<Supporting Information>

Narcissistic self-sorting vs. statistic ligand shuffling within a series of phenothiazine-based coordination cages

Contents

1.	Cryst	tal Structure Analysis	.2
2.	¹ H N	MR and ESI-MS spectra of the mixing experiments	.5
	2.1.1	Mixture of ligands L ¹ and L ² and cages [Pd ₄ L ¹ ₈] and [Pd ₄ L ² ₈]	.5
	2.1.2	Mixture of ligands L^2 and L^3 and cages $[Pd_4L_8^2]$ and $[Pd_4L_8^3]$.6
	2.1.3	Mixture of ligands L^2 and L^4 and cages $[Pd_4L_8^2]$ and $[Pd_2L_4^4]$.7
	2.1.4	Mixture of ligands L ³ and L ⁴ and cages [Pd ₄ L ³ ₈] and [Pd ₂ L ⁴ ₄]	.8
	2.1.5	Mixture of cages [Pd ₄ L ¹ ₈] and [Pd ₄ L ³ ₈] and 2-Picoline	.9
	2.1.6 7	Temporal evolution of the heated samples of the mixture of ligands L^1 and L^3 and cag	jes
	[Pd ₄ L ¹ 8	s] and [Pd ₄ L ³ ₈]	10

1. Crystal Structure Analysis

Fig. SI-1 Exemplification of the solvent accessible crystal voids.

The pictures only show the residual electron density in the solvent channels of one asymmetric unit, the rest of the density and the BF_4^- ions are omitted for clarity. Due to the low resolution of the data, it was not possible to adequately model the lattice solvent into these voids and get a stable refinement. In order to extinguish the influence of the electron density present in the voids, the SQUEEZE routine of the PLATON program package was used.¹

 Table SI-1 Comparison of final model quality indicators.

	without solvent	with solvent	squeeze
R1	0.1158	0.0970	0.0797
wR2	0.3977	0.3804	0.3011
GooF*	1.360	1.612	1.010

*restrained GooF for all data

In conclusion, the utilization of the SQUEEZE routine led to a significant improvement of the model quality of the cage and its counterions. Check-cif data can be found in the reference section.²

Comparison of Crystal Packing of $[Pd_4L_8^1]$, $[Pd_4L_8^2]$ and $[Pd_4L_8^3]$

Fig. SI-2 Side view (left) and view along (right) the Pd_n-axis of nine selected cages extracted from the X-ray crystal packing of (a) $[Pd_4L_8^1]$, (b) $[Pd_4L_8^2]$ and (c) $[Pd_4L_8^3]$ (only anions positioned on the Pd_n-axis are shown, other anions and solvent molecules were omitted for clarity. C: grey, N: blue, O: red, S: yellow, B: brown, F: light green, Cl: dark green, Pd: purple). The hexyl residues are highlighted in the colours black, grey and silver to indicate different planes in the packing.

	$[Pd_4L_8^1]$	$[Pd_4L_8^2]$	$[Pd_4L_8^3]$
d_1 (Pd _{outer} -Pd _{inner})	8.77 Å	8.16 Å	8.40 Å
d_2 (Pd _{inner} -Pd _{inner})	8.85 Å	8.63 Å	8.47 Å
d_3 (Pd _{outer} -Pd _{outer})	7.88 Å	7.77 Å	6.54 Å
d_4 (Pd _{Cage} -Pd _{Cage})	21.12 Å	21.96 Å	21.99 Å

Table SI-2 Parameters of the cage structures and packing extracted from the crystal structures.

The Pd-Pd distances for a BF_4^- enclosed between two Pd(pyridine)₄ planes is at least 7.77 Å. The minimum Pd-Pd distance for a Cl⁻ is considerably smaller. It was found to be 6.54 Å for the Pd_{outer}-Pd_{outer} distance in the [Pd₄L³₈] double-cage (for comparison: the distance between two inner Palladium cations enclosing a chloride anion of a previously reported double-cage based on the suberone backbone was found to be 6.26 Å).³

