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We present a measurement of the average value of a new observable at hadron colliders that is sensitive
to QCD dynamics and to the strong coupling constant, while being only weakly sensitive to parton
distribution functions. The observable measures the angular correlations of jets and is defined as the
number of neighboring jets above a given transverse momentum threshold which accompany a given jet
within a given distance �R in the plane of rapidity and azimuthal angle. The ensemble average over all
jets in an inclusive jet sample is measured and the results are presented as a function of transverse
momentum of the inclusive jets, in different regions of �R and for different transverse momentum
requirements for the neighboring jets. The measurement is based on a data set corresponding to an
integrated luminosity of 0.7 fb−1 collected with the D0 detector at the Fermilab Tevatron Collider in pp̄
collisions at

√
s = 1.96 TeV. The results are well described by a perturbative QCD calculation in next-to-

leading order in the strong coupling constant, corrected for non-perturbative effects. From these results,
we extract the strong coupling and test the QCD predictions for its running over a range of momentum
transfers of 50–400 GeV.

© 2012 Elsevier B.V. Open access under CC BY license. 
Quantum chromodynamics (QCD) predicts that the strong force
between quarks and gluons becomes weaker when probed at high
momentum transfers, corresponding to small distances. This prop-
erty, referred to as asymptotic freedom, is derived from the renor-
malization group equation (RGE) [1–3]. The RGE does not predict
the value of the strong coupling αs , but it describes the depen-
dence of αs on the renormalization scale μR , and therefore on
the momentum transfer. Tests of perturbative QCD (pQCD) and
the property of asymptotic freedom can be divided into tests of
the validity of the RGE and determinations of the value of αs . By
convention, αs values extracted from data at different momentum
transfers are evolved to the common scale μR = M Z to allow com-
parisons between experiments. The current world average value is
αs(M Z ) = 0.1184 ± 0.0007 [4]. The validity of the RGE is tested
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by studying the dependence of αs on the momentum transfer. At
present, the RGE predictions have been tested in deep-inelastic
e±p scattering and in e+e− annihilation, where αs results have
been obtained for momentum transfers up to 208 GeV [4]. At-
tempts to extract αs at higher momentum transfers have been
carried out using inclusive jet cross section data in hadron–hadron
collisions [5,6]. These analysis methods require parton distribution
functions (PDFs) of the proton at large scales as input. Since the
main constraints on PDFs come from data at lower scales, the
knowledge of PDFs at large scales is mainly based on the evo-
lution according to the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
(DGLAP) evolution equations [7–9] which use αs and the RGE as
input. The αs results from inclusive jet cross section data at high
momentum transfers can therefore not be regarded as tests of the
RGE, since they are obtained assuming its validity.

In this Letter a new observable for hadron–hadron collisions is
introduced and its average value is measured. It is related to the
angular correlations of jets. In pQCD, this quantity is computed
as a ratio of jet cross sections, which is proportional to αs . Since
PDF dependencies largely cancel in the ratio, the extracted αs re-
sults are almost independent of initial assumptions on the RGE.
Values of αs are extracted for momentum transfers between 50
and 400 GeV. These provide the first test of the RGE at momen-
tum transfers above 208 GeV.

http://creativecommons.org/licenses/by/3.0/
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The analysis presented in this Letter studies the properties of
multi-jet production based on an inclusive jet sample in pp̄ col-
lisions at

√
s = 1.96 TeV. While pQCD predictions for any cross

section at a hadron collider depend on the PDFs, quantities with
significantly reduced PDF sensitivity can be constructed. One class
of such quantities is ratios of three-jet and dijet cross sections.
Based on such ratios, one can exploit the high energy reach at
hadron colliders to determine αs and to test the predictions of the
RGE at previously unexplored momentum scales. A new observ-
able is introduced, which probes the angular correlations of jets
in the plane of rapidity y [10] and azimuthal angle φ. This ob-
servable measures the number of neighboring jets that accompany
a given jet with transverse momentum (pT ) with respect to the
beam axis. The measured quantity R�R is the ensemble average
over all jets in an inclusive jet sample of this observable. The inclu-
sive jet sample consists of all jets in a given data set, and these jets
are hereafter referred to as “inclusive jets”. The measured quantity
is given by

R�R
(

pT ,�R, pnbr
T min

) =
∑Njet(pT )

i=1 N(i)
nbr(�R, pnbr

T min)

Njet(pT )
(1)

where Njet(pT ) is the number of inclusive jets in a given inclu-

sive jet pT bin, and N(i)
nbr(�R, pnbr

T min) is the number of neighboring

jets with transverse momenta greater than pnbr
T min, separated from

the i-th inclusive jet by a distance �R within a specified interval
�Rmin < �R < �Rmax with �R ≡ √

(�y)2 + (�φ)2. For �R < π ,
only topologies with at least three jets contribute to the numera-
tor of Eq. (1), in pQCD, and R�R is computed at lowest order as a
ratio of three-jet (O(α3

s )) and inclusive jet cross sections (O(α2
s )).

This ratio is proportional to αs .
This measurement is based on a data set corresponding to

an integrated luminosity of 0.7 fb−1 collected with the D0 de-
tector at the Fermilab Tevatron Collider. R�R(pT ,�R, pnbr

T min) is
measured in an inclusive jet sample at central rapidities |y| < 1
for pT > 50 GeV, defined by the Run II midpoint cone jet algo-
rithm [11] with a cone of radius Rcone = 0.7 in y and φ. It is
measured triple differentially, as a function of inclusive jet pT , for
different pnbr

T min, and in different �R regions. The pnbr
T min require-

ments are 30, 50, 70, or 90 GeV, respectively, and the different �R
intervals are 1.4 < �R < 1.8, 1.8 < �R < 2.2, and 2.2 < �R < 2.6.
For jets with Rcone = 0.7, the lower limit of �R > 1.4 ensures
that a jet does not overlap with its neighboring jets. The upper
limit on �R is smaller than π , so that contributing neighboring
jets stem only from three- (or more) jet topologies. The lowest
pnbr

T min requirement is chosen to ensure that the jet energy calibra-
