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Abstract

Rationale

Disruptions of brain anatomical connectivity are believed to play a central role in several
neurological and psychiatric illnesses. The structural brain connectome is typically derived
from diffusion tensor imaging (DTI), which may be influenced by methodological factors
related to signal processing, MRI scanners and biophysical properties of neuroanatomical
regions. In this study, we evaluated how these variables affect the reproducibility of the
structural connectome.

Methods

Twenty healthy adults underwent 3 MRI scanning sessions (twice in the same MRI scanner
and a third time in a different scanner unit) within a short period of time. The scanning ses-
sions included similar T1 weighted and DTI sequences. Deterministic or probabilistic tracto-
graphy was performed to assess link weight based on the number of fibers connecting gray
matter regions of interest (ROI). Link weight and graph theory network measures were cal-
culated and reproducibility was assessed through intra-class correlation coefficients,
assuming each scanning session as a rater.

Results

Connectome reproducibility was higher with data from the same scanner. The probabilistic
approach yielded larger reproducibility, while the individual variation in the number

of tracked fibers from deterministic tractography was negatively associated with reproduc-
ibility. Links connecting larger and anatomically closer ROls demonstrated higher
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reproducibility. In general, graph theory measures demonstrated high reproducibility across
scanning sessions.

Discussion

Anatomical factors and tractography approaches can influence the reproducibility of the struc-
tural connectome and should be factored in the interpretation of future studies. Our results
demonstrate that connectome mapping is a largely reproducible technique, particularly as it
relates to the geometry of network architecture measured by graph theory methods.

Introduction

The comprehensive map of structural neural connectivity at a medium and large scale (the
brain connectome) can be reconstructed from white matter Magnetic Resonance (MRI) diffu-
sion tensor imaging (DTT) [1]. White matter diffusion pathways determined through DTI trac-
tography are traditionally considered to be the biophysical representation of axonal bundles
and their myelin sheet [2, 3]. The number of DTI tractography streamlines between cortical
and subcortical gray matter regions of interest (ROIs) can be used as a measure of the magni-
tude of connection between ROIs [1, 4] and the iterative process of computing the connectivity
between all possible ROIs is applied to reconstruct the whole brain structural network [5]. The
resulting network can be subsequently assessed based on the several parameters, such as the
presence or absence of connections between ROlIs, the weight of regional connectivity, and the
geometry of connectivity through graph theory measures [4, 6-8].

The reconstruction of the structural connectome involves a multistep process, encompass-
ing the segmentation of gray matter ROIs (from high resolution T1 weighted images) into
anatomically-defined ROISs, and the reconstruction of diffusion streamlines through DTI trac-
tography [9]. Once these steps are independently performed, the tractography data and the seg-
mented ROIs are registered into the same spatial orientation (e.g., co-registered into the
diffusion image space), and the overall number of streamlines linking ROIs is computed. Nor-
malization steps can be used to avoid bias in the computation of connectivity strength. For
example, the connectivity strength can be normalized based on the distance between ROIs, the
size of the ROIs and the surface area of the ROI in the gray and white matter transition [1].

The disruption of normal patterns of structural brain connectivity is believed to play a cen-
tral role in the pathophysiology of several neurological and psychiatric illnesses, such as epi-
lepsy, dementia, movement disorders and schizophrenia [10-13]. Hence, the computation and
assessment of the structural connectome composes a growing subfield within neuroimaging,
with rapidly expanding applicability. Furthermore, the use of structural networks to investigate
disease mechanisms is constantly improved by advancements in MRI sequence engineering
and by increased computational power, enabling the iterative assessment of complex networks.

It is important to recognize that, in spite of several methodological advancements, DTI trac-
tography is still limited by methodological variables. Specifically, tractography can be influ-
enced by MRI signal to noise ratio, voxel size, number of encoding diffusion directions and
magnetic field strength [14]. The reproducibility of tractography can be, in consequence,
directly influenced by the reliability of DTIL. Also DTI is limited in its ability to resolve the
complex anatomy of axonal bundles that can cross, converge and diverge within a single
voxel. Hence, the anatomical location of white matter tracts may also play a role in network
reproducibility.

