, n and k are enlarged whenever the optimization terminates near one
of the upper bounds.

By the choice of rotation numbers RΩ , the linearly stable regimes I and II are
parametrized considering RΩ ∈ [(1− η)/η; 10(1− η)/η] (I) and RΩ ∈ [−10; −1.1] (II)
(see table 1). Furthermore, transient growth is studied in the counter-rotating regime
IV near the Rei = 0 line in the Rei–Reo left quadrant by choosing RΩ ∈ [0.1(1 −
η)/η; 0.9(1 − η)/η]. For a global overview, the results for RΩ ∈ {−3, −1.2, 0.8(1 −
η)/η, 1.2(1− η)/η, 3(1− η)/η} are presented. The lines in the Rei–Reo plane defined
by this choice for η = 0.5 are visualized in figure 4 for orientation, along with the
numerically computed (viscous) linear stability boundary. Figure 5(a,b) shows the
optimized transient growth Gmax and the corresponding optimal axial wavenumber
kmax, respectively, against Re for the considered parameter sets.

The most prominent feature in the double-logarithmic plots of figure 5(a) are
the nearly identical asymptotic slopes of the lines in the linearly stable regimes
for RΩ ∈ {−3,−1.2, 1.2, 3} showing a characteristic power law Gmax ∼ Reα with
α≈ 2

3 ±7 % (compare dashed line in figure 5a). Notably, even in the Rayleigh-unstable
counter-rotating regime IV (circles in figure 5a), Gmax seems to approach this scaling
as long as the computation is not destabilized by dominant linear instability. In fact,
for constant Re, the energy amplifications Gmax(Re) in the different regimes differ only
by O(1) factors and not – as possibly expected – by orders of magnitude. Within the
linearly stable regimes I and II, these deviations are most distinct in the vicinity of
the Rayleigh line and the boundary to regime IV where larger amplifications occur.

Hence, the numerical results suggest that optimal transient growth in linearly stable
Taylor–Couette flows roughly follows a common scaling Gmax ∼ Re2/3 for Re→∞.
Note that this scaling result is in perfect agreement with those by Yecko (2004)
obtained for Keplerian flows at fixed RΩ = 1.5 in rotating plane Couette geometry.
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FIGURE 4. (Colour online) Representative lines in the Rei–Reo plane in the case
η = 0.5 for which the optimal transient growth Gmax, and corresponding optimal axial
wavenumbers kmax, are plotted in figure 5(a,b), respectively. The quasi-Keplerian regime
II is shaded for orientation.

5.2. Optimal axial wavenumber
Beyond the magnitude of transient growth studied in § 5.1, the spatial structure of the
optimal perturbations umax is of great interest. The latter is determined by the optimal
axial and azimuthal wavenumbers kmax and nmax, which attain the optimal transient
growth Gmax shown in figure 5(a). The kmax are plotted in figure 5(b) with logarithmic
horizontal axes. Note the discontinuities of the curves whenever the (discrete) optimal
azimuthal wavenumber nmax changes.

The plots reveal a characteristic quasi-two-dimensional columnar structure of the
optimal perturbations in regime II (also observed by Yecko (2004)): for Re > Re0

the optimal transient growth Gmax(Re) is consistently attained by axially independent
perturbations, i.e. kmax = 0 (compare RΩ = −3 and RΩ = −1.2 in figure 5b). The
transition to kmax= 0 typically occurs already for Reynolds numbers as small as Re0=
O(103). Only near the Rayleigh line – that is, for −1.2 6 RΩ < −1 – is a sharp
divergence of Re0 for RΩ → −1 observed. Here kmax ≈ 1 holds up to the greatest
studied shear Reynolds numbers Re=O(106).

While kmax = 0 is only obtained in the quasi-Keplerian regime (II), in regime I
(represented by RΩ = 3(1− η)/η and RΩ = 1.2(1− η)/η) kmax seems to decay (slowly)
to zero for Re→∞. At least weak axial dependence kmax . 1 is observed for Re >
O(104) in these flows. Once again, the asymptotic decay kmax → 0 is most distinct
near the solid-body line RΩ→∞ and is lost near the transition to counter-rotation at
Rei = 0. Here an almost constant optimal wavenumber kmax =O(1) is observed.

For further illustration, figures 6 and 7 show contour plots of kmax in the regimes
II and I, respectively. The boundary lines have been computed by a bisecting
algorithm with relative accuracy ε = 10−2. The extent of the shaded regions in
figure 6 emphasizes the dominance of axially independent columnar perturbations for
quasi-Keplerian flows.

In the counter-rotating regime (IV), we observe a growing kmax with Re. This
difference might be explained by emerging linear instabilities, which first appear
for k > 1 in this regime and thus render fully three-dimensional perturbations less
dissipative.
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FIGURE 5. (Colour online) Numerical results concerning (a) optimal transient growth Gmax
and (b) respective optimal axial wavenumbers kmax against the shear Reynolds number Re
for different η and RΩ ∈ {−3,−1.2, 0.8(1− η)/η, 1.2(1− η)/η, 3(1− η)/η} corresponding
to the lines in figure 4 in regimes I, II and IV. Discontinuities in (b) are due to changes
in the discrete optimal azimuthal wavenumber nmax. The asymptotic slopes in (a) show a
common scaling of Gmax ∼ Reα for α ≈ 2

3 for high Reynolds numbers Re→∞ (dashed
line).

The behaviour of the optimal azimuthal wavenumber nmax is not discussed in
detail here. Notably, however, axisymmetric perturbations (corresponding to n = 0)
never attain significant energy growth G > O(1) up to high Reynolds numbers
Re = O(106) except for a small neighbourhood of RΩ = −1 where the dominant
Taylor-vortex-related instability of regime III emerges. On the other hand, usually
transient growth of the same order is attained for different n 6= 0. Numerical results
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FIGURE 6. (Colour online) Domain of the quasi-Keplerian regime (II) where the optimal
perturbation is axially independent (shading), i.e. kmax = 0, for η = 0.2, 0.5, 0.8. The
boundary line (solid line) has been determined by a bisecting algorithm with relative
accuracy ε = 10−2; in the white regions between Rayleigh line (dashed) and solid-body
line (dotted) kmax 6= 0.

indeed suggest that, for sufficiently large shear Reynolds numbers, nmax depends
more on the geometrical parameter η than on Re or RΩ , which parametrize the base
flow. In general, an azimuthal wavenumber n seems to be optimal if the associated
wavelength is λ ≈ 2πη/(n(1 − η)) ≈ 2, i.e. twice the gap width, leading to vortices
that are of about the same radial and streamwise dimension (see e.g. figure 8a, centre
right).