2. ¹H NMR and ESI-MS spectra of the mixing experiments

2.1.1 Mixture of ligands L¹ and L² and cages [Pd₄L¹₈] and [Pd₄L²₈]

Fig. SI-3 ¹H NMR spectra (300 MHz, 298 K, CD₃CN of a binary system containing two different long ligands $L^1 + L^2$ (250 μ L of a 2.8 mM solution for each ligand). The outcome of the self-assembly gives mixed cages $[Pd_4L_m^1L_{8-m}^2]$, showing a statistical ligand distribution when the ligands are mixed prior to the addition of palladium and heating at 70 °C over night. In contrast, combining two preassembled double-cages $[Pd_4L_8^1] + [Pd_4L_8^2]$ (250 μ L of a 0.35 mM solution for each cage) leads to a mixture of coexisting homogeneous structures between which ligand exchange is tremendously slowed down.

Fig. SI-4 (a) ESI-TOF mass spectra in positive mode of the solution after addition of 0.5 eq Pd(CH₃CN)₄(BF4)₂ to premixed ligands L^1 and L^2 (250 µL of a 2.8 mM solution for each ligand) and heating in CD₃CN at 70 °C. The spectra shows a statistical distribution of the ligands forming the double-cages [Pd₄L¹_{8-m}] with m = 8-0. (b) ESI-TOF mass spectra in positive mode of the solution after mixing the double cages [Pd₄L¹₈] and [Pd₄L²₈] (250 µL of a 0.35 mM solution for each cage) and heating at 70 °C. * denotes other anion combinations with X = BF₄⁻, F⁻, NO₃⁻ and Cl⁻.

2.1.2 Mixture of ligands L² and L³ and cages [Pd₄L²₈] and [Pd₄L³₈]

Fig. SI-5 ¹H NMR spectra (300 MHz, 298 K, CD₃CN) of a binary system containing two different long ligands $L^2 + L^3$ (250 μ L of a 2.8 mM solution for each ligand). The outcome of the self-assembly gives mixed cages $[Pd_4L^2_mL^3_{8-m}]$, showing a statistical ligand distribution when the ligands are mixed prior to the addition of palladium and heating at 70 °C over night. In contrast, combining two preassembled double-cages $[Pd_4L^2_8] + [Pd_4L^3_8]$ (250 μ L of a 0.35 mM solution for each cage) leads to a mixture of coexisting homogeneous structures between which ligand exchange is tremendously slowed down.

Fig. SI-6 (a) ESI-TOF mass spectra in positive mode of the solution after addition of 0.5 eq Pd(CH₃CN)₄(BF4)₂ to premixed ligands L^2 and L^3 (250 µL of a 2.8 mM solution for each ligand) and heating in CD₃CN at 70 °C. The spectra shows a statistical distribution of the ligands forming the double-cages $[Pd_4L^2_mL^3_{8-m}]$ with m = 8-0. (b) ESI-TOF mass spectra in positive mode of the solution after mixing the double cages $[Pd_4L^2_8]$ and $[Pd_4L^3_8]$ (250 µL of a 0.35 mM solution for each cage) and heating at 70 °C. * denotes other anion combinations with X = BF₄, F, NO₃ and Cl.

2.1.3 Mixture of ligands L² and L⁴ and cages [Pd₄L²₈] and [Pd₂L⁴₄]

Fig. SI-7¹H NMR spectra (300 MHz, 298 K, CD₃CN) of the binary system containing the long ligand L^2 and the short ligand L^4 . The outcome of the self-assembly is independent of the order of mixing of the components. In both cases, this system shows narcissistic self-sorting behaviour to give mixture of cages $[Pd_4L_8^2]$ and $[Pd_2L_4^4]$.

Fig. SI-8 (a) ESI-TOF mass spectra in positive mode of the solution after addition of 0.5 eq Pd(CH₃CN)₄(BF4)₂ to premixed ligands L^2 and L^4 (250 μ L of a 2.8 mM solution for each ligand) and heating in CD₃CN at 70 °C. (b) ESI-TOF mass spectra in positive mode of the solution of the mixed double cages [Pd₄L²₈] and [Pd₂L⁴₄] (250 μ L of a 0.35 mM solution for each cage) and after heating at 70 °C. The spectra show no exchange of the ligands. X = BF₄, F, NO₃.

