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PERIOD INTEGRALS AND RANKIN–SELBERG
L-FUNCTIONS ON GL(n)

Valentin Blomer

Abstract. We compute the second moment of a certain family of Rankin–Selberg
L-functions L(f×g, 1/2) where f and g are Hecke–Maass cusp forms on GL(n). Our
bound is as strong as the Lindelöf hypothesis on average, and recovers individually
the convexity bound. This result is new even in the classical case n = 2.

1 Introduction

Automorphic L-functions are naturally given as Dirichlet series and can therefore
be investigated using the arithmetic properties of their coefficients. Often, however,
L-functions can be interpreted as period integrals over the associated automorphic
forms; this gives a more geometric approach to L-functions and moments thereof.
Spectacular successes by such techniques have recently been obtained, for exam-
ple, in [Ven10,BR10,MV10], yielding very strong and general subconvexity bounds
for L-functions of degree 2, 4 and 8. L-functions and automorphic forms for higher
rank groups are quite mysterious objects, and their analytic properties are not well
understood in many respects. This paper establishes sharp (Lindelöf-type) bounds
for second moments of certain families of L-functions of arbitrarily high degree.

The last 10 years have seen a large number of deep and technically involved
results on classical Rankin–Selberg L-functions in various aspects, starting with
[Sar01,KMV02] and culminating in [HM06,LLY06,JM06,MV10]. Typically one of
the factors is fixed, while a subconvex bound is obtained with respect to one or more
parameters of the other factor. Here we are interested in the situation when both
factors have varying parameters (cf. the preprint [HM] for a very different scenario
of this type). We start with the most classical case: holomorphic cuspidal Hecke
eigenforms f, g ∈ Sk of even weight k for the group Γ = SL2(Z).
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Theorem 1. Let f ∈ Sk be a Hecke eigenform, and let Bk be an orthogonal Hecke
basis of Sk. Then

∑

g∈Bk

|L(f × ḡ, 1/2)|2 �ε k
1+ε

for any ε > 0.

Note that dimCSk ∼ k/12, so this bound is as strong as the Lindelöf conjecture on
average. Dropping all but one term, we recover the convexity bound L(f× f̄ , 1/2) �
k1/2+ε and also L(sym2f, 1/2) � k1/2+ε. Moreover, the Lindelöf hypothesis is true
for almost all g in the following sense:

Corollary 1. Let f ∈ Sk be a Hecke eigenform and let δ > 0. Then the bound

|L(f × ḡ, 1/2)| � kδ

is satisfied for all but O(k1−2δ+ε) Hecke eigenforms g ∈ Bk.

A classical proof of Theorem 1 would start with an approximate functional equa-
tion, followed by an application of Petersson’s trace formula. This leads to terms of
the form

∑

m,n�k

λf (n)λ̄f (m)Jk−1

(
4π

√
nm

)

and slightly more complicated expressions. Note that we are facing the complicated
asymptotic behaviour of the Bessel function in the transitional range, and that the
weight of the Fourier coefficients involved in this sum is large. Nevertheless, one
would still try to apply Voronoi summation in one of the variables which introduces
another Jk−1-function. One would then hope for a miracle (some special formula for
products of Bessel functions) to obtain the bound k1+ε.

Perhaps this argument can be pushed through, but we will present in the next sec-
tion a very short and clean proof of Theorem 1 based on a period integral approach
that completely avoids trace formulae, approximate functional equations, Voronoi
summation etc. The same argument works for Maaß forms of large spectral param-
eter: if f is a Maaß form for SL2(Z) with large spectral parameter ν ∈ iR, then