In contrast, the dominant axial wavenumbers k < 1 in regime I correspond to
wavelengths of O(10) rather than O(1) gap widths. The axial dependence of the
optimal perturbations is thus indeed weak compared to azimuthal (and radial)
variations. For comparison, recall that one observes axial symmetry and order-one
axial wavelengths for the usual Taylor vortices corresponding to n = 0 and k = π.
Moreover, we observe that, the stronger the rotational influence on the fluid’s stability
expressed by smaller η and/or larger |RΩ |, the smaller are the kmax attained for
Re→∞ (figure 5b). The observed columnwise preference of the optimal perturbations
is thus in good agreement with the Taylor–Proudman theorem, stating that a rapidly
rotating inviscid fluid is (preferably) uniform along its rotational axis. On the
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FIGURE 7. (Colour online) Contour plot of the optimal axial wavenumber kmax attaining
optimal transient growth Gmax within the regime I of the Rei–Reo parameter space. Lines
are determined by bisection at ε = 10−2; discontinuities are due to optimization in the
discrete azimuthal wavenumber n.

other hand, this preference does not seem to be manifested in the dominant least
stable eigenmodes observed in quasi-Keplerian flows: numerical optimization of the
principal eigenvalue’s real part over n and k in the test cases η = 0.5, RΩ = −2.0
and Re = 1000, 2000, . . . , 128 000 (data not plotted) indeed shows significantly
non-columnar modes with k ∼ 5 to be least dissipative for n > 1. The principal
zero mode n = k = 0, on the other hand, is found to decay about one order of
magnitude more slowly than the optimal non-axisymmetric ones in the considered
parameter range. Note, furthermore, that eigenvalues corresponding to perturbations
with predominantly streamwise (i.e. azimuthal) or spanwise (axial) flow, respectively,
alternate along the real axis in the least stable parts of all studied spectra, where the
spanwise modes even turn out to be slightly less stable. The study thus demonstrates
that the structure of optimal non-modal perturbations may be entirely different from
that of the dominant eigenmodes.

Changing η does not seem to have any further qualitative effects on transient growth
according to the results in figure 5, as long as none of the limits η → {0, 1} is
considered. A further study of this parameter is therefore omitted in the following.

5.3. Evolution of optimal perturbations

In the sequel, three different optimal perturbations umax,1, umax,2 and umax,3 are
considered at a constant shear Reynolds number Re= 8000 and η= 0.5. The rotation
numbers are given by RΩ,1 = −2.0, RΩ,2 = 2.0 and RΩ,3 = 0.8 corresponding to
regimes II, I and IV. The optimal wavenumbers are given by kmax,1= 0, kmax,2≈ 0.464
and kmax,3 ≈ 1.200 and nmax,1 = nmax,2 = nmax,3 = 3. The time evolution of these modes
is computed by eigenmode decomposition at a polynomial resolution N = 50.
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FIGURE 8. (Colour online) Evolution of the optimal perturbations for Re = 8000 and
η = 0.5 (N = 50) in the regimes (a) umax,1, RΩ,1 = −2.0 (quasi-Keplerian regime II),
(b) umax,2, RΩ,2 = 2.0 (regime I) and (c) umax,3, RΩ,3 = 0.8 (counter-rotating regime IV).
Radial–azimuthal and radial–axial projections are shown. In the latter the plots are scaled
to show exactly one axial wavelength along the horizontal axis; and, to aid visualization,
a unit length (d = gap width) in the axial direction is indicated by the dashed line.
The various parts show subsequent snapshots at times t = tj during the transient growth
evolution; the tj are also marked in the energy evolution curves plotted in figure 9.
Arrow lengths are scaled with the flow velocities whereas their shading from lighter to
stronger colours reflects energy densities |umax,i|2. The relative rotation of the inner and
outer cylinders in the different settings is indicated by arrows visualizing the frequencies
Ωo and Ωi, respectively. The corresponding optimal axial wavenumbers are kmax,1 = 0,
kmax,2 ≈ 0.464 and kmax,3 ≈ 1.200.



Transient growth in Taylor–Couette flows 273

0.2 0.4 0.6 0.8 1.0

40

35

30

25

20

15

10

5

0
Normalized viscous time 

O
pt

im
al

 p
er

tu
rb

at
io

n 
en

er
gy

 

FIGURE 9. (Colour online) Evolution of the kinetic energy of the optimal perturbations
‖umax,i‖2 throughout the transient growth dynamics for Re= 8000, η = 0.5 (N = 50) and
RΩ,1 = −2.0 (quasi-Keplerian regime II), RΩ,2 = 2.0 (regime I) and RΩ,3 = 0.8 (counter-
rotating regime IV). The time axis is normalized with τ0 = 2π/[Re0.85(1− η)]. Snapshots
of the velocity fields at times tj, indicated by markers, are shown in figure 8.

In figure 8 the resulting real parts of umax,1, umax,2 and umax,3 are shown at a
sequence of snapshots tj throughout the transient growth evolution. The flow fields
are plotted in radial–azimuthal projection (top) and radial–axial projection (bottom)
with z on the horizontal axis except for umax,1, where the latter is omitted due to
the axial independence. The radial–axial plots have been rescaled so that exactly one
axial wavelength is displayed. Arrow lengths scale with the absolute flow velocities,
although different scalings are applied in figure 8(a–c). The colour map from lighter
to stronger colours marks regions with relatively low or high energy densities |umax,i|2
in the current fields.

The perturbations’ total kinetic energy evolution ‖umax,i(t)‖2 in relation to the
transient growth maxima Gmax,i are plotted in figure 9 with time scale renormalized
by τ0 = 2π/[Re0.85(1− η)]. The tj considered in figure 8 are identified by markers.

The radial–azimuthal projections in figure 8 reveal essentially similar transient
growth mechanisms of the considered modes: the optimal initial perturbations have
a spiral-like structure of 2n streamwise elongated vortices. Recalling the different
angular velocities Ωi and Ωo of the driving inner and outer cylinders (i.e. Ωi>Ωo> 0
for RΩ = −2.0, Ωo > Ωi > 0 for RΩ = 2.0 and Ωi > 0 > Ωo in the counter-rotating
case RΩ = 0.8, respectively), we find that the initial spiral orientations are always
misfit to the base flow. This ‘misfit’ character is a manifestation of the perturbations’
non-modal nature and thus typical of transient growth as emphasized by Grossmann
(2000). The spiral velocity fields are tilted by the base flow and thereby gain energy
(compare figure 8 centre-left and figure 9). As for the axially independent perturbation
in figure 8(a), the energy maximum then occurs exactly at the turning point of the
spiral orientation whereas in cases 2 and 3 it is attained shortly after this point
(centre-right in figure 8). Subsequently, the perturbation is further deformed into a
‘fit’ flow direction, i.e. an eigendirection, and meanwhile decays.
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This shear-induced detilting dynamics of perturbations, with initial vorticity leaning
against the background shear profile, essentially represents a Taylor–Couette analogue
of the so-called Orr mechanism. The latter has been identified, e.g. in the early two-
dimensional studies of optimal transient growth by Farrell (1988), as an important
ingredient of linear non-modal growth in plane channel flows, providing a potential
explanation for the emergence of finite-amplitude disturbances required for nonlinear
instabilities. Notably, in the cases studied here, this mechanism leads to transient spiral
structures that resemble those of the linearly unstable, axially independent eigenmodes
reported by Gallet, Doering & Spiegel (2010) – compare our figure 8(a), centre-left,
with figure 4(d) in Gallet et al. (2010). The latter arise in the case of an additionally
imposed radial inflow through the outer cylinder, which seemingly stabilizes the misfit
tilt of the vortices, rendering the transient energy growth, observed in the present work,
sustained.