2.1.4 Mixture of ligands L³ and L⁴ and cages [Pd₄L³₈] and [Pd₂L⁴₄]

Fig. SI-9 ¹H NMR spectra (300 MHz, 298 K, CD₃CN) of the binary system containing the long ligand L^3 and the short ligand L^4 . The outcome of the self-assembly is independent of the order of mixing of the components. In both cases, this system shows narcissistic self-sorting behaviour to give mixture of cages $[Pd_4L_8^3]$ and $[Pd_2L_4^4]$.

Fig. SI-10 (a) ESI-TOF mass spectra in positive mode of the solution after addition of 0.5 eq Pd(CH₃CN)₄(BF4)₂ to premixed ligands L^3 and L^4 (250 µL of a 2.8 mM solution for each ligand) and heating in CD₃CN at 70 °C. (b) ESI-TOF mass spectra in positive mode of the solution of the mixed double cages [Pd₄L³₈] and [Pd₂L⁴₄] (250 µL of a 0.35 mM solution for each cage)and after heating at 70 °C. The spectra show no exchange of the ligands. X = BF₄, F, NO₃.

2.1.5 Mixture of cages [Pd₄L¹8] and [Pd₄L³8] and 2-Picoline

Fig. SI-11 ¹H NMR spectra (300 MHz, 298 K, CD₃CN) of the mixture of cages $[Pd_4L_8]$ and $[Pd_4L_8]$ (250 µL of a 0.35 mm solution for each cage) and 2-picoline (8 eq per cage molecule, 13 µL of a 101 mm stock solution). The outcome shows no exchange of the ligands even after heating at 70 °C.

Fig. SI-12 ESI-TOF mass spectra in positive mode of the solution of the mixed double cages $[Pd_4L_8^1]$ and $[Pd_4L_8^3]$ (250 µL of a 0.35 mm solution for each cage) and 2-picoline after heating at 70 °C. X = BF₄°, F°, NO₃°.

2.1.6 Temporal evolution of the heated samples of the mixture of ligands L¹ and L³ and cages [Pd₄L¹₈] and [Pd₄L³₈]

Fig. SI-13 a) ¹H NMR spectra (300 MHz, 298 K, CD₃CN) of a binary system of mixed-ligand cages $[Pd_4L_m^3L_{8-m}]$ (m = 1 – 8), containing two different long ligands $L^1 + L^3$ (250 µL of a 2.8 mM solution for each ligand) after heating at 70 °C for 22 h, 114 h, 279 h and 615 h. b) In contrast, combining two preassembled double-cages $[Pd_4L_8^1] + [Pd_4L_8^3]$ (250 µL of a 0.35 mM solution for each cage) and heating at 70 °C leads to a mixture of coexisting homogeneous structures between which ligand exchange is tremendously slowed down.

¹ a) A. L. Spek, J. Appl. Cryst., 2003, **36**, 7-13; b) P. van der Sluis, A. L. Spek, Acta Cryst., 1990, **A46**, 194-201.

² Check-cif data:

Bond precision:		C-C = 0.0087 A		Wavelength=0.71073	
Cell: a=21.991		2)	b=21.991(2) c=31.800(3)		3)
	alpha=90		beta=90	gamma=90	
Temperature:100 K					
		Calculat	ed		Reported
Volume		15379(3)			15379(3)
Space group		P4/nnc			P4/nnc
Hall group		-P 4a 2b	C		-P 4a 2bc

Moiety formula	2(C128 H108 N12 O8 Pd2 S4), 0.13(B8 F32), 0.73(B4 F16), 0.54(B2	C64 H54 B1.75 Cl0.25 F7 N6 O4 Pd S2					
Sum formula	C256 H216 B7 Cl F28 N24 O16 Pd4 S8	C64 H54 B1.75 Cl0.25 F7 N6 O4 Pd S2					
Mr	5209.80	1302.43					
Dx,g cm-3	1.125	1.125					
Z	2	8					
Mu (mm-1)	0.363	0.363					
F000	5328.0	5328.0					
F000'	5324.85						
h,k,lmax	25,25,36	25,24,36					
Nref	5936	5937					
Tmin,Tmax	0.968,0.978	0.400,0.428					
Tmin'	0.968						
Correction method= MULTI-SCAN							
Data completeness= 1.	000 Theta(max) = 23.837						
R(reflections) = 0.079	<pre>08(4025) wR2(reflections) =</pre>	0.3031(5937)					
S = 1.060	Npar= 682						