PLOS ONE | DOI:10.1371/journal.pone.0135247 September 2,2015 2/17



@’PLOS ‘ ONE

Reproducibility of the Structural Connectome

We hypothesized that, even though the structural brain connectivity is unlikely to change
significantly within a short period of time, the structural connectome measured from DTI may
exhibit measurement variations that are related to method reproducibility. We postulated that
the reproducibility of connectome is influenced by the approach used to calculate tractography
and by the anatomical location of white matter fibers.

We also hypothesized that, while regional variability may occur across different scanning
sessions, the overall conformation of network architecture, as measured through graph
theory variables, is less likely to vary significantly between sessions and may thus be fairly
reproducible.

We assessed the reproducibility of the individual structural connectome from a cohort of
healthy subjects who were serially assessed through modern DTT tractography connectivity. In
a short period of time, subjects were scanned twice in the same MRI scanner and in a third
time in another MRI scanner of the same manufacturer and model. We assessed how different
scanners, different tractography approaches and anatomical variables affect connectome
reproducibility.

Methods
Subjects

We studied 20 subjects recruited from the local community (mean age 34.6 £10.66 years) with
no history of neurological or psychiatric illnesses. All subjects signed an informed consent to
participate in this study. The Institutional Review Board at the University of Gottingen
approved this study.

Image acquisition

All subjects underwent a first MRI in a 3T Siemens Magnetom TIM Trio (Siemens Healthcare,
Erlangen, Germany) equipped with an 8-channel head coil for signal reception (Invivo, Gaines-
ville, Florida) located at the University of Géttingen, yielding: 1) two 2 MP-RAGE scans with
IPAT 2 and averaged after linear co-registration (3D MP-RAGE, TR = 2250ms, TE = 3.2ms,
256x256matrix, 256x256mm FOV, parallel imaging GRAPPA = 2); and 2) diffusion single-
shot EPI scan (30-directions with b = 1000 s/mm?, TR = 10000ms, TE = 93ms, 128x128 matrix
parallel imaging GRAPPA =2, FOV = 243x243 mm, isotropic 1.9 mm voxel size).

All subjects underwent a second scanning session in the same scanner yielding similar
images. The average time between Time 1 and Time 2 in scanner A was 126.4 £102.8 days
(range 12-442).

Finally, all subjects underwent a third scanning session, this time in a different physical unit
of the same type of MRI scanner (3T Siemens TIM Trio), equipped with a different head coil
(12-channel) employing the same imaging sequences. This scanner was also located at the Uni-
versity of Gottingen. The average time between Time 1 Scanner A and Time 1 in scanner B was
158.4 +103.6 days (range 21-465).

Image processing

All DICOM images were converted to NIfTI format, and diffusion gradients were extracted
using the software mriconvert (http://lcni.uoregon.edu/~jolinda/MRIConvert). The package
FMRIB Software Library (FSL)’s Diffusion Toolkit (FDT) was utilized for preprocessing of dif-
fusion-weighted images (DWIs) and for diffusion tensor estimation[15]. The DWIs underwent
eddy current correction through affine transformation of each DWT to the base b = 0 s/mm?
T2-weighted image.
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Gray matter ROIs were obtained from an automatic cortical and subcortical segmentation
of the T1-weighted images employing FreeSurfer [16, 17] (http://surfer.nmr.mgh.harvard.
edu/) with parcellation into anatomical ROIs according to the Lausanne anatomical atlas, dis-
tributed as part of the Connectome Mapping Toolkit (http://www.connectome.ch), yielding 83
ROIs in the subjects’ native T1-weighted space (a total of 42 regions with all regions existing in
both hemispheres except for brainstem (1 ROI). Essentially 41 regions are in both hemi-
spheres.) (S1 Table). The ROIS were transformed from the native T1 space into each subject’s
DTI space using an affine transformation obtained with FSL’s FLIRT.

Connectivity matrices

For each patient, we performed an estimation of brain connectivity through two commonly
used approaches: deterministic tractography and probabilistic tractography. These methods
harness advancements from popular and robust neuroimaging tools commonly used by the sci-
entific community.