Especially for the columnar axially independent perturbation umax,1, the energy
growth and decay is rather sudden, leading to the sharp peak depicted in figure 9.
This phenomenon is similar to the dynamics observed in plane channel flows and is
possibly due to the rapid flow near the inner cylinder wall (see figure 8a, centre-right),
which leads to high dissipation around the energy maximum. On the other hand, the
optimal perturbations umax,2 and umax,3 in the regimes I and IV seem to be stabilized
in this respect by their axial dependence, leading to 40 % and 115 % larger growth
than that attained for RΩ =−2.0 and slower decay in figure 9. This interpretation is
supported by the fact that, in spite of the small wavenumber kmax,2 ≈ 0.464 of umax,2,
up to 86 % of the kinetic energy is transferred into the axial component around the
transient growth maximum. These three-dimensional effects go beyond the classical
Orr mechanism.

The characteristic structure of deforming elongated vortices is also reflected in the
radial–axial projections in figure 8(b,c). A unique feature of the counter-rotating flow
(RΩ,3 = 0.8) is the localization of the optimal perturbation near the inner cylinder
walls, where the base flow is locally Rayleigh-unstable. This localization has also
been observed in the spiral eigenvectors and in the saturated spiral instability (e.g.
Langford et al. 1988). Hence, although the flow remains eigenvalue stable for the
chosen parameters, emerging instabilities already seem to interact with non-modal
growth mechanisms. This possibly explains the greater energy amplifications in
regime IV.

5.4. Transient growth scaling for k= 0
The previous numerical results, especially those for the quasi-Keplerian regime II,
motivate the transient growth analysis of axially independent perturbations with k= 0.
Moreover, it will be shown in § 6.2 that Gk=0

max , i.e. the optimal transient growth of
k= 0 perturbations, is indeed independent of the rotation number RΩ .

In figure 10(a) numerically computed optimal transient growth Gk=0
max is depicted in a

log–log plot in the range Re∈ [250; 8× 106] for different η∈ {0.05, 0.2, 0.5, 0.8, 0.95}.
The parallel slopes for high Reynolds numbers Re>O(104) show a common scaling

Gk=0
max ∼ Reγ , where the proportionality factor may depend only on η. In order to

estimate this, Gk=0
max(Re) is computed for logarithmically equidistant Re∈ [105; 4× 106]

for η ∈ {0.05, 0.1, 0.15, . . . , 0.95}. Fits of the form Gk=0
max(Re)= a(η)(Re)γ (η) for each

η yield exponents γ (η) ≈ 2
3 within an error 6 0.5 % except for γ (η = 0.2) ≈ 0.657.

Hence, a common exponent γ = 2
3 is assumed to be universal and the factor a(η)
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FIGURE 10. (Colour online) (a) Numerically computed optimal transient growth Gk=0
max for

axially independent perturbations plotted against the shear Reynolds number Re (log–log
plot). The curves are independent of RΩ and parallel for Re>O(104), corresponding to a
common scaling Gk=0

max = a(η)Re2/3. (b) Fitted scaling coefficients a(η) for the respective η
and high shear Reynolds numbers Re > O(104). The error bars represent data determined
by fitting of numerical results for Gk=0

max(Re) with errors by mean square deviation. The
full line is a third-degree polynomial fit according to (5.1) and (5.2).

is independently determined by another fit. The results are plotted in figure 10(b),
where the error bars have been determined by the mean square deviation from the
data.

In order to obtain an analytical formula for Gk=0
max(Re) a third-degree polynomial

a(η)= a0 + a1η

(
1− 1

3
η2

)
+ a2η

2

(
1− 2

3
η

)
(5.1)
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is fitted to the data in figure 10b taking into account the extremum of a at η = 1,
which is due to the system’s symmetry with respect to exchanging ri and ro. The
result is

a0 ≈ 9.218× 10−3, a1 ≈ 0.1198 and a2 ≈−9.072× 10−2, (5.2)

and the corresponding curve is also shown in figure 10(b). Good agreement between
fit and data is found, especially for η > 0.5, possibly due to the lesser impact of
the azimuthal wavenumber’s discreteness on the attainable optimal transient growth
compared to η < 0.5. For arbitrary η, test cases give less than 7 % error if the
analytical formula is applied for Re ∈ [104; 8× 106] and less than 5 % in the interval
[105; 2× 106].

The maximum amplification of axially independent perturbations Gk=0
max = a(η)Re2/3

defines a lower bound for the total (k 6= 0) transient growth Gmax(Re) in every flow
regime. Moreover, the estimate can be expected to hold within a factor of O(1) and
is exact in the shaded regions of the quasi-Keplerian regime II in figure 6.

6. Analytical results for axially independent perturbations
The prominent role played by columnar axially independent perturbations together

with their geometrical simplicity motivates an analytical study of their properties,
which is pursued in this section. We begin by applying the conjugated curl operator

(∇×)c := e−i(nϕ+kz)(∇×)ei(nϕ+kz) =



0 −ik in/r
ik 0 −D
−in/r D+ 0


 (6.1)

to the linearized Navier–Stokes equation (2.5). This eliminates the pressure gradient
terms, yielding



0 −ik in/r
ik 0 −D
−in/r D+ 0





∂tur
∂tuϕ
∂tuz


=




0 −ik in/r
ik 0 −D
−in/r D+ 0






Lrr Lrϕ 0
Lϕr Lϕϕ 0

0 0 Lzz






ur
uϕ
uz


 .

(6.2)
For axially independent perturbations (k= 0), the azimuthal velocity uϕ is determined
from ur via the divergence condition

0=∇c · u=D+ur + in
r

uϕ + ikuz︸︷︷︸
= 0

H⇒ uϕ = ir
n

D+ur, (6.3)

and the evolution equations for ur and uz decouple (Gebhardt & Grossmann 1993).
Using Lrr =Lϕϕ the resulting equations read



(in/r)∂tuz
−D∂tuz

[−in/r+D+(ir/n)D+]∂tur


=




(in/r)Lzzuz
−DLzzuz

[−(in/r)Lrr +D+Lrr(ir/n)D+ +D+Lϕr +LrϕD+]ur


 .

(6.4)
The first and second equations, which are equivalent, determine the evolution of uz:

∂tuz=Lzzuz =
(

D+D − n2

r2
− in

r
vB
ϕ

)
uz
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=
(
∂2

r +
1
r
∂r − n2

r2
− in

(
A+ B

r2

))
uz. (6.5)

Using the results D+Lϕr + LrϕD+ = (2B/r2)D+ − 4in/r3 and [Lrr, r∂r] = 2Lrr +
2inA=: 2L 0

rr obtained in § A.1, the evolution equation for ur becomes

∂t(rD+rD+ − n2)ur=Lrr(rD+rD+ − n2)ur

−




[
ir
n

D+,Lrr

]
irnD+

︸ ︷︷ ︸
= [Lrr,r∂r]rD+ = 2L 0

rrrD+

+ irn
[

2B
r2

D+ − 4in
r3

]

 ur. (6.6)

Further using ∂r(2/r)(rD+rD+− n2)= 2L 0
rrrD++ irn[(2B/r2)D+− 4in/r3] (see § A.1)

yields

∂t(rD+rD+ − n2)ur=
(

Lrr − 2∂r
1
r

)
(rD+rD+ − n2)ur

=
(
∂2

r −
1
r
∂r − n2 + 1

r2
− in

(
A+ B

r2

))
(rD+rD+ − n2)ur.(6.7)

This fourth-order partial differential equation is supplemented with the boundary
conditions ur(ri) = ur(ro) = ∂rur(ri) = ∂rur(ro) = 0, which correspond to the no-slip
boundary conditions at the cylinders ur(ri)= ur(ro)= uϕ(ri)= uϕ(ro)= 0.

