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Objects usually consist of parts and the question arises whether there are perceptual

features which allow breaking down an object into its fundamental parts without any

additional (e.g., functional) information. As in the first paper of this sequence, we focus

on the division of our world along convex to concave surface transitions. Here we are

using machine vision to produce convex segments from 3D-scenes. We assume that a

fundamental part is one, which we can easily name while at the same time there is no

natural subdivision possible into smaller parts. Hence in this experiment we presented

the computer vision generated segments to our participants and asked whether they

can identify and name them. Additionally we control against segmentation reliability and

we find a clear trend that reliable convex segments have a high degree of name-ability.

In addition, we observed that using other image-segmentation methods will not yield

nameable entities. This indicates that convex-concave surface transition may indeed

form the basis for dividing objects into meaningful entities. It appears that other or further

subdivisions do not carry such a strong semantical link to our everyday language as there

are no names for them.

Keywords: object parts, visual assessment, 3D-perception, point-clouds, concave-convex

1. Introduction

Humans have very far-reaching abilities to recognize, design, and manipulate complex objects and
those are often composed of several parts. It remains, however, unknown how we break down
an object into its parts, especially in view of the fact that the parts which we recognized can be
considered as objects by themselves most of the time. E.g., a chair can be composed of legs, seat,
backrest, etc. The divisions into parts, which we perform, ends usually at entities, which for us
still have some (functional) meaning. Hence, do we not divide a chair-leg again into two (or more)
parts, even if—for example—the colors of top and bottom of the leg differ1. Thus, it seems that many
times we perform part-divisions such that we end up at “fundamental parts” to which we still can
attach some semantics. As an adult you could use your knowledge about structure and function of
object-parts to do this. But this cannot be true for very young infants, which soon after birth grasp
a toy hammer either at the head or the handle, but not at the junction of head and handle. Thus,

1Under special circumstances we certainly can do this and divide a part further. For example a joiner may need to tell her
apprentice that the “head” of the chair leg needs polishing and there may even a specific name for the “head.” Laypersons will
not even know it and, thus, in everyday speech such subdivisions would hardly ever be made.
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above the age of about 3 months infants have no problems
to individuate and successfully grasp parts, which still have no
functional meaning to them (Jeannerod, 1994).

This indicates that there might be fundamental perceptual
priors existing on which the concept of “what is a fundamental
part” can rely, independently of functional semantics. Commonly
one assumes that part-identification (and recognition) requires
complex—innate as well as acquired—cognitive processes
(Mandler, 1992, 2012; Carey, 2011), leading to multifactorial
representations in the neural system (Riesenhuber and Poggio,
2000; Palmeri and Gauthier, 2004). However, it remains unclear
how objects can be segregated into parts, and identified given the
high degree of variability of the sensory features which arise even
from similar objects (Geisler, 2008).

In the first paper of this sequence (Wörgötter et al., 2015)
we had focused on the question to what degree convex-concave
surface transitions may form the basis for our assessment of
object-ness (object-goodness is a synonym for this). This study
had been triggered by earlier works that had suggested that
convex-concave surface transitions influence how we perceive
objects (Rubin, 1958; Koenderink and van Doorn, 1982; Hoffman
and Richards, 1984; Biederman, 1987; Braunstein et al., 1989;
Cate and Behrmann, 2010; Bertamini and Wagemans, 2013). We
had observed that people prefer compact and convex 3D-objects,
hence those with few concavities. A detailed discussion of the
literature had been provided in the first paper (Wörgötter et al.,
2015), too, which shall not be repeated here.