Probabilistic tractography was estimated by applying FDT’s probabilistic method of fiber
tracking [18]. FDT’s BEDPOST was used to build default distributions of diffusion parameters
at each voxel, and probabilistic tractography was obtained using FDT’s probtrackx with default
parameters, namely 5000 individual pathways drawn through the probability distributions on
principle fiber direction, curvature threshold set at 0.2, 200 maximum steps, step length 0.5mm
and distance correction (default settings). The connectivity between ROIs was defined as the
number of streamlines arriving in one ROI when another ROI was seeded and vice-versa. Seed-
ing and streamline counting was performed in the voxels within the ROI that were located in
the boundary between gray and white matter (white matter surface of Freesurfer segmenta-
tion). Specifically, the weighted connectivity between ROIs i and j was defined as the number
of probabilistic streamlines arriving at the boundary between j and white matter when the vox-
els in the boundary between i and white matter were seeded, averaged with the number of
probabilistic streamlines obtained from the reverse process, i.e, seeding from j boundary, arriv-
ing at the I boundary. The calculation of the probabilistic streamlines was corrected based on
the distance travelled by the streamline connecting i and j (“distance correction” built into
probtrackX). A connectivity matrix A was defined for each subject, where the weighted link Aij
corresponded to the number of streamlines connecting i and j divided by the sum of the surface
of areas of ROIs i and j.

Deterministic tractography was reconstructed with the software Diffusion Toolkit[19] by
seeding all brain voxels. Two types of threshold were used as stopping criterion for fiber track-
ing. The first one was image mask, i.e., a threshold based on the distribution of the voxel-wise
signal intensity observed in the subject’s b0 image, acquired with all diffusion gradients turned
off, not sensitive to diffusion direction. This process was performed using the automatic calcu-
lation of threshold built into Diffusion Toolkit. The second stopping criterion was the angle
threshold, whereby streamlines encountering an angle greater than 45 degrees were stopped.
These are default settings.

As expected, the average number of streamlines tracked per subject was lower with deter-
ministic tractography (3.92 x10°) compared with probabilistic tractography (4.65 x10""). The
process of calculation of ROI connectivity from deterministic tractography is different than the
process of probabilistic tractography. With probabilistic tractography, different ROIs are
seeded and the number of streamlines arriving at other ROIs is counted. With deterministic
tractography, seeding occurs across all white matter voxels and the resulting fibers are then
assessed one by one, to evaluate whether the fiber extreme-points connect different ROIs. It is
possible that some fibers do not connect ROIs. Thus, the weighted connectivity between ROIs i
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and j was calculated by the number of deterministic fibers with one extreme in the boundary
between ROI i and white matter, and the other extreme in the boundary between ROI j and
white matter, or vice versa. The connectivity matrix was normalized based on the distance trav-
elled by each fiber connecting i and j, and the surface of areas of ROIs i and j, according to the
formula, proposed by Hagmann et al [1]: w(e) = (2/(Si + Sj)) ZV/1(f), where Si and Sj represent
the surface areas of ROIs i and j, ] represents the fiber linking i and j, and I(f) is the length trav-
elled by 1.

Importantly, the seed ROIs used in the construction of probabilistic connectivity matrices
were the same seed ROIs used in the construction of deterministic tractography matrices. The
ROIs were obtained from segmentation of the T1 weighted images, which were acquired in the
same session as the DTI images were acquired.

S1 Fig provides an overview of the pre-processing steps, demonstrating, for one representa-
tive subject, native T1 images with anatomical ROIs, the non-diffusion images, deterministic
tractography streamlines and connectivity matrices.

All raw connectome matrices evaluated in this study are available as S1 Data.

Network properties based on graph theory

For each subject’s connectivity matrix, we calculated graph theory (GT) measures yielding the
following parameters: nodal degree (the number of links connecting the node); nodal between-
ness centrality (the fraction of all possible network links that involve that node), nodal cluster-
ing coefficient (the number of nodes that are neighbors to that node, which are also neighbors
of each other); and nodal strength (degree multiplied by the weight of each connection). All
GT measures were calculated from non-directed weighted matrices using the brain connectiv-
ity toolbox (https://sites.google.com/site/bctnet/).