The following ALERTS were generated. Each ALERT has the format

test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level B

Crystal system given = tetragonal		
THETM01_ALERT_3_B The value of sine(theta_max)/wavelength is less than	0.575	
Calculated sin(theta_max)/wavelength = 0.5686		
<pre>PLAT019_ALERT_1_B Check _diffrn_measured_fraction_theta_full/_max</pre>	0.850	
PLAT973_ALERT_2_B Large Calcd. Positive Residual Density on Pd2	1.61	eA-3

●Alert level C

$\underline{\texttt{REFNR01}_\texttt{ALERT}_3_C} \texttt{Ratio of reflections to parameters is < 10 f}$	or a
centrosymmetric structure	
sine(theta)/lambda 0.5686	
Proportion of unique data used 1.0000	
Ratio reflections to parameters 8.7053	
<pre>RFACR01_ALERT_3_C The value of the weighted R factor is > 0.25</pre>	
Weighted R factor given 0.303	
PLAT084_ALERT_3_C High wR2 Value (i.e. > 0.25)	0.30

PLAT088_ALERT_3_C	Poor Data / Paramet	ter Ratio			8.71	
PLAT094_ALERT_2_C	Ratio of Maximum /	Minimum Residu	al Density .		2.19	
PLAT213_ALERT_2_C prolat	Atom F31	has ADP	max/min Rat	io		3.2
PLAT220_ALERT_2_C	Large Non-Solvent	C Ueq(ma	x)/Ueq(min)		3.5	Ratio
PLAT222_ALERT_3_C	Large Non-Solvent	H Uiso(ma	x)/Uiso(min)	••	4.3	Ratio
PLAT342_ALERT_3_C	Low Bond Precision	on C-C Bonds		(0.0087	Ang.
PLAT410_ALERT_2_C	Short Intra HH (Contact H19	H27E	••	1.94	Ang.
PLAT905_ALERT_3_C	Negative K value ir	n the Analysis	of Variance	••••	-6.187	
PLAT918_ALERT_3_C	Reflection(s) # wit	ch I(obs) much	smaller I(ca	lc)	7	Check
PLAT973_ALERT_2_C	Large Calcd. Positi	ive Residual De	nsity on	Pd1	1.48	eA-3

Alert level G

<pre>PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite</pre>	75 Note
<pre>PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms</pre>	77
PLAT042_ALERT 1_G Calc. and Reported MoietyFormula Strings Differ	Please Check
<pre>PLAT045_ALERT_1_G Calculated and Reported Z Differ by</pre>	0.25 Ratio
<pre>PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large.</pre>	0.19
PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large.	36.09
<pre>PLAT301_ALERT_3_G Main Residue Disorder Percentage =</pre>	30 Note
PLAT371_ALERT_2_G Long C(sp2)-C(sp1) Bond C4 - C6	1.42 Ang.
And 3 other PLAT371 Alerts	
More	
<pre>PLAT605_ALERT_4_G Structure Contains Solvent Accessible VOIDS of .</pre>	325 A**3
PLAT811_ALERT_5_G No ADDSYM Analysis: Too Many Excluded Atoms	! Info
PLAT860 ALERT 3 G Number of Least-Squares Restraints	1149 Note

PLAT869 ALERT 4 GALERTS Related to the use of SQUEEZE Suppressed! InfoPLAT909 ALERT 3 GPercentage of Observed Data at Theta(Max) still39 %

```
0 ALERT level A = Most likely a serious problem - resolve or explain
3 ALERT level B = A potentially serious problem, consider carefully
13 ALERT level C = Check. Ensure it is not caused by an omission or oversight
16 ALERT level G = General information/check it is not something unexpected
```

```
3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
14 ALERT type 2 Indicator that the structure model may be wrong or deficient
12 ALERT type 3 Indicator that the structure quality may be low
2 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check
```

³ Sabrina Freye, Reent Michel, Dietmar Stalke, Martin Pawliczek, Holm Frauendorf, Guido H. Clever, *J. Am. Chem. Soc.*, 2013, **135**, 8476.