∑

|μ−ν|�1

|L(f × ḡ, 1/2)|2 � |ν|1+ε (1.1)

where the sum is over an orthogonal basis of Hecke–Maaß cusp forms g for SL2(Z)
with spectral parameter μ satisfying |μ− ν| � 1. In fact, the method is sufficiently
strong and flexible to generalize to GLn for arbitrary n. Here explicit trace formu-
lae and such tools are not even available, and a conventional approach would be
hopeless. We proceed to describe the general result in more detail.
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Let n � 2 and let f be a tempered, spherical Hecke–Maaß form for the group
SLn(Z) with spectral parameters ν = (ν1, . . . , νn−1) ∈ iRn−1. We follow the nota-
tion of [Gol06], except that our unitary axis is iR rather than 1/n + iR. Let g be
another tempered Maaß for SLn(Z) whose spectral parameters we generally denote
by μ = (μ1, . . . , μn−1) ∈ iRn−1. Let

ΓR(s) = π−s/2Γ(s/2).

We define the measure

dspecμ=
∏

1�j�k�n−1

G (n(μj + · · · + μk)) dμ, G(ix) :=
∣∣∣∣
ΓR(1+ix)

ΓR(ix)

∣∣∣∣
2

=
x

2π
tanh

(πx
2

)
.

(1.2)

Up to a positive constant, this is the Plancherel measure on SLn, measuring the
density of Maaß forms (see Section 3).

For example, if n = 3 then dspecμ is roughly |μ1μ2(μ1 + μ2)|dμ.

Theorem 2. We have

∑

‖μ−ν‖�1

|L(f × ḡ, 1/2)|2 �

⎛

⎜⎝
∫

‖μ−ν‖�1

dspecμ

⎞

⎟⎠

1+ε

where the sum runs over an orthogonal basis of tempered Hecke–Maaß cusp forms
g for the group SLn(Z) with spectral parameter μ ∈ iRn−1 satisfying ‖μ− ν‖ � 1.

The temperedness assumption is only made for convenience and not essential.
Again Theorem 2 is as strong as the Lindelöf hypothesis on average, and it is at the
edge of subconvexity: dropping all but one term, one recovers the convexity bound
for L(f × f̄ , 1/2).1 It also shows that for almost all Maaß forms g for SLn(Z) with
‖μ− ν‖ � 1 the central value L(f × ḡ, 1/2) satisfies the Lindelöf hypothesis.

Theorem 2 is the first time that moments of Rankin–Selberg L-functions or any
other type of L-functions in arbitrary rank are estimated efficiently. The key of suc-
cess is the geometric approach to L-functions via periods of automorphic forms that
never touches its Fourier coefficients explicitly.

It will be clear from the proof that the bounds of Theorems 1 and 2 hold for any
(fixed) point s = 1/2 + it on the critical line. Moreover, at least in the situation of
Theorem 1 the factor kε can be replaced by some power of log k. Another potential
situation for the application of the method is the level aspect. In the situation of
Theorem 1 it can likely provide bounds of the type

∑
g∈Bk(q) |L(f×ḡ, 1/2)|2 �k q

1+ε

1 We remark, however, that from a logical point of view Theorem 2 does not give a new proof of
the convexity bound for Rankin–Selberg L-functions, as the convexity bound in the form of [Li10,
Theorem 2] is implicitly used in the argument. Nevertheless, this remark sheds light on the quality
of the mean value result in Theorem 2.
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where f and g are now of (squarefree) level q. We leave this and other applications
to future work.

In rank 1 there are more period formulas available, and we remark that the
following variant of (1.1) holds.

Theorem 3. Let h be a fixed Hecke–Maaß cusp form for SL2(Z) and f a Hecke–
Maaß cusp form with large spectral parameter ν ∈ iR, then one has the following
Lindelöf-on-average estimate for triple product L-functions:

∑

|μ−ν|�1

L(f × ḡ × h, 1/2) �h |ν|1+ε

where the sum runs over all g satisfying the same summation condition as in (1.1).

Note that the central value is non-negative. Dropping all but the term g = f , this
recovers the convexity bound for L(f × f̄ ×h, 1/2). The work of Bernstein–Reznikov
establishes subconvexity if only one of the three factors in L(f×g×h, 1/2) has large
spectral parameter.