The current study continues investigating these aspects
and here we ask to what degree will convex-concave surface
transitions lead to a perceptual division of our real 3D-world
into “fundamental parts”? Starting point of this investigation
is a computer vision algorithm that segments scenes without
additional knowledge—hence in a purely data-driven way—
into convex entities. The efficiency of this algorithms had been
demonstrated in a set of technical papers (Stein et al., 2014a,b;
Schoeler et al., 2015) and it can, thus, serve as a basis for
creating ground-truth convex segments. Hence computer vision
is not in the core of this study, instead we are asking: do these
convex segments carry any “meaning” for us? Thus, is there
a connection of a purely data driven bottom up (artificially
emulated) perceptual process—the breaking up of the world into
convex entities—with aspects of conscious cognition? Following
the discussion above about chairs and chair-legs and considering
the fact that we do not easily continue subdividing a chair-leg into
smaller meaningful entities, we assume that for us a fundamental
meaningful part is one which we can naturally name and which
we cannot naturally divide any further into smaller parts, which
have still have a name. Hence “name-ability” is in this study
the measure for an entity which has for us still a meaning and
we will show that convex-concave surface transitions subdivide
real 3D-scene into (mostly) nameable entities, which will not
happen for any other type of subdivision (e.g., subdivision by
color, texture, etc.). We are aware of the possibility that there
might be other aspects by which “meaning” of a segment could
be assigned, for example “graspability of a segment” and in
Section 3 we are addressing some of the complex questions that
arise from the here-chosen name-ability paradigm. Clearly, this

study does not attempt to capture each and every aspect of
object-part semantics but tries to show that there is indeed a
strong correlation between bottom up-segmented convex entities
and our ability to give a name to and, thus, understandİ these
segments.

2. Experiment - Visual Scene Analysis for
Part Recognition

This experiment asks: Do real-world entities, which are
obtained by splitting 3D-scenes along concave/convex transitions
correspond to those entities for which we have a name? Hence,
which are for us in some sense a fundamental object-part.

2.1. Methods
2.1.1. Visual Stimuli and Pre-Processing
A total of 10 real scenes have been analyzed, all of which are
shown in Figure 3, left panels. Scenes consist of 3D-point cloud
data and the corresponding RBG image. In general all scenes were
recorded by RGB-D sensors (e.g., “Kinect”), which provide 3D-
point cloud data and matched 2D RGB image. They were taken
from openly available machine vision data bases (Richtsfeld et al.,
2012; Silberman et al., 2012). The spatial resolution of the Kinect
sensor falls in the depth range of 0.6m to about 3.0–5.0m. This
limits the types of scenes that can be used. The here used indoor
scenes are a well established and very difficult benchmark set
for current machine vision approaches (Richtsfeld et al., 2012;
Silberman et al., 2012).

We segmented the scenes along convex-concave transitions in
the 3D-data by a machine vision algorithm. Figure 1 provides
an overview of this method shown by ways of two simple
test objects (Figure 1A). Point clouds are first reduced to few
so-called supervoxels (Papon et al., 2013) which capture the
scene geometry by their neighborhood relations (graph-edges
in Figure 1B1). Convex and concave edge configuration are
found using a conventional criterium (Figure 1B2) employed
at the surface normals of each point but corrected against
singularities as shown in Figure 1B3. (Some surface normals are
shown graphically in Figure 1D2 by ways of arrows.) This results
is convex (black) and concave (red) connections (Figure 1C),
which are used to break up the scene (Figure 1D1). Corners
such as the one shown in Figure D2 lead to an over-smoothing
of the normals (see red arrow) and the algorithm at the end
corrects for this leading to the final segmentation as shown in
Figure 1E. Details of the algorithm are described elsewhere (Stein
et al., 2014a,b). Note, this is a model-free, purely data-driven
segmentation algorithm, as required for the purpose of this study,
which does not use any additional features for segmentation. Due
to the limited spatial resolution of the RGB-D sensors, small
objects cannot be consistently labeled. Thus, segments smaller
than 0.3% of the image size were manually blackened out by us
as they most often represent sensor noise, and the same was done
with reflecting surfaces, which the Kinect sensor cannot measure.
After this we received a total of 247 segments (i.e., about 20–
30 per image). Segments are labeled on the 2D RGB image with
different colors to make them distinguishable for the observer.
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A B1 C D1 E