6.1. Advection of perturbations by the basic flow and universal stability properties
A remarkable property of (6.5) and (6.7) is revealed by considering the transformation
ũr := einAtur and ũz := einAtuz. The derivatives then read ∂rũ∗ = einAt∂ru∗ and ∂tũ∗ =
einAt(∂t + inA)u∗, so substituting into (6.5) and (6.7) yields

∂tũz=einAt(∂t + inA)uz =
(
∂2

r +
1
r
∂r − n2

r2
− inB

r2

)
ũz, (6.8)

∂t f̃r=einAt(∂t + inA)fr =
(
∂2

r −
1
r
∂r − n2 + 1

r2
− inB

r2

)
f̃r, (6.9)

where f̃r := (rD+rD+ − n2)ũr and fr := (rD+rD+ − n2)ur. As ũz and ũr satisfy (6.5)
and (6.7) with A= 0, the A dependence of the perturbation’s evolution u is entirely
described by the factor e−inAt. This factor corresponds to a pure advection of the
perturbation with the shear-free uniformly rotating part of the basic flow vB and thus
it is locally and globally energy-conserving (|ur|2 = einAte−inAt|ũr|2 = |ũr|2). Although
these conclusions might seem obvious at first glance, note that they are not true in
the general three-dimensional case k 6= 0.

The minor importance of the parameter A has crucial consequences. Without loss of
generality, A= 0 can be assumed when analysing the stability of Taylor–Couette flow
to axially independent perturbations. The remaining parameter B characterizing the
base flow vB depends only on the shear Reynolds number Re and not on the rotation
number RΩ (see (2.10b)), which parametrizes the flow regime. Hence the linear
stability of Taylor–Couette flow to axially independent perturbations is independent
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of RΩ and thus is identical in all regimes. Furthermore, the optimal transient growth
Gk=0

max for k = 0 provides a lower bound for the absolute maximum Gmax, which is
universal in the sense that it depends only on η and Re. We note that these results can
be expected to apply approximately also for weakly axially dependent perturbations
in the vicinity of k= 0.

6.2. Global analysis of the evolution equations
First, consider the evolution of uz described by (6.5). Operator Lzz is the sum of a self-
adjoint negative definite operator and a skew hermitian one. As these do not commute,
Lzz is an example of a non-normal operator, which nonetheless does not allow for
transient growth (see § A.2 for a proof). The evolution (6.7) for the radial component
ur may be split into two independent problems,

∂tfr =
(

Lrr − 2∂r
1
r

)
fr and (rD+rD+ − n2)ur = fr, (6.10)

where the second is of Sturm–Liouville type (the solution is given in § A.4) and the
first resembles (6.5). Using this factorization, it might be possible to construct an
exact analytical solution of the evolution problem (6.7) by incorporating the boundary
conditions via an influence matrix method. However, the outer problem in (6.10)
remains cumbersome to solve, and, even if one were to write down an expression
for an exact solution of (6.7), this would most likely turn out to be too involved
to interpret the underlying physics. In the following, the analysis of the evolution
equation (6.7) is therefore confined to the limit of asymptotically large Reynolds
numbers Re→∞ and is studied by means of scale analysis.

In order to identify and motivate the scales to be studied quantitatively in the WKB
analysis of § 7, we consider the energy evolution of a perturbation u= urer + uϕeϕ ,

∂t‖u‖2 = 2 Re〈u,L u〉 =−2Re 〈u, (u · ∇)vB〉 + 2 Re〈u, 1ru〉, (6.11)

where the pressure and convective terms drop out as in the derivation of the Reynolds–
Orr equation. Using uϕ = (ir/n)D+ur, the non-normal term in (6.11) becomes

N(u) :=−2 Re〈u, (u · ∇)vB〉 =−4B
n

Im〈ur, ∂rur〉, (6.12)

while the self-adjoint dissipative summand reads

D(u) := 2 Re〈u, 1ru〉=−2{n−2(‖DrD+ur‖2 + (n2 + 1)‖D+ur‖2)+ ‖Dur‖2

− 4 Re〈ur, r−1D+ur〉 + (n2 + 1)‖r−1ur‖2}. (6.13)

Assume that ur varies on a typical length scale of order O((nRe)−α) with α > 0. In
the limit Re→∞, the highest-order r derivative dominates in each term of (6.11). As
B∼ Re and ‖u‖2 = ‖ur‖2 + n−2‖rD+ur‖2, we obtain from (6.12) and (6.13)

N(u)= n−2O((nRe)1+α‖ur‖2)=O((nRe)1−α)‖u‖2,

D(u)= n−2O((nRe)4α‖ur‖2)=O((nRe)2α)‖u‖2.

}
(6.14)

According to (6.13), D(u) is strictly negative, so by virtue of (6.14) dissipation always
dominates for α > 1

3 . On the other hand, the non-normal term N(u) may be positive,
so that, for α 6 1

3 , growth rates ∂t ln ‖u‖2 =O((nRe)1−α) are possible.
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The question remains how long such growth may last. Let us consider a Fourier-
type ansatz ur ∼ eimr with wavenumber m=O((nRe)α). Note that locally this is valid
because in the limit Re→∞ boundary effects are confined to thin layers near the
cylinder walls. Then N(u) is of optimal order in (6.14) and N(u) > 0 if and only if
n−1Bm< 0 by virtue of (6.12).

The total velocity field is ũ= ei(nϕ+kz)u∼ ei(nϕ+mr), so the curves of constant phase
(characteristics) are (locally) given by ϕ(r)=ϕ(ri)− n−1m(r− ri). Starting at the inner
cylinder the set of these lines form streamwise elongated spiral structures like the
vortices in figure 8. To attain growth they have to be oriented according to the sign

sgn(∂rϕ)=−sgn(n−1m)= sgn(B)=−sgn (∂rΩ). (6.15)

Thus, the characteristics of the perturbations have to be misfit to the base flow’s
angular velocity profile ΩB = r−1vB

ϕ , as observed in the numerical computations of
§ 5.3. Therefore, energy amplification may only occur transiently until the perturbation
has been sheared into the ‘fit’ orientation by advection, analogously to the perturbation
dynamics associated with the Orr mechanism in channel flows (see e.g Farrell 1988).
Within the advective time scale T =O(Re−1), i.e. a cylinder rotation period, the shear
uniformly distorts the flow profile between the inner and outer cylinders by a length
of order O(1). Consequently, as the initial streamwise elongation of the characteristics
is O(n−1m) and m= O((nRe)α), the time t0 for the perturbation to be tilted into the
fit direction is

t0,α =O(n−1mT)=O((nRe)α−1). (6.16)

Viscosity prevents transient growth if α> 1
3 . Now assume u is an optimal perturbation

for α< 1
3 . Then we can evolve this mode backwards until times of order O((nRe)−2/3)

before its energy maximum, introduce the result as a new initial condition and thereby
attain additional growth. Thus, optimal perturbations must vary on length scales
O(nRe)−1/3 and t0 =O((nRe)−2/3) is the natural time scale for transient growth.