2 Proof of Theorem 1

Let

f(z) =
∞∑

n=1

λf (n)(4πn)(k−1)/2e(nz)Γ(k)−1/2 ∈ Sk, z ∈ H, (2.1)

be a cuspidal holomorphic Hecke eigenform of even weight k for the group Γ =
SL2(Z) with Hecke eigenvalues λf (n). For convenience we have included a normaliz-
ing Gamma factor2. The space Sk is a finite dimensional Hilbert space (of dimension
∼ k/12) with inner product

〈f, g〉 =
∫

Γ\H

f(z)ḡ(z)yk dxdy

y2
.

For z ∈ H let

E(z, s) :=
∑

γ∈Γ∞\Γ

	(γz)s =
1
2

∑

γ∈Γ∞\Γ

	(γz)s

be the standard Eisenstein series, initially defined in 
s > 1, with meromorphic
continuation to all s ∈ C. Here Γ is the image of Γ in PSL2(R) and Γ∞ is the group
of integral unipotent upper triangular matrices. It has a simple pole at s = 1 with

2 The double use of the symbol Γ as the Gamma-function and the modular group should not lead
to confusion.
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constant residue 3/π. By the Rankin–Selberg unfolding method we can compute the
norm of f :

‖f‖2 =
π

3
res
s=1

∫

Γ\H

|f(z)|2E(z, s)
dxdy

y2
=

π

3Γ(k)
res
s=1

∞∫

0

∞∑

n=1

|λf (n)|2(4πn)k−1e−4πnyys+k dy

y2

=
π

3Γ(k)
res
s=1

1
ζ(2s)

L(f × f̄ , s)
Γ(s+ k − 1)

(4π)s
=

1
2π2

res
s=1
L(f × f̄ , s)

where L(f × f̄ , s) = ζ(2s)
∑

n |λf (n)|2n−s is the Rankin–Selberg L-function. It well-
known that L(f × f̄ , s) in 
s � 1 + ε as well as the residue at s = 1 are uniformly
bounded by kε. This follows either by using Deligne’s bounds for λf (n) or more
elementarily from a trick of Iwaniec that is described in [Iwa02, p. 119–120] for
non-holomorphic cusp forms.

Let E∗(z, s) := ΓR(2s)ζ(2s)E(z, s). By Bessel’s inequality3 we have

‖fE∗(., s)‖2 �
∑

g∈Bk

1
‖g‖2 |〈fE∗(., s), g〉|2

for all s �= 1. Unfolding yields (first in 
s > 1, but then everywhere by analytic
continuation)

〈fE∗(., s), g〉 = L(f × ḡ, s)
Γ(s+ k − 1)Γ(s)

(2π)2sΓ(k)
.

Specializing to s = 1/2, we obtain

‖fE∗(., 1/2)‖2 �
∑

g∈Bk

1
‖g‖2

∣∣∣L(f × ḡ, 1/2)
Γ(k − 1

2)
Γ(k)

∣∣∣
2 � 1

k1+ε

∑

g∈Bk

|L(f × ḡ, 1/2)|2,

and it remains to bound the left hand side. From the Fourier expansion of E∗(z, 1/2)
it is easy to see (cf. e.g. [Iwa02, p. 61]) that E∗(z, 1/2) � y1/2(1 + | log y|) � y1/2+ε

for y � 1/2. Let F denote the standard fundamental domain for Γ\H. Then

‖fE∗(., 1/2)‖2 �
∫

F
|f(z)|2y1+εyk dxdy

y2
�

∫

F
|f(z)|2E(z, 1 + ε)yk dxdy

y2
. (2.2)

Unfolding once again, the right hand side equals

∞∑

n=1

|λf (n)|2
n1+ε

Γ(k + ε)
(4π)1+εΓ(k)

� kε,

and the proof is complete.