D2
B2 B3

FIGURE 1 | Overview of the computer vision method use for convex 3D-scene segmentation (for details see Stein et al., 2014a,b). (A) Two test objects
(B1) Initial point clouds are reduced to supervoxels (Papon et al., 2013) with graph edges showing how voxels are neighbors. (B2) Conventional definition of convex
and concave configurations. (B3) Singular locations like the one shown are not treated as concave, which massively improves algorithmic performance (C) Resulting
convex (black) and concave (red) connectivity graph. (D1) Segmentation. (D2) Noise reduction mechanisms avoiding over-smoothing inside corners. (E) Final
segmentation. Figure modified from Stein et al. (2014b).

2.1.2. Participants and Procedures
Participants were 20 healthy adults (age: 22–35) the purpose of
this study had not been revealed to them but all experimental
procedures had been clearly explained. Participants only partook
in the experiment after having given their explicit consent.
The experiment is not harmful and no sensitive data had been
recorded and experimental data has been treated anonymously
and only the instructions explained below had been given to
the participants. The experiment was performed in accordance
with the ethical standards laid down by the 1964 Declaration of
Helsinki. We followed the relevant guidelines of the Germany
Psychological Society according to which this experiment,
given the conditions explained above, does not need explicit
approval by an Ethics Committee (Document: 28.09.2004
DPG: “Revision der auf die Forschung bezogenen ethischen
Richtlinien.”

For the experiment we asked our subjects to compare the
segmented, color-labeled scenes with the corresponding original
RGB image (total amount of data: 4940). Segments were one by
one highlighted in the labeled image and, for every segment, we
asked our subjects to look at the original RGB image, find the
corresponding region asking: “How precisely can you name it?”;
and recorded their utterances for later analysis.

Note, the reverse procedure of asking subjects to label the
objects seen in the RGB images and then comparing it to the
algorithmic analysis is fundamentally flawed in the context of
this study as in this case subjects will use their world-knowledge
and label objects according to their most prevalent (the most
“natural”) higher level concepts. E.g., when looking at the image
of a woman, instead of labeling body parts, subjects will generally

label the complete figure as “woman” (see Silberman et al., 2012,
for such an approach).

2.1.3. Data Analysis and Statistical Tests
Subsequently we analyzed the utterances and divided them into
three groups: (1) precise naming of a segment (e.g., “table leg”),
where it does not play a role whether or not subjects would
use unique names (e.g., “table leg,” “leg,” and “table support”
are equally valid). (2) definite failure/impossibility to name
a segment. (3) potentially non-fundamental segments, where
subjects stated that they think this is segment could still be further
divided or that this an object but that he/she is not sure about the
identification (about its name); e.g., for too small segments.

In general we recorded and analyzed the complete utterances
that participants made. Case 1 and 2 led always to brisk
statements (either a name was quickly given to the segment, or
participants clearly said that this segment cannot be named).
Case 3 covered essentially the remainder of the utterances
where participants began to engage in more or less lengthy
interpretative discourse about the viewed segment. When this
happened we always counted this as a case 3.

For quantitative analysis we are, in addition, controlling for
errors introduced by image acquisition and/or by the computer
vision algorithm. For this we use the known distance error
function of the Kinect sensor (Smisek et al., 2011) to calculate
the reliability of every segment as described next:

Let x be a segment consisting of Nx point-cloud points at

distances z. Reliability Rx is calculated as Rx =
100 q(1)
Ax[q(z)]

where

Ax[q(z)] =
1
Nx

∑Nx
i=0 q(zi) is the average discretization error and
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q(z) = 2.73z2 + 0.74z − 0.58 the known error function (Smisek
et al., 2011). Thismeasure is normalized to 1m distance and yields
100 for a planar vertical segment at this distance, smaller values
for larger distances and vice versa.