Our numerical computations are in perfect agreement with these scaling results.
However, we cannot obtain an analytical estimate for the optimal transient growth
with this section’s zeroth-order approach. Therefore, in the next section we introduce
the time scale t0 into the evolution (6.7) and analyse it by means of a first-order WKB
approximation. Our analysis closely follows the work of Chapman (2002, pp. 47–53)
for oblique modes in channel flows.

7. WKB analysis of axially independent perturbations

Following the analysis of the previous section, we rescale time as t̄ := δ−2t with
δ := (nRe)−1/3, and rewrite nB := δ−3B0, where the factor B0 is independent of n and
Re (see (2.10b)). Substituting these scalings for t and nB in the evolution equation
(6.7) and multiplying by δ3 yields

δ∂t̄(r2∂2
r + 3r∂r − (n2 − 1))ur

=
(
δ3

(
∂2

r −
1
r
∂r − n2 − 1

r2

)
− iB0

r2

)
(r2∂2

r + 3r∂r − (n2 − 1))ur, (7.1)

where we have set A = 0 without loss of generality in accordance with § 6.1. Note
that the highest-order spatial derivative in (7.1) is now multiplied by the factor δ3� 1,
which is small in the limit of high Reynolds numbers Re→∞.
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7.1. WKB ansatz

We make a WKB ansatz with amplitude ã and rapidly oscillating phase δ−1φ,

ur = ã exp(δ−1φ), (7.2)

where both ã and φ depend on t̄ and r. Together with the divergence condition, this
yields uϕ = (ir/n)D+ur =O(∂rur)=O(δ−1ur). Hence the scaling ã= δa, with a=O(1)
and φ =O(1), is required in order that initial perturbations u= urer + uϕeϕ have unit
energy norm (‖u(0)‖2 = 1).

We now substitute the WKB ansatz (7.2) into the evolution equation (7.1). Because
a, φ =O(1), the evolution equation needs to be independently satisfied at each order
in δ. At leading order O(δ−1) the equation reduces to (see § A.3)

∂t̄φ =− iB0

r2
H⇒ φ(r, t̄)= φ0(r)− iB0

r2
t̄. (7.3)

By using this solution to eliminate δ−1 terms in (7.1), we obtain

r2∂t̄((∂rφ)
2a)− r2(∂rφ)

4a=δ1{6r(∂rφ)
3a+ 6r2(∂rφ)

2(∂2
r φ)a+ 4r2(∂rφ)

3(∂ra)}
− δ1∂t̄{2r2(∂rφ)(∂ra)+ r2(∂2

r φ)a+ 3r(∂rφ)a}, (7.4)

which at next leading order O(δ0)=O(1) reads

(∂rφ)∂t̄a= (∂rφ)
3a− 2(∂t̄∂rφ)a. (7.5)

Defining τ := i(∂rφ) and ∂t̄ = i(∂t̄∂rφ)∂τ =−(2B0/r3)∂τ (Chapman 2002, p. 49) yields

∂τa
a
= r3

2B0
τ 2 − 2

τ
H⇒ a(r, τ )=−a0(r)

τ 2
exp

(
r3

6B0
τ 3

)
. (7.6)

According to this solution, a becomes singular for τ→ 0, which may raise doubts
about its physical correctness. However, in this limit, the underlying separation of
orders in the WKB approximation breaks down so that O(δ1) terms in (7.4) or even in
the leading-order equation have to be considered. These bound the blow-up, leading
to an overall nearly singular amplitude behaviour in the complete linearized dynamics
given by (6.7). In numerical simulations, this manifests itself in increasingly sharp
peaks of the optimal perturbation’s energy for Re→∞, as visualized in figure 11.
The larger Re, the longer the blow-up seems to follow the singular WKB solution
(7.6) before the energy growth is capped near the maximum blow-up time t̄0. Most
prominently, for Re= 1 024 000 it is only in a neighbourhood (1± 0.05)t̄0 about the
maximum that the singularity is smoothed out by additional terms, resulting in the
sharpest peak in figure 11.

7.2. Construction of optimal perturbations
Assume that the amplitude’s growth according to equation (7.6) is capped as soon as
the next-order terms become relevant. Then the optimal energy growth is attained if:

(i) the blow-up occurs at a common time t̄0 over the whole radial domain r∈ (ri, ro);
and

(ii) the O(δ1) terms in (7.4) are of the highest attainable order in τ .
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FIGURE 11. (Colour online) Energy blow-up of numerically computed optimal axially
invariant perturbations for RΩ = −2.0, η = 0.5 and different shear Reynolds numbers
Re. The time axis is normalized by the respective energy maximum t̄0. The increasingly
sharp peaks reflect the singular behaviour of the WKB solution (7.6) except for O(δ)
neighbourhoods of the maxima.

Condition (i) ensures that no averaging effects of the spatial integral evaluated for
the computation of ‖u(t)‖2 limit the global energy maximum in time. It is equivalent
to ∂rφ(r, t̄0) = ∂rφ0(r) + (2iB0/r3)t̄0 = 0, so that φ0 = (iB0/r2)t̄0 + c and without loss
of generality φ =−(iB0/r2)(t̄− t̄0).

On the other hand, condition (ii) implies that the blow-up is capped as late as
possible in the evolution in τ . Let us consider the O(δ1) terms in equation (7.4):

−δ1∂t̄{2r2(∂rφ)(∂ra)+ r2(∂2
r φ)a+ 3r(∂rφ)a}

= 2B0

r
δ1∂τ

(
2τ∂ra+ (∂rτ)a+ 3

r
τa
)
. (7.7)

Recalling that a = O(τ−2) and ∂ra = O((∂rτ)τ
−3) as τ → 0, we find that the

leading-order terms in (7.7) are O(δ1(∂rτ)τ
−3), whereas the left-hand side of (7.4) is

of order τ−1. Hence, the O(δ1) terms become significant as soon as τ =O((δ∂rτ)
1/2).

Accordingly, to attain the most sustained blow-up, ∂rτ should be as small as possible
for τ→ 0, i.e.

0= lim
τ→0
(−i∂rτ)= lim

τ→0

(
∂2

r φ0 − 6iB0

r4

)
= lim

τ→0

(
∂2

r φ0 − 3
r
τ + 3

r
∂rφ0

)
= ∂2

r φ0 + 3
r
∂rφ0.

(7.8)
Equation (7.8) is also satisfied for φ0 = (iB0/r2)t̄0 + c. Hence, this is indeed the

optimal initial phase giving the optimal perturbation according to WKB theory,

ur = δa exp
(
φ

δ

)
eq. (7.6)= δa0(r)

exp
(
−4B2

0

3r6
(t̄− t̄0)

3

)

4B2
0

r6
(t̄− t̄0)

2

exp
(
− iB0

δr2
(t̄− t̄0)

)
. (7.9)
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Note that the boundary conditions are satisfied if and only if a(ri)=a(ro)= ∂ra(ri)=
∂ra(ro)= 0, so that (7.9) is indeed an approximate solution to the complete boundary
value problem for t̄− t̄0 =O(1) if a is suitably chosen.