Reproducibility

We assessed the reproducibility of connectome mapping by evaluating the intra-class correla-
tion coefficient (ICC) between different time point measurements. The ICC was calculated for
the absolute agreement between measurements[20]. Assuming that each MRI session is a dif-
ferent “rater”, we evaluated the ICC for each link across all subjects across different MRI scan-
ning sessions. For example, the connectivity between ROIs i and j was assessed for each subject.
Hence, for the link i and j, 20 measurements were obtained for each scanning session, and the
ICC was calculated across scanning sessions. We assessed the ICC within the same scanner in
two different time points and across different scanners. The ICC was calculated using in-house
developed scripts based on the methods “Intraclass Correlation Coefficient (ICC)” by Arash
Salarian (https://www.mathworks.com/matlabcentral/fileexchange/22099) for Matlab.

We evaluated whether link-wise reproducibility was influenced by distance between ROIs,
the overall volume of ROIs and the ratio between ROI volumes. These relationships were
assessed through correlations between link-wise ICCs and anatomical features (totaling 12 cor-
relations, 6 for deterministic tractography measures, with 3 for images from the same scanner
and 3 for images from different scanners, and 6 for probabilistic tractography measures).

To investigate if links with high reproducibility from deterministic tractography also dem-
onstrated high reproducibility with probabilistic tractography, we performed correlations
between measures (2 correlations in total).

To evaluate whether probabilistic tractography yielded higher link-wise ICCs compared
with deterministic tractography, we assessed differences in distribution of ICCs through 2 t-
tests (one comparing one method versus another using images from the same scanner, and
another comparing methods with images from different scanners). We also evaluated whether
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links with a higher number of tracked fibers across individuals yielded a higher ICC, and
whether links with a higher variability in number across subjects (i.e., the standard deviation
divided by mean) was associated with a lower ICC. This was assessed through multiple correla-
tions (4 in total per tractography method).

Finally, we evaluated the reliability of GT measures by investigating the ICC across nodal
GT measurements. For each subject, a GT measure was obtained for each ROI (for example,
degree for ROI i). Similarly, assuming that each scanning session is a “rater”, the ICC was cal-
culated for each node, for each GT measure, and compared across different time points. This
step encompassed 14 correlation analyses

Overall, the level of statistical significance was corrected based on the total number of multi-
ple comparisons described above (38 = 12+2+2+8+14). A Bonferroni adjusted p = 0.0013 (i.e.,
0.05/38) was defined as the threshold for statistical significance.

Results

The average connectivity matrix for each time point and for each tractography modality is dis-
played in Fig 1. Connectivity matrices generated with deterministic tractography were more
sparsely populated compared with connectivity matrices from probabilistic tractography.

Link-wise ICCs are displayed in Fig 2. ICCs were overall lower when data from two different
scanners were assessed compared to data from the same scanner. The histograms demonstrat-
ing the distribution of ICCs can be observed in S2 Fig. Higher ICCs were observed with data
from the same scanner data compared with different scanners, when employing probabilistic
methods (t = -44.97, P<0.00001) and deterministic methods (t = -11.67, P<0.00001).

Probabilistic tractography was associated with overall higher ICCs compared with deter-
ministic tractography, both for data from the same scanner (t = -48.93, P<0.00001) as well as
for data from different scanners (t = -27.77, p<<0.00001).

The anatomical location of link-wise ICCs can be observed in Fig 3, which demonstrates
each connectome link represented by a line corresponding to the center of mass of the bundle
composed by the fibers included in that link (obtained from deterministic tractography). Each

Time 2 Scanner A, Deterministic Time 1 Scanner B, Deterministic

20 40 60 80
Node
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Fig 1. Average connectivity matrices from all subjects for each scanning session (Time 1 and 2 in Scanner A represent measures from the same
MRI scanner in different time points, and Time 1 in Scanner B represents a third measure from a different MRI scanner). Each matrix element
represents the weighted connectivity between the ROls indicated by the column and by the row. The color bars indicate log(weighted connectivity).

doi:10.1371/journal.pone.0135247.g001
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Fig 2. Link-wise ICCs. Each matrix entry represents the ICC observed for the white matter link between the
gray matter ROl in the row and the gray matter ROl in the column.