The intuition behind this error function is simple: Given the
known Kinect error function (Smisek et al., 2011) we created here
a function that counts how far away a segment is (the farther the
worse) and how big it is (the bigger the better) and balanced these
two terms against each other to provide the so-called segment’s
reliability. This creates a reliability weighing that is similar to
our own visual experience, where we find it easier to recognize
large-nearby objects than those that are far away and small.

After this procedure we plotted the counts in groups
1, 2, and 3 against the reliability value of the respective
segments as scatter plots were we show all raw data as well
as mean values and regression lines across reliability intervals
[0, 10]; [10, 20]; · · · ; [150, 160] plotted above their interval
centers. Note, we resorted to plot raw data as scatter plots instead
of mean+standard deviation because this shows better the data
density for both axes.

It is important to comment here on the issue of potential
controls for this study. Those could theoretically be obtained
by using other feature-based (low-level, data-driven) image
segmentation methods, for example using the same images
segmented by a state-of-the-art color segmentation method or
any other low-level, data-driven segmentation. It is a known,
difficult problem in computer vision that none of these methods
will produce anything “object-like.” For example, color-based
segmentation yields highly luminance dependent results, as is
clearly visible from visual inspection of the middle panels in
Figure 3. In the discussion section we will discuss this aspect in
detail, which makes it impossible to use any other data-driven
method for comparison. Trying to name segments obtained by
such methods just leads to nothing. Higher level, model-based
segmentation approaches, which use human-labeled data, will
indeed lead to nameable segments (Silberman et al., 2012), but
these methods are not anymore data-driven and can therefore
also not be compared to our approach.

2.2. Results
We employed a “dumb,” model-free computer vision algorithm
that splits 3D-scenes along concave-convex transitions (Stein
et al., 2014a,b) asking to what degree does this low-level
segmentation yield identifiable entities? Note, we are not
concerned with object recognition or categorization here, instead
we wanted to know whether this fundamental geometric
segmentation leads to entities, which can be individuated and
understood by us as meaningful parts.

One example scene is shown in Figure 2A recorded with
an RGB-D sensor (“Kinect”), which produces 3D-point cloud
data. All other scenes are of equal complexity (Figure 3).
Using an advanced, model-free color-based segmentationmethod
(Ben Salah et al., 2011) one can see that the resulting image
segments rarely correspond to objects in the scene (Figure 2B)
and this is also extremely dependent on illumination (see
Figure 3, middle). Unwanted merging or splitting of objects will,

regardless of the chosen segmentation parameters, generically
happen (e.g., “throat+face,” “fridge-fragments,” etc. Figure 2B).

Instead, here 3D-point clouds were segmented along
concave/convex transitions. As cloud data is extremely difficult
to view and assess (see Figure 2C, for a magnified view), the
resulting 3D-segments were back-projected onto the 2D RGB
image and color labeled (Figure 2D). Too small segments had
been combined and blackened out, some cases are marked by
a blue “x” in Figure 2D (same for reflecting surfaces, see e.g.,
yellow “x,” the stove is indeed too reflecting for the Kinect and,
in addition, the few now-reflecting parts which exist at the stove
produced here too small segments).

Subjects many times used different names (e.g., “face” or
“head”) to identify a segment, which are equally valid as both
describe a valid conceptional entity (a part). Several segments
could not always be identified, however. Averaging across all data
shows that 64% of the segments could be identified, 30% not,
and there were 6% potentially cases for further subdivision. Are
these 30% counter-examples against our conjecture or are due
to machine vision errors? Thus, we additionally considered the
reliability of the individual segments (see Section 2.1). The Kinect
sensor produces a discretization error (Smisek et al., 2011) as
can be seen by the stripy patterns in Figure 2C (see also yellow
box). Due to this, data at larger distances become quadratically
more unreliable (see Section 2.1). As a result, for example, two
objects will be combined into one segment just due to the fact
that the separating concavity cannot be resolved anymore. When
considering reliability we find that subjects could more often
identify reliable segments (Figure 4, red) and unrecognized cases
dropped accordingly (green). Comparing this result again to
the segmented example scene (Figure 2D) we find that, indeed,
for less reliable segments (red lettering) identification is low or
ambivalent as compared to reliable ones.