3 We may not have an equality, because the spectrum also contains weight k Maaß forms and
Eisenstein series; I thank G. Harcos for pointing this out.
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Remark. Notice how |E(., 1/2)|2 is transformed into E(., 1 + ε) in (2.2). This fea-
ture is also apparent in [MV10] in the course of regularizing E(., 1/2). We observe
that the proof of Theorem 1 is captured in the chain

1
k1+ε

∑

g∈Bk

|L(f × ḡ, 1/2)|2 �
∑

g∈Bk

1
‖g‖2

|Λ∗(f × ḡ, 1/2)|2

=
∑

g∈Bk

1
‖g‖2

|〈fE∗(., 1/2), g〉|2

� ‖fE∗(., 1/2)‖2 � 〈fE∗(., 1 + ε), f〉 = Λ∗(f × f̄ , 1 + ε) � kε (2.3)

where

Λ∗(f × ḡ, s) =
Λ(f × ḡ, s)

Γ(k)
= L(f × ḡ, s)

Γ(s+ k − 1)Γ(s)
(2π)2sΓ(k)

denotes a “re-normalized” completed L-function so that ‖f‖, ‖g‖ ≈ 1. We shall see
that the same argument works for arbitrary rank, the only “hard” ingredients being
Li’s ([Li10]) result on uniform bounds for Rankin–Selberg L-functions close to s = 1,
and Stade’s formula that is needed twice for the first inequality and once for the last
inequality in (2.3). The regularization of the GLn Eisenstein series is carried out in
Lemma 1 below which is of independent interest and may have applications in other
situations.

3 Automorphic Forms on GL(n)

Let SLn(R) = NAK be the Iwasawa decomposition, let W be the Weyl group,
and let a be the Lie algebra of A. We can view a tempered Maaß form f
for the group SLn(Z) as an element of ia∗/W ; the corresponding linear form
l = (α1, . . . , αn−1) contains the n − 1 archimedean Langlands parameters of f .
A convenient basis in a∗

C
is given by the fundamental weights; the coefficients

of l with respect to this basis can be obtainted by evaluating l at the co-roots
diag(1,−1, 0, . . . , 0), . . . ,diag(0, . . . , 0, 1,−1), giving n − 1 numbers that we call
nν1, . . . , nνn−1. Hence the relation between (ν1, . . . , νn−1) and (α1, . . . , αn) is given
by

νj =
1
n

(αj − αj+1) (3.1)

and

αj =
n−1∑

i=1

cijνi, cij =
{
n− i, 1 � j � i,
−i, i < j � n.

(3.2)

The Plancherel measure is given by (see e.g. [LM09, p. 127] as well as [LM09, Section
4] which contains a local Weyl law for GL(n))

∏

1�j<k�n

G(αj − αk)



614 V. BLOMER GAFA

which equals (1.2). On this occasion we remark that by Stirling’s formula
∫

‖μ−ν‖�1

dspecμ �
∏

1�j�k�n−1

(1 + |νj + · · · + νk|),

and that the analytic conductor C(f × g) of the Rankin–Selberg L-function consid-
ered in Theorem 2 satisfies

C(f × g) �
∏

1�j�k�n−1

(1 + |νj + · · · + νk|)2.

This justifies our earlier remark on the convexity bound implied by Theorem 2.
Let hn be the generalized upper half plane as in [Gol06, p. 10] with coordinates

z = x · y where x ∈ Un(R), the group of unipotent upper triangular matrices, and
y = diag(y1 · · · yn−1, . . . , y1, 1). It is equipped with a Haar measure

d∗z = dx d∗y =
∏

i,j

dxi,j

n−1∏

k=1

y
−k(n−k)
k

dyk

yk
.