doi:10.1371/journal.pone.0135247.9002

link is in turn color-coded based on its reproducibility per tractography approach and scanner
usage. As the figure demonstrates, probabilistic tractography and scanning sessions within the
same scanner were associated with a higher number of reproducible links and higher ICCs. In
fact, probabilistic tractography was associated with a higher number of links with ICC>0.75
compared with deterministic tractography for images obtained from the same scanner
(p<0.0001) and from images obtained from different scanners (p<0.0001). S1 Table provides
a comprehensive report of link-wise ICCs and the corresponding white matter areas of tracto-
graphy streamlines traveled per link.

We observed significant relationships between link-wise ICC and the structural properties
of the connected ROIs. For deterministic tractography, ICCs were lower when the Euclidian
distance between ROIs was higher, or when one ROI was notably larger in volume compared
with other ROI ICCs were higher when the sum of the volumes of the connected ROIs was
higher. For probabilistic tractography, the same relationships were observed when data from
different scanners were evaluated. However, there was not a correlation between distance and
ICCs when data from the same scanner were evaluated. These results are summarized in Fig 4.
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Fig 3. This figure demonstrates each connectome link represented by a line corresponding to the center of mass of the bundle of fibers
associated with that link (estimated from deterministic tractography). Each link is color-coded based on its reproducibility per tractography approach
and scanner usage. The colorbars indicate the link-wise ICC.

doi:10.1371/journal.pone.0135247.g003

Links with a high ICC from deterministic tractography were more likely to exhibit a high ICC
with probabilistic tractography. S3 Fig demonstrates the significant positive correlations between
ICCs from probabilistic tractography and ICCs from deterministic tractography. This relation-
ship was observed with data from the same scanner and with data from different scanners.

For deterministic tractography, there was a positive association between the average number
of fibers tracked per link and the link’s ICC (same and different scanners). These data are dem-
onstrated in S4 Fig. Probabilistic tractography did not demonstrate a relationship between
ICCs and the number of tracked fibers. However, the dispersion of link weights (i.e., the
amount of variability in the number of tracked fibers per link) was negatively associated with
ICCs in both deterministic and probabilistic tractography (the latter, only when the data from
the same scanner was evaluated). These results are demonstrated in S5 Fig.

Finally, we observed that graph theory metrics were highly reproducible across different
time points in the same scanner and in different scanners for both probabilistic tractography
and deterministic tractography. Nodal degree, betweenness centrality, clustering coefficient
and strength were significantly correlated across scanning sessions for both tractography
modalities. These results are summarized in Figs 5 and 6.

Discussion

In this study, we evaluated the reproducibility of the whole brain structural connectome
derived from DTI. We assessed how reproducibility across time was affected by 1) MRI scanner
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Fig 4. This figure demonstrates the association between the anatomical properties of each link and link-wise reproducibility. The anatomical
properties are Euclidian distance between connected gray matter ROls, sum of the volume of the connected ROls and the ratio of the volumes between the
connected ROIs. Link-wise reproducibility is determined by ICCs. The scatter plots demonstrate each anatomical property in the y-axis, and the ICCs in the x-
axis. The statistical relationship between these measures is defined by a correlation coefficient, whose details are displayed below each scatter plot.

doi:10.1371/journal.pone.0135247.9004

(i.e., scanning sessions within the same scanner and across different scanners), 2) method of
calculating connectivity from DTI fiber tracking, and 3) anatomical properties of each link.

We evaluated images from a cohort of healthy subjects scanned and re-scanned within a rel-
atively short period of time to minimize any real biological variations in structural connectivity.
Our main findings are summarized below.

MRI scanner effect

We observed a higher reproducibility of connectome mapping when subjects were re-scanned
in the same scanner. A larger number of links exhibited a higher ICC when comparing data
obtained from the same scanner. Nonetheless, links within large white matter pathways, such
as the corpus callosum, superior and inferior longitudinal bundles maintained a high ICC
within and across scanners.