3. Discussion

The hypothesis that concave-convex surface transitions are
instrumental for our object understanding is an old one and
there are several individual lines of evidence from perception
that are supporting this (Rubin, 1958; Koenderink and van
Doorn, 1982; Hoffman and Richards, 1984; Biederman, 1987;
Braunstein et al., 1989; Cate and Behrmann, 2010; Bertamini and
Wagemans, 2013). The experiments reported in the first paper
(Wörgötter et al., 2015) tried to address the problem of human
object concepts in an abstract way using abstract 3D-geometrical
structures (polycubes), hence, independent from the real world.
Here we used real scenes and found that convex-concave surface
transitions can be used to individuate and name object-parts.

It is of interest to discuss this aspect first from a more
technical perspective namely that of computer vision. This field
is terrifically hard pressed to segment scenes into object-like
entities. It has been possible since years to perform color-,
edge-, texture-, etc. based segmentation with increasing success
(Comaniciu and Meer, 2002; Felzenszwalb and Huttenlocher,
2004; Boykov and Funka-Lea, 2006; Arbelaez et al., 2011;
Ben Salah et al., 2011) but it is known, and discussed in the above
cited works, that none of these methods renders anything object-
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or part-like (see also Figure 2B). Purely data-driven, bottom-up
image segmentation seems doomed with respect to this aspect.
Computer vision has resorted much to the use of model-based
(top-down) approaches, which require the often very tedious
learning of large sets of object models (Arbelaez et al., 2012;
Richtsfeld et al., 2012; Silberman et al., 2012; Gupta et al., 2013),
and the choice of models by the designer will bias the system.
Thus, also in this field it is an intriguing problem of how to arrive
at ameaningful image partitioning.

Several computer vision approaches have also used
concave/convex surface transitions for image segmentation
(Vaina and Zlateva, 1990; Siddiqi and Kimia, 1995; Rosin, 2000;
Moosmann et al., 2009; Richtsfeld et al., 2012; Ückermann
et al., 2012), where these algorithms most often had been
complemented by additional features to improve segmentation.
Recently we were able to design a segmentation algorithm
based on this principle, which contained a few important
geometrical corrections, and—this way—became strong enough
to compete with far more complex segmentation methods for
object recognition (Stein et al., 2014a,b; Schoeler et al., 2015).
This made it possible to segment scenes in a bottom-up way with
few intrinsic/systematic errors and only by this we could begin
to ask whether such a partitioning would indeed lead to entities
that carry “meaning” for us.

Name-ability, hence the identification of a segment as a unique
entity with a language-expressible name, is one clear indicator
that we have a mental image, possibly a semantic category, for
such a segment. Other indicators might exist but are not needed
in the context of the here-asked questions.

There are, however, indeed some segments that cannot be
named and still “have a meaning for us.” One example is the
concave segment found on many plastic bottles used to close the
hand around it when lifting the bottle. Hence, name-ability does
not render a necessary condition for being a meaningful object
(or object-part) but it is sufficient and provides at least a strong
indicator for this. In addition, we observed that name-ability is
correlated with the computer-vision based reliability measure for
the segments. The more reliable they are the more often one
can name them (Figure 4). Also we have observed that unclear
cases which mostly are those where subjects though that these
segments could potentially by divided further do not much exist
(blue curve in Figure 4).

Thus, the here performed segmentation generically renders
identifiable object-parts (e.g., “head,” “arm,” “handle” of fridge,
etc. Hoffman and Richards, 1984). This is not trivial because
segmentations based on other low-level visual features (edges,
color, etc.) will not achieve this. On the other hand, arguably no
purely data-driven method exists, which would allow detecting

A C

B D

FIGURE 2 | Humans can with high reliability identify image segments that result from splitting images along concave-convex surface transitions.

(A) One example scene used for analysis. (B) Color-based segmentation of the scene. (C) Point cloud image of parts of the scene (rotated 3D view) with RGB data
overlayed. (D) 3D-segmented scene and segment names used by our subjects to identify objects. Missing percentages are the non-named cases. E.g., the pink
segment top-left was named “cupboard” by 60% of the subjects and remained unidentified by the remaining 40%. Red lettering indicates segments with reliability less
than 50.
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complex, compound objects (e.g., “woman”) as this requires
additional conceptual knowledge. Also, one observes that the
actual name for an object(part) depends on scene-context and
on each subject’s background knowledge. These cognitive aspects,
which relate to context analysis, hierarchization, categorization,
and other complex processes (Logothetis and Sheinberg, 1996),
however, are not relevant here; instead it is quite remarkable
that a purely geometrical breaking up of a 3D-scene, most
often leads to entities for which we have an internal object-part
concept which may reflect the low-level perceptual grounding of
the “bounded region” hypothesis formulated by Langacker as a
possible foundation for grammatical entity construal (Langacker,
1990).

One could try to introduce additional experimental paradigms
to address some of the above discussed aspects. Instead of this
we refer our readers to the first paper of this series (Wörgötter
et al., 2015), where we have addressed the problem of object
concepts “as such.” Both studies support each other and suggest

FIGURE 4 | Fraction of identified (red), not-identified (green) and

unclear (blue) segments for the complete data set (20 subjects, 247

segments each) plotted against their reliability. Fat dots represent
averages across reliability intervals [0,10]; [10,20]; · · · ; [150,160] plotted
above their interval centers, lines are the corresponding regression lines. The
ability to identify a segment increases with reliability. Grand averages (red:
0.64, green: 0.30, blue: 0.06) for all data are shown, too.

FIGURE 3 | Left panels show all visual scenes (RGB images only) used for Experiment 2 of this study and their segmentations. Scenes have been
segmented by a state-of-the-art, bottom-up segmentation algorithm which uses color similarities (Ben Salah et al., 2011) and the results show that these segments
rarely correspond to objects (middle panels). Note, it is possible to train classifiers with object models or partial models to obtain segmentation of complex, compound
objects also in such scenes (Richtsfeld et al., 2012; Silberman et al., 2012; Ückermann et al., 2012). This, however, requires a human-defined training set. Different
from this, here we are strictly concerned with model-free, bottom-up object segmentation. The here used 3D-segmentation, back-projected onto the images, is
shown in the right panels.
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that convex-concave transitions play a major role for our
understanding of objects and/or object parts.

3.1. Conclusion
The central problem with which we are continuously faced is “to
make sense” of the multitude of sensory features that arise in a
widely varying way even from similar objects. This is especially
troubling for young, inexperienced humans, who cannot rely on
much prior knowledge. There is increasing, albeit much debated,
evidence that core cognitive systems (Spelke et al., 1994) are
operational for several complex aspects like “object,” “agent,”
“cause,” etc., already in very young infants (see e.g., Carey, 2011
and commentaries therein for a discussion of the nativist vs.
empiricist stance on this). This notwithstanding it remains a
formidable problem to find a way to bind different sensory
features together to allow reliable object segregation. Color,
texture and other such statistical image features vary widely
(Geisler, 2008); deterministic features (e.g., coherent motion)
may be less variable, but normally we do not need them to
individuate (and recognize) objects, for example when analyzing
a static scene. Hence, none of these features can take a leading
role in this process. By contrast, the current set of two papers
supports that convex-concave transitions between 3D-surfaces
could indeed provide a strong prior to which a contiguous

concept of object-ness can be unequivocally bound. This feature
reaches across perception and action (see Wörgötter et al., 2015)
into our cognitive understanding of objects and their parts (this
study), and may help tying to it other less stable sensory aspects
of objects.
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