7.3. Boundedness of the blow-up
According to (7.8) we then have ∂rτ =O(τ ) for τ→0 so that the growth is not capped
before τ = O(δ). However, it remains to be shown that no further blow-up occurs
beyond the domain of the WKB solution (7.9). For times t̄ − t̄0 = O(δ) we obtain
∂n

r a= O(δ−2) and ∂n
r exp(−(iB0/δr2)(t̄ − t̄0))= O(1) for all n ∈ N0 so that ur, ∂

n
r ur =

O(δ−1). Therefore the scaling δt̃ := t̄− t̄0 and ũr := δ−1ur is employed in (7.1), giving

∂t̃(r2∂2
r + 3r∂r − (n2 − 1))ũr =− iB0

r2
(r2∂2

r + 3r∂r − (n2 − 1))ũr +O(δ3). (7.10)

Setting f̃r := (r2∂2
r + 3r∂r − (n2 − 1))ũr, the leading-order solution of (7.10) is given

by f̃r(r, t̃) = f̃r,0(r) exp(−(iB0/r2)(t̃ − t̃0)). The operator r2∂2
r + 3r∂r − (n2 − 1) is of

Sturm–Liouville type so that a Green’s function G(r, r′) exists such that

ũr(r, t̃)=
∫ ro

ri

G(r, r′)f̃r,0(r′) exp
(
− iB0

r′2
(t̃− t̃0)

)
r′ dr′. (7.11)

The function G is given in § A.4. Note that with this ansatz only two boundary
conditions may be satisfied. However, this affects only a thin boundary layer in
the vicinity of the cylinder walls where significant growth is inhibited already for
O(t̄ − t̄0) = O(1) due to the no-slip condition. Thus, the present focus lies on the
inner solution in the first place.

By (7.11) the components ũr and ũϕ ∼ (1 + r∂r)ũr are given by L2-kernel integral
operators applied to f̃r. Consequently, they are L2-continuous in f̃r so that ‖ũ‖2 depends
continuously on t̃. Hence, there is no further blow-up in the time scale t̄− t̄0 =O(δ).

7.4. A scaling for optimal transient growth
According to (7.9) the optimal perturbation’s components ur and uϕ ∼ (1+ r∂r)ur have
grown to O(δ−1) by the optimal (blow-up) time. This yields the optimal transient
growth

Gk=0
max = sup

t̄>0
G(t)= sup

t̄>0
‖ u(t̄)‖2 (a)∼ sup

t̄>0
(|ur(t̄)|2 + |uϕ(t̄)|2)=O(δ−2). (7.12)

by condition (i). Since the WKB approximation applies for δ→ 0 and δ= (nRe)−1/3, it
has been shown that the optimal transient growth of axially independent perturbations
scales like Gk=0

max ∼ Re2/3 in the limit of high Reynolds numbers Re→∞. This result
is in perfect agreement with our numerical computations (see § 5.4).

Notably the scaling exponent α= 2
3 is independent of η and of RΩ (see § 6.1) and

equal for all azimuthal wavenumbers. In accordance with this, our numerical results
show that as Re→∞ the optimal azimuthal wavenumber nmax becomes constant; the
asymptotic value is selected only by the geometry (specified by η).

7.5. Numerical validation
In order to validate the WKB solution (7.9) we compute the initial phases Im(ln ur
(r, 0)) of numerically determined optimal perturbations u= urer + uϕeϕ , as proposed
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FIGURE 12. (Colour online) Blow-up times t̄0 of numerically determined optimal axially
independent perturbations (k = 0) for RΩ = −2.0, η = 0.5, n = 3 and different shear
Reynolds numbers Re: (a) Re = 103, δ = 0.069, computed at N = 30; (b) Re = 104,
δ = 0.032, computed at N = 30; (c) Re = 105, δ = 0.015, computed at N = 70; and
(d) Re= 106, δ = 0.007, computed at N = 130. Results according to the WKB prediction
(7.13) (‘by WKB phases’) are contrasted with the numerically observed transient growth
maximum (‘effective’). The ‘effective ±δ’ show the expected error range due to finite Re
effects neglected in the WKB approximation (δ = (nRe)−1/3).

by Chapman (2002, p. 51ff.). By equation (7.9) this should yield

δr2

B0
Im(ln ur(r, 0))= t̄0 +O(δ). (7.13)

Owing to the non-uniqueness of the complex logarithm, relation (7.13) needs to be
assumed to be satisfied for some r0 ∈ (ri, ro). We choose r0 = 1

2(ri + ro).
In figure 12 the blow-up time t̄0 computed from (7.13) is plotted against the radial

coordinate r (solid curve). This WKB prediction is compared for Reynolds numbers
Re ∈ {103, 104, 105, 106}, corresponding to δ ∈ {0.069, 0.032, 0.015, 0.007}, to the
optimal time determined numerically from the full equations (dashed line). The
expected error ranges are denoted by [t̄0 + δ; t̄0 − δ] (dash-dotted lines). Excellent
agreement between the numerical results and WKB solution within the predicted error
of order δ and convergence for Re→∞ is found. Significant deviations are confined
to a O(δ) neighbourhood of the cylinder walls in which growth is prevented a priori
by the boundary conditions. Hence, the initial phase’s behaviour as a key property of
the derived WKB approximation has been numerically verified.
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8. Discussion

Rayleigh-stable Taylor–Couette flows with the outer cylinder rotating faster than
the inner one tend to become turbulent at moderate Reynolds numbers Re=O(1000)
(Taylor 1936; Borrero-Echeverry & Schatz 2010; Burin & Czarnocki 2012). In the
case of the quasi-Keplerian regime II, where the inner cylinder rotates faster than
the outer one, the existence of turbulence remains debated (Ji et al. 2006; Paoletti &
Lathrop 2011). At the same time, Rayleigh-unstable but linearly (eigenvalue) stable
counter-rotating Taylor–Couette flows are known to undergo subcritical transition
(Coles 1965).