For z ∈ hn put

z̃ := w(z−1)tw (3.3)

where w is the long Weyl element.
The Whittaker function W±

ν : hn → C is given by (analytic continuation in
ν = (ν1, . . . , νn−1) of)

W±
ν (z) =

∫

Un(R)

Iν(wuz)ψ±(u)du

where ψ±(u) = e(±un−1 + un−2 + · · · + u1) (where un−1, . . . , u1 are the entries of
the secondary diagonal of u) and

Iν(z) =
n−1∏

i,j=1

y
bij(

1
n
+νj)

i , bij =
{
ij, i+ j � n,
(n− i)(n− j), i+ j � n.

Then we have W±
ν (z) = ψ±(x)Wν(y) (the ± sign at Wν(y) on the right hand side

can be dropped, because the dependence on the sign is only in the first factor). Note
that this is not the completed Whittaker function, sometimes denoted by W ∗

ν (z)
in [Gol06, Section 5] and used in [Sta02]. It differs from the completed Whittaker
function by a factor

∏

1�j�k�n−1

ΓR(1 + n(νj + · · · + νk)).
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For instance, for n = 2 we have Wν(y) = 2π1/2 cosh(π|ν|/2)
√
yKν(2πy), see [Gol06,

p. 65]. The normalizing factor cosh(π|ν|/2) plays the same role as the factor Γ(k)−1/2

in (2.1). Whittaker functions for higher rank are not very well understood, but the
only information we will need is Stade’s formula ([Sta02]): for ν ∈ iRn−1 define
α ∈ iRn as in (3.2), and for μ ∈ iRn−1 define β ∈ iRn correspondingly. Then one
has an equality of meromorphic functions in s:

∫

R
n−1
�0

Wν(y)Wμ(y) det(y)sd∗y

=

∏n
j,k=1 ΓR(s+ αj − βk)

2ΓR(ns)
∏

1�j�k�n−1 ΓR(1+n(νj + · · · + νk))ΓR(1 − n(μj + . . .+ μk))
. (3.4)

For real s ∈ [1/2, 3/2] and μ = ν +O(1) it follows from (3.1) and (3.2) that the
right hand side is

�
∏

1�j�k�n−1

ΓR(s+ n(νj + · · · + νk))
ΓR(1 + n(νj + · · · + νk))

. (3.5)

In particular for s = 1/2 we have

∫

R
n−1
�0

Wν(y)Wμ(y) det(y)1/2d∗y �

⎛

⎜⎝
∫

‖μ−ν‖�1

dspecμ

⎞

⎟⎠

−1/2

, (3.6)

cf. (1.2).
Let f be a tempered Hecke–Maaß form for the group Γ = SLn(Z) with spectral

parameters ν = (ν1, . . . , νn−1) ∈ iRn−1 and Fourier expansion

f(z) =
∑

γ∈Un−1(Z)\SLn−1(Z)

∞∑

m1=1

· · ·
∞∑

mn−2=1

∑

mn−1 �=0

A(m1, . . . ,mn−1)∏n−1
k=1 |mk|k(n−k)/2

W±
ν (Mγz)

where ± = sign(mn−1), M = diag(m1 · · · |mn−1|, . . . ,m1, 1), γ is embedded
in SLn(Z) as ( γ

1 ) and A(m1, . . . ,mn−1) are Hecke eigenvalues, in particular
A(1, . . . , 1) = 1. We have A(m1, . . . ,mn−1) = ±A(m1, . . . ,−mn−1). It follows from
[Li10, Theorem 2] that the Rankin–Selberg L-function

L(f × f̄ , s) = ζ(ns)
∞∑

m1,...,mn−1=1

|A(m1, . . . ,mn−1)|2
(mn−1

1 mn−2
2 · · ·mn−1)s

(3.7)

is bounded by O(‖ν‖ε) in 
s � 1 + ε, and the same bound holds for its residue at
s = 1.
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The space of automorphic forms on Γ\hn is equipped with the standard inner
product 〈f, g〉 =

∫
Γ\hn f(z)ḡ(z)d∗z. A fundamental domain for Γ\hn is contained in

the Siegel set ([Gol06, Prop. 1.3.2.])

S := {z = x · y ∈ hn | 0 � xij � 1, yj �
√

3/2}. (3.8)

We introduce the maximal Eisenstein series

E∗(z, s) = ΓR(ns)ζ(ns)E(z, s)

where

E(z, s) :=
∑

γ∈P\Γ

det(γz)s

with

P =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜⎜⎝

∗ · · · ∗ ∗
... · · · ...

...
∗ · · · ∗ ∗
0 · · · 0 ∗

⎞

⎟⎟⎟⎠ ∈ SLn(Z)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

It is defined initially for 
s > 1 and can be continued meromorphically to all s ∈ C.
Its Fourier expansion is given explicitly for n = 2 and n = 3 in [Gol06, p. 58, p. 226].
For general n there is an inductive procedure to obtain a certain type of Fourier
expansion, see [Ter73]. We will use this to prove the following bound.

Lemma 1. For z ∈ S we have

E∗(z, 1/2) � det(z)1/2+ε + det(z̃)1/2+ε

where z̃ is as in (3.3), and the determinant is taken after bringing the matrix back
to the canonical Iwasawa form.

Proof. For a positive definite n × n-matrix M and 
ρ > n/2 define the Epstein
zeta-function by

Z(M,ρ) =
1
2

∑

a∈Zn\{0}
(atMa)−ρ. (3.9)

This can be continued meromorphically to all ρ ∈ C. Assume that M = XtZX
where X ∈ Un(R) is a unipotent upper triangular matrix and Z = diag(zn, . . . , z1)
is a diagonal matrix with zn � zn−1 � · · · � z1 � 1. Using the rapid decay of the
Bessel K-function, it follows by a simple induction from [Ter73, Theorem 1] with
n2 = 1 and n1 = n− 1, n− 2, . . . that

ΓR(2ρ)Z(M,ρ) =
n∑

j=1

(
ΓR(2ρ+ 1 − j)ζ(2ρ+ 1 − j) + Tj(M,ρ)

)
(z1 · · · zj)− 1

2 z
j

2
−ρ

j .

(3.10)
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where Tj(M,ρ) as a function of ρ is holomorphic and bounded on compact sets,
uniformly in M = XtZX. By [Gol06, (10.7.3)–(10.7.4)] we have for z = x · y ∈ hn

the equality4

E∗(z, s) = det(z)sΓR(ns)Z(xtytyx, ns/2).

Using (3.10) with X = x, Z = yty = diag((yn−1 · · · y1)2, . . . , y2
1, 1) and ρ = ns/2 and

assuming z = x · y ∈ S we find

E∗(z, s) =
n∑

j=1

(
ΓR(ns+ 1 − j)ζ(ns+ 1 − j) + T̃j(z, s)

) n−1∏

i=1

y
aij(s)
i

where

aij(s) =
{

(n− i)s, 1 � j � i,
i(1 − s), i < j � n,

and T̃j(z, s) is holomorphic and uniformly bounded for z ∈ S. Specializing to s = 1/2
and taking residues if necessary, we conclude

E∗(z, 1/2) �
n∑

j=1

n−1∏

i=1

y
aij(1/2)+ε
i � det(z)1/2+ε + det(z̃)1/2+ε

for z ∈ S. ��

Again we can use the Rankin–Selberg unfolding method to compute the norm of a
Maaß form f , see [Gol06, Section 12.1]. The Eisenstein series E(z, s) has a pole at
s = 1 with constant residue ([Ter73, p. 483]), hence

‖f‖2 � res
s=1

∫

Γ\hn

|f(z)|2E(z, s)d∗z � res
s=1

L(f × f̄ , s)
∫

R
n−1
�0

Wν(y)Wμ(y) det(y)sd∗y.

We can compute the integral by Stade’s formula (3.4) at s = 1. By (3.5) and recalling
Li’s bound for (3.7), we see

‖f‖2 � res
s=1

L(f × f̄ , s) � ‖ν‖ε. (3.11)

This shows the usefulness of our normalization of Whittaker functions.

4 The factor 1
2

in (3.9) is canceled by our definition of P that slightly differs from the definition
in [Gol06, p. 307].
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4 Proofs of Theorems 2 and 3

We are now ready to imitate the proof from Section 2 in the general case. Let f be
as in Theorem 2, and use the notation from Theorem 2. Then by Bessel’s inequality
we have

‖fE∗(., s)‖2 �
∑

‖μ−ν‖�1

1
‖g‖2

|〈fE∗(., s), g〉|2. (4.1)

Unfolding as above we obtain (first in 
s > 1)

〈fE∗(., s), g〉 = ΓR(ns)L(f × ḡ, s)
∫

R
n−1
�0

Wν(y)Wμ(y) det(y)sd∗y.

We use Stade’s formula5 (3.4), extend both sides meromorphically to all s ∈ C and
specialize s = 1/2. In the range ‖μ−ν‖ � 1, we use (3.11) for g and (3.6) to conclude

∑

‖μ−ν‖�1

|L(f × ḡ, 1/2)|2 � ‖ν‖ε
∑

‖μ−ν‖�1

1
‖g‖2

|L(f × ḡ, 1/2)|2

�

⎛

⎜⎝
∫

‖μ−ν‖�1

dspecμ

⎞

⎟⎠

1+ε

‖fE∗(., 1/2)‖2.

Let F be a fundmental domain for Γ\hn contained in the Siegel set S defined in
(3.8). Let f̃(z) = f(w(z−1)tw) be the dual Maass form. Then by Lemma 1,

‖fE∗(., 1/2)‖2 �
∫

F

(|f(z)|2+|f̃(z)|2) det(z)1+εd∗z �
∫

F

(|f(z)|2+|f̃(z)|2)E(z, 1+ε)d∗z.

The first term equals

∞∑

m1,...,mn−1=1

|A(m1, . . . ,mn−1)|2
(mn−1

1 mn−2
2 · · ·mn−1)1+ε

∫

R
n−1
�0

Wν(y)Wν(y) det(y)1+εd∗y,

and the second term is similar with indices interchanged. Appealing to Stade’s for-
mula one last time, and using the uniform bound for the L-series, the preceding
quantity is O(‖ν‖ε) and the proof is complete.

The proof of Theorem 3 is the same and uses the deep connection between triple
products and central values of L-functions, as developed in [Wat12], [Ich08], and

5 It is not hard to see that the Whittaker integral is negligible unless μ ≈ ν, so that the inequality
(4.1) does not lose much.
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[Woo12]. Fix a Hecke–Maaß cusp form h with spectral parameter λ ∈ iR, and let
f, g be as before. We have by (3.11)

1
|ν|1+ε

∑

|μ−ν|�1

L(f × ḡ × h, 1/2) �h

∑

|μ−ν|�1

1
‖f‖2‖g‖2‖h‖2

Λ∗(f × ḡ × h, 1/2).

Here

Λ∗(f × ḡ × h, s) = Λ(f × ḡ × h, s) cosh
(
π|ν|
2

)2

cosh
(
π|μ|
2

)2

cosh
(
π|λ|
2

)2

is the “normalized” completed L-function so that ‖f‖, ‖g‖, ‖h‖ ≈ 1. By Watson’s
formula, this is

∑

|μ−ν|�1

|〈fh, g〉|2 � ‖fh‖2 � ‖h‖∞‖f‖2 �h |ν|ε.

Open Access This article is distributed under the terms of the Creative Commons Attri-
bution License which permits any use, distribution, and reproduction in any medium, pro-
vided the original author(s) and the source are credited.
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