Method of calculating connectivity

Probabilistic tractography was associated with a higher number of links with a higher ICC.
However it is important to note that for some specific links (as described in S1 Table), the ICC
obtained from both tractography methods was equivalent. There was a significant correlation
between link-wise ICC from both methodologies, suggesting a consistency in anatomical
reproducibility from both tractography approaches.

Deterministic tractography lead to more sparse connectivity matrices (i.e., links with weight
equal to, or close to zero). This leads to the speculation that the overall higher reproducibility
of probabilistic tractography may be due to those links that are not consistently tracked with
deterministic tractography, but resolved with probabilistic methods. Indeed, deterministic trac-
tography reproducibility was also associated with link-weight dispersion (i.e., the variability in
the number of fibers per individual). Links with higher inter-subject variability in number of
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Fig 5. The scatter plots demonstrate the relationship between link-wise graph theory metrics
obtained from connectomes calculated from scanning session in time 1 (x-axis) and in time 2 (y-axis)
within the same MRI scanner. The scale set for the x-axis is the same as for the y-axis for all graphs. The
ICC between each pair of measurements is displayed below each scatter plot. Of note, the relationship
between degrees was not assessed for probabilistic tractography given the low sparsity of networks
generated from probabilistic methods, therefore leading to a ceiling degree effect.

doi:10.1371/journal.pone.0135247.g005
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Fig 6. The scatter plots demonstrate the relationship between link-wise graph theory metrics across
different scanners (Time 1, Scanner in x-axis and Time 1 Scanner B in y-axis). The ICC between each
pair of measurements is displayed below each scatter plot. Similarly, the relationship between degrees was
not assessed for probabilistic tractography given the low sparsity of networks generated from probabilistic
methods, therefore leading to a ceiling degree effect.

doi:10.1371/journal.pone.0135247.g006
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fibers were associated with a lower ICC. This observation suggests that tracks that are more
consistently tracked across subjects are also more reproducible.

Importantly, seeding is inherently different between deterministic and probabilistic tracto-
graphy and it may influence the levels of reproducibility of each method. The purpose of this
manuscript is to illustrate the levels of reproducibility of commonly used approaches to recon-
struct the structural connectome, rather than a comparison of DT methods.

Anatomical link-wise characteristics

Overall, we observed that measurement reproducibility was higher for fibers connecting ROIs
with their centers of mass within a shorter Euclidean distance. Measurement reproducibility
was also higher for fibers connecting larger ROIs. These are intuitive observations, since con-
nections between ROIs located distant from each other imply that the connecting link travels
through a longer distance, with possible anatomical intricacies of the fiber pathways. Fiber
tracking is therefore more likely to be interrupted as function of the number of connecting
steps in the tracking process[2]. Similarly, larger ROIs are likely to generate a higher number of
fibers and therefore increase the likelihood of successful tracking. Interestingly, reproducibility
of structural connectivity as a function of the size of the ROIs was maintained even for when
fiber tracking was corrected based on the surface or volume of the connecting ROIs.

Graph theory metrics

Interestingly, we observed a fairly high ICC for nodal graph theory measures when assessing
different scanning sessions (both within and across different scanners) for both tractography
approaches. These results suggest that the conformation of the neural network remains fairly
stable across scanning sessions, in spite of regional variability in fiber tracking. Specifically, the
nodal influence on the network, in relationship with the geometry of the nodal connectivity to
the network, as statistically equivalent reproducible and equivalent between measurements.
These results are encouraging for future connectivity studies employing graph theory based
approaches, as they suggest that the overall neural architecture was largely consistent across
scanning sessions and methodological approaches.

General discussion

Given that most neuroimaging studies will employ the same MRI scanner, we believe that our
findings related to the reproducibility of data from the same scanner may be our most relevant
observation. We noted that reproducibility is overall higher with probabilistic tractography,
but also significantly high with deterministic tractography for selected links. Our results sug-
gest that probabilistic and deterministic tractography yield reproducible observations, but
deterministic tractography reproducibility is more restricted to specific tracts.

These observations highlight the importance of taking into account the effect of methodo-
logical issues when interpreting structural connectivity data. The structural connectome mea-
surement is subjected to the sensitivity and reproducibility of the methodology employed, and
biological findings should be interpreted in this context.