In this work, the optimal linear transient growth Gmax, i.e. the maximum non-
normal energy amplification of infinitesimal perturbations, has been investigated. Our
analysis covers the whole parameter regime of Taylor–Couette flow, spanned by the
shear Reynolds number Re, the cylinder radius ratio η and the rotation number RΩ .
We find that accurate transient growth computations are numerically feasible up to
Re = O(106), even though the characteristic Y-shaped eigenvalue spectrum of the
linearized Navier–Stokes operator cannot be resolved for such Reynolds numbers.
This is in contrast to previous studies of channel flow (e.g. Reddy & Henningson
1993), which suggest that resolving the Y shape of the spectrum is necessary to
accurately compute transient growth. For Taylor–Couette flow the transient growth
maximum Gmax is well converged for resolutions where the approximated spectrum is
still far from its natural shape. This allows us to examine the optimal transient growth
for large Re. Our numerical computations show an asymptotic scaling Gmax ∼ Reα

for Re > O(104) with α ≈ 2
3 for all geometries considered, η ∈ {0.2, 0.5, 0.8}, and all

linearly stable flows.
This reveals energy growth of the same order in all regimes and allows for arbitrary

transient amplifications if Re is sufficiently large. Moreover, the dynamics discussed
in § 5.3 suggest that the underlying growth mechanisms (interpreted here as a curved
analogue of the Orr mechanism) are essentially the same in the studied regimes I,
II and IV. In the counter-rotating regime IV, there are additional amplifying effects
of the Rayleigh instability. Notably, the observed spiral-shaped structures resemble
those of the unstable eigenmodes emerging in the case of an imposed radial inflow
at the rotating outer cylinder, reported by Gallet et al. (2010). A distinction between
the regimes is found in the optimal axial wavenumber kmax, which reflects the axial
dependence of the optimal perturbations attaining maximum energy amplification.
Although columnar structures, representing axially invariant modes, dominate within
practically the whole quasi-Keplerian regime (II) above Re= O(1000) corresponding
to kmax = 0, weakly three-dimensional optimal perturbations 0 < kmax < 1 are found
in the likewise Rayleigh-stable regime I for Re→∞. The reason why a weak axial
structure enhances transient growth in the latter, but not in the former, remains
open. For counter-rotating flows, greater kmax =O(1) turn out to attain higher energy
maxima.

Our numerical results reveal an important role of axially invariant perturbations
for transient growth in linearly stable Taylor–Couette flow. Hence, the corresponding
linearized Navier–Stokes equations have been studied analytically in §§ 6 and 7.
Firstly, the analysis has revealed that transient growth and linear stability are indeed
independent of RΩ in the case k= 0. Then we have shown that optimal perturbations
blow up and decay by the Orr mechanism within the time scale t0 = O((nRe)−2/3).
By introducing this scale in the linearized evolution equations, an optimal transient
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growth scaling Gk=0
max(Re) = a(η)Re2/3 for axially independent perturbations has been

derived in the limit Re→∞, following the channel flow WKB analysis of Chapman
(2002). The results apply for all RΩ and thus in all flow regimes. For the coefficient
a(η) the semi-empirical formula, given by (5.1) and (5.2) has been obtained by a
cubic fit to the numerical data.

The expression Gk=0
max(Re) = a(η)Re2/3 provides a universal lower bound for the

optimal transient growth of general three-dimensional perturbations. This bound
attains the optimum in most of regime II according to the numerical results.
However, while quasi-Keplerian flows thus indeed have the smallest possible energy
amplification potential, the growth is nevertheless of the same order as in the
other regimes. Temporary amplifications of disturbances may promote nonlinear
instability if growing modes are consistently fed by nonlinear energy redistribution.
Hence, by our scaling results, such a transient growth-mediated instability is as
likely to exist in quasi-Keplerian flows as in any other regime. However, axially
independent perturbations are possibly not equally fit to feed nonlinear instabilities as
three-dimensional ones, e.g. because of their sharper growth and decay. In the future
this question could be addressed by studying nonlinear generalizations of transient
growth, such as applied for instance by Pringle & Kerswell (2010), Monokrousos et al.
(2011) and Pringle, Willis & Kerswell (2012). On the other hand, such investigations
are computationally expensive and beyond the scope of the present work.

Meseguer (2002) found a strong correlation between the experimentally observed
nonlinear stability boundary (Coles 1965) and optimal transient growth Gmax in
counter-rotating flows. Following these ideas, we estimate the threshold shear
Reynolds number ReT for subcritical transition in quasi-Keplerian flows using
our universal scaling result. To this end Gmax was computed numerically at the
subcritical stability boundary of Taylor–Couette flow (results not shown) according
to measurements by Mallock (1896), Wendt (1933), Taylor (1936), Coles (1965),
Borrero-Echeverry & Schatz (2010), Burin & Czarnocki (2012) and Avila & Hof
(2013). Not surprisingly, the correlation is not as strong as observed by Meseguer
(2002), who only considered the data of Coles (1965). Moreover, Burin & Czarnocki
(2012) have found their experimental results to depend significantly on the applied
endcap configurations, where the sensitivity is stronger for wider gaps. Our results
indeed range from Gmax ≈ 54 to Gmax ≈ 155. If we translate this to shear Reynolds
numbers, the uncertainty roughly agrees with the observed endcap effects. Calculating
the mean value of all computed threshold amplifications yields an a priori estimate
for the threshold transient growth in an arbitrary Taylor–Couette flow setting of
Gmax,T = 92± 26.

Applying the estimate formula for Gmax, we obtain a threshold Reynolds number
of ReT = a(η)−3/2(880± 370), giving, for instance, ReT = 67 000± 29 000 if η = 0.7.
For quasi-Keplerian flows, recent experiments have proceeded up to Re = O(106),
yielding contradictory results (see Ji et al. 2006; Paoletti & Lathrop 2011). However,
Avila (2012) has shown the state-of-the-art Taylor–Couette apparatus to be possibly
unsuited for such measurements because of axial endwall effects. On the other
hand, our estimated ReT still lies within the range of direct numerical simulations.
Hence, these may be able to resolve the controversy concerning the existence of
hydrodynamic turbulence in the quasi-Keplerian regime. If turbulence were found, the
value of the threshold ReT could be used to probe the significance of linear transient
growth as a measure for subcritical instability.



286 S. Maretzke, B. Hof and M. Avila

Acknowledgement
Support from the Max Planck Society is acknowledged. Simon Maretzke thanks

Laurette S. Tuckerman for her enlightening input concerning influence matrix
methods.

Appendix.
A.1. Calculation of the simplified linearized equations

In this appendix, a few supplementary computations for the derivation of the evolution
equations in § 6 are presented.

Firstly, the commutator relation [r∂r,Lrr] =L 0
rr is shown. Setting α := n2− 1+ inB

we obtain

[Lrr, r∂r]=
[
D+D − n2 − 1

r2
− k2 − in

r
vB
ϕ , r∂r

]

=
[(
∂r + 1

r

)
∂r − α

r2
, r∂r

]
= [∂2

r , r∂r] +
[

1
r
∂r, r∂r

]
−
[ α

r2
, r∂r

]

=2∂2
r + 2∂r − 2

α

r2
= 2Lrr + 2inA= 2L 0

rr. (A 1)

Moreover, the expression D+Lϕr +LrϕD+ can be simplified by

D+Lϕr +LrϕD+ =D+

(
2in
r2
− 2A

)
+
(

2A+ 2B
r2
− 2in

r

)
D+ = 2B

r2
D+ − 4in

r3
. (A 2)

Lastly, the equality ∂r(2/r)(rD+rD+ − n2) = 2L 0
rrrD+ + irn((2B/r2)D+ − 4in/r3)

holds since

∂r
2
r
(rD+rD+ − n2)=∂r

2
r
(r2∂2

r + 3r∂r − (n2 − 1))

=2r∂3
r + 2∂2

r + 6∂2
r −

2(n2 − 1)
r

∂r + 2(n2 − 1)
r2

=2r∂3
r + 8∂2

r −
2(n2 − 1)

r

(
∂r − 1

r

)
, (A 3a)