Our results expand on previous observation regarding the reproducibility of DTT MRL
Magnotta et al. [21] assessed the multicenter reliability of diffusion tensor imaging, when inter-
preting voxel-based scalars of diffusion properties. They noted an intra-subject coefficient of
variation less than 1%, while the inter-site coefficient of variation increased to ~1%-3%. These
results are in accordance with the results from Vollmar et al. [22], who noted an intra-site
ICC = 0.90-0.99 and inter-site ICC = 0.82-0.99 in fractional anisotropy measurements. These
studies suggest that scalar measures of DTT are fairly reproducible. Our observations are also
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consistent with previous studies regarding reproducibility of DTI fiber tracking. Heiervang

et al. [23] observed that 12 direction data are sufficient for reproducibly defining the core of
large bundles but may be less sensitive to smaller pathways. They also observed that measures
of MD and FA long tracts were reproducible, with inter-session coefficient of variation below
5%. The high reproducibility of scalar diffusion metrics was also reported by Besseling et al
[24]. The findings from Danielian et al. [25] are also particularly relevant: by assessing specific
white matter pathways, they demonstrated that same-scan fiber tracking evaluations showed
good geometric alignment and reliable diffusion property measurements.

A recent study by Buchanan et al. [26] evaluating the test-retest reliability of connectome
measure demonstrated that within-subject differences were smaller than between-subject dif-
ferences. Our results are largely consistent with their observations, and we expand their conclu-
sion by demonstrating the influence on reproducibility of regional link-wise anatomical
localization, measures from different scanners and graph theoretical measurements of network
architecture. Interestingly our results also confirm the recent observations that network geome-
try are reproducible across scanning sessions, as demonstrated by Duda et al. [27] and by
Cheng et al. [28], whilst we further demonstrate that tractography approaches do not signifi-
cantly disrupt this reproducibility.

Interestingly, in an earlier study, Vaessen et al. demonstrated a high reproducibility of small
world metrics obtained from connectomes reconstructed from two different sessions in a small
group of subjects (n = 6) [29].

We believe that our observations from this present study provide important additional
insight into the reproducibility of structural connectivity for three new innovative aspects.
First, we evaluated the reproducibility of whole connectome mapping. The concept of the brain
connectome is a promising development in neuroscience since several physiological and patho-
logical processes of the human brain are postulated to arise from architectural organization of
neural networks[30-33]. Hence, the brain connectome will become an important tool in the
investigation of mechanisms underlying health and disease of the nervous system. The under-
standing of technical limitations and anatomical location of higher reproducibility can greatly
improve the interpretation of the findings from connectome-based studies. Second, we com-
pare different tractography approaches. Probabilistic tractography constitutes a robust expan-
sion of fiber tracking, with the possibility to resolve crossing fibers [18]. Nonetheless, it is a
time consuming method. By contrasting the reproducibility of probabilistic versus determin-
istic tractography, we provide further information to guide the decision of one approach versus
another in future studies. Third, we compared within and between scanner measures. Even
though most studies using the connectome may opt to use data from one scanner, a superb uti-
lization of the connectome is related to longitudinal studies, where, realistically, issues regard-
ing scanner upgrades or replacements may be common. Moreover, multi-site studies are
getting increasingly common to generate large datasets or to systematically study rare diseases.
Our results can guide the interpretation of data obtained from single or multiple scanners.

Study limitations

The results from this study should be interpreted in the context of its limitations. First, we did
not directly address the relationship between fiber curvature and reproducibility, including the
way affine registration may threaten reproducibility among areas prone to distortion. Further-
more, ROIs were converted from the native T1 space into the diffusion space using a linear
transformation. This “within-subject” approach reduces more significant distortions associated
with individual variability of sulci and gyri positioning. However, diffusion images are subject
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to different types of distortions compared with T1 images and the affine registration may be
insufficient to completely correct for those.