2L 0
rrrD+ + irn

(
2B
r2

D+ − 4in
r3

)
=2
(
∂2

r +
1
r
∂r − n2 − 1

r2
− inB

r2

)
rD+

+ 2inB
r2

rD+ + 4n2

r2

=2
(
∂2

r +
1
r
∂r − n2 − 1

r2

)
(r∂r + 1)+ 4n2

r2

=2r∂3
r + 8∂2

r −
2(n2 − 1)

r

(
∂r − 1

r

)
. (A 3b)

A.2. Analysis of the axial evolution equation
Consider the operator Lzz and the axial component uz from the evolution equation
(6.5) on the Hilbert space H introduced in § 2.1 and let u, v ∈ H ∩ C 2((ri; ro))
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satisfy homogeneous Dirichlet boundary conditions. Define A1 :=D+D , A2 :=−n2/r2

and B := −(in/r)vB
ϕ ; A2 and B multiply by a real and strictly negative or purely

imaginary function, respectively. Hence, A2 is self-adjoint negative definite and B is
skew hermitian. For A1 we have by partial integration

〈u,A1v〉 =
∫ ro

ri

ru∗(∂2
r + r−1∂r)v dr P.I.= −

∫ ro

ri

(∂ru∗)(∂rv)r dr (A 4a)

P.I.=
∫ ro

ri

(r∂2
r u∗ + ∂ru∗)v dr= 〈A1u, v〉. (A 4b)

Equation (A 4b) reveals A1 to be self-adjoint and, for u = v, (A 4a) shows its
negative definiteness. Thus, Lzz is the sum of a self-adjoint strictly negative operator
A :=A1 +A2 and a skew hermitian one, B. For the commutator [·, ·] we have

[A ,B] = (∂2
r + r−1∂r)

(
− in

r
vB
ϕ

)
6= 0. (A 5)

Consequently, the adjoint operator L ∗
zz satisfies

[L ∗
zz,Lzz] = [A −B,A +B] = 2[A ,B] 6= 0, (A 6)

so that Lzz is a non-normal operator. By definition ‖uz‖2 is equal to the axial
component’s portion of the total kinetic energy of u. Owing to the evolution
∂tuz =Lzzuz we have

∂t‖uz‖2 = 2 Re〈uz,Lzzuz〉 = 2 Re〈uz,A uz〉︸ ︷︷ ︸
< 0

+2 Re〈uz,Buz〉︸ ︷︷ ︸
= 0

< 0, (A 7)

where 2 Re〈x,T x〉= 〈x,T x〉+ 〈T x, x〉= 〈x,T x〉− 〈x,T x〉= 0 for T skew hermitian
has been used. By relation (A 7) there is no transient growth but only monotonic decay
in the axial component of k= 0 perturbations, as claimed in § 6.2.

A.3. WKB equations for the radial evolution equation
In what follows, we derive the WKB equations (7.3) and (7.4).

Application of the operator (rD+rD+ − n2)= (r2∂2
r + 3r∂r − (n2 − 1)) to the WKB

ansatz ur = δa exp(δ−1φ) of § 7.1 yields

exp(−δ−1φ)(r2∂2
r + 3r∂r − (n2 − 1))ur

= δ−1r2(∂rφ)
2a+ δ0{2r2(∂rφ)(∂ra)+ r2(∂2

r φ)a+ 3r(∂rφ)a}
+ δ1(r2∂2

r + 3r∂r − (n2 − 1))a+O(δ2). (A 8)

The left-hand side of equation (7.1) thus reads

δ exp(−δ−1φ)∂t̄(r2∂2
r + 3r∂r − (n2 − 1))ur

= δ−1(∂t̄φ) exp(−δ−1φ)(r2∂2
r + 3r∂r − (n2 − 1))ur + δ0r2∂t̄((∂rφ)

2A)

+ δ1∂t̄{2r2(∂rφ)(∂rA)+ r2(∂2
r φ)A++3r(∂rφ)A} +O(δ2) (A 9)

and the right-hand side is

exp(−δ−1φ)

(
δ3

(
∂2

r −
1
r
∂r − n2 − 1

r2

)
− iB0

r2

)
(r2∂2

r + 3r∂r − (n2 − 1))ur
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= exp(−δ−1φ)

(
− iB0

r2

)
(r2∂2

r + 3r∂r − (n2 − 1))ur + δ0r2(∂rφ)
4a

+ δ1{6r(∂rφ)
3a+ 6r2(∂rφ)

2(∂2
r φ)a+ 4r2(∂rφ)

3(∂ra)} +O(δ2). (A 10)

Hence, for the leading-order terms =O(δ−1), equation (7.3) is obtained:

(∂t̄φ)(r2(∂rφ)
2a)=− iB0

r2
(r2(∂rφ)

2a) ⇐⇒ ∂t̄φ =− iB0

r2
. (A 11)

The next-order O(δ0) equation reads

r2∂t̄((∂rφ)
2a)− r2(∂rφ)

4a

=−
(
∂t̄φ + iB0

r2

)
exp(−δ−1φ)(r2∂2

r + 3r∂r − (n2 − 1))ur

+ δ1{6r(∂rφ)
3a+ 6r2(∂rφ)

2(∂2
r φ)a+ 4r2(∂rφ)

3(∂ra)}
− δ1∂t̄{2r2(∂rφ)(∂ra)+ r2(∂2

r φ)a+ 3r(∂rφ)a}. (A 12)

Consequently, applying ∂t̄φ + iB0/r2 = 0 from expression (A 11) to equation (A 12),
the next-to-leading-order WKB equation (7.4) follows.

A.4. Green’s function for the radial evolution equation
In this appendix the Green’s function G used in § 7.3 is derived and thereby the
regularity of the approximate solution ũr defined by (7.11) is proven.

Consider the eigenvalue problem (r2∂2
r + 3r∂r − (n2 − 1))ψλ(r) = −λψλ(r) in the

interval r ∈ (ri; ro). With p := r3, q := (n2 − 1)r, w := r and boundary conditions
ψλ(ri)=ψλ(ro)= 0, this is a Sturm–Liouville problem of the form

− ∂r(p · (∂rψλ))+ q= λwψλ. (A 13)

The eigenvalues {λm}m∈N are thus discrete and the corresponding normalized
eigenfunctions form a complete orthonormal set {ψm}m∈N with respect to the inner
product 〈ψl, ψm〉 =

∫ ro

ri
ψ∗l ψmw dr of the Hilbert space H introduced in § 2.1.

A solution to the inhomogeneous problem (r2∂2
r + 3r∂r− (n2− 1))ψ = g and ψ(ri)=

ψ(ro)= 0 is consequently given by

ψ(r)=
∫ ro

ri

G(r, r′)g(r′)r′ dr′ with G(r, r′) :=−
∑

m∈N

ψm(r′)∗ψm(r)
λm

, (A 14)

where G is the Green’s function. By definition G is continuous and thus bounded
on [ri; ro]2. For the given problem the normalized solution to the eigenvalue problem
reads

λm = n2 − π2m2

ln η
and ψm(r)=

√−2 ln η
r

sin
(
−πm

ln η
ln

r
ri

)
, m ∈N. (A 15)
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