We also did not address the influence of other forms of fiber tracking, such as diffusional
kurtosis tractography [34, 35] and high angular resolution diffusion imaging, including DSI
[36]. We believe that the interaction between these methods and fiber curvature, fiber crossing
and complex link pathways would be a highly relevant topic for future studies. Also of impor-
tance for future studies is the effect of scanner drift over time. It must be noted that the scan/
re-scan period was variable across subjects, and that slight changes in image registration could
occur due to hardware variability over time, especially for longer time scales. Importantly, rou-
tine maintenance of the scanners must ensure reliable registration throughout time. The maxi-
mum scan/re-scan in our study was nonetheless similar to other studies looking at the
longitudinal reproducibility of tractography (e.g. [25]).

Second, our connectome data did not include cerebellar or intra-brain stem pathways. Reso-
lution of standard DTT is ill suited to resolve the complex brainstem architecture in a sufficient
way. Thus, we opted to use a single brainstem region that was fully integrated into the recon-
struction process allowing fibers to start and terminate there. This will ensure that fibers like
the cerebral peduncle are captured although not anatomically resolved. Cerebellar regions were
not used given the same anatomical constraints and less well established atlases.

Third, the reproducibility measurement employed throughout the manuscript, i.e., the ICC,
is attenuated if assumptions of normality are violated[37]. Thus, the ICC can underestimate
reproducibility. This limitation may be instrumental in the context of the structural connec-
tome, since link weights that do not conform to a normal distribution are those that are rela-
tively unstable across many subjects (being therefore close to zero). These links are not
homogeneously resolved across all subjects and the ICC identifies them as less reproducible.
Nonetheless, it is important to notice that the reproducibility described here may in fact be
mildly underestimated.

Fourth, we used the number of streamline to represent connectivity strength. However, DTI
streamlines are mathematical constructs that may not necessarily represent connectivity
strength [38]. In this context, our observations regarding the reproducibility of graph theory
measures may be more relevant, since they disclose the reliability of the structural conforma-
tion rather than link wise weight.

Fifth, gray matter ROI segmentation was performed based on an anatomically defined atlas
[17, 39]. Nonetheless, the division of the gray matter into ROIs is a semi-arbitrary process,
which may not directly represent functional or histological boundaries. Thus, gray matter
ROIs may be influenced by anatomical variability and may be inferior to connectivity based
parcellation schemes that respect individual patterns of connectivity.

Conclusions

In summary, in this study we described the reproducibility of structural connectome mapping
as a function of DTI tractography approach, anatomical properties of structural links and MRI
scanners. Our results demonstrate that connectome mapping is a largely reproducible tech-
nique, particularly as it related to the geometry of network architecture (measured by graph
theory) but special attention should be devoted to methodological and anatomical aspects asso-
ciated with lower reproducibility.

Supporting Information

S1 Data. All raw connectome matrices evaluated in this study are available in the com-
pressed file “Connectome_data.zip”. Please refer to the README.txt file within the

PLOS ONE | DOI:10.1371/journal.pone.0135247 September 2,2015 14/17


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0135247.s001

@’PLOS ‘ ONE

Reproducibility of the Structural Connectome

compressed folder for usage instructions.
(ZIP)

S1 Fig. Native T1 images with overlaid anatomical ROIs, non-diffusion images, parcella-
tion results, fiber tractography and connectome matrices for one representative subject
across the 3 scanning sessions. The scale bars represent log(number of DTT streamlines).
(PNG)

S2 Fig. Histograms demonstrating the distribution of ICCs.
(TIFF)

S3 Fig. Relationship between link-wise reproducibility across methods. Each element in the
scatter plot indicates an anatomical link.
(TIFF)

S4 Fig. Relationship between each link’s ICC (x-axis) and its number of fibers tracked on
average across all subjects (y-axis).
(TIFF)

S5 Fig. Relationship between the variability in the number of tracked fibers per subject and
its reproducibility.
(TIFF)

S$1 Table. Connectome links are ranked based on their reproducibility (ICC). The gray mat-
ter regions represent the connected nodes by each link, obtained from the Lausanne anatomical
atlas, distributed as part of the Connectome Mapping Toolkit (http://www.connectome.ch).
The white matter regions were extracted from the Johns Hopkins University DTI-based white
matter atlas [40] and they represent the white matter area traversed by a centroid path corre-
sponding to the center of mass of the fibers composing the link [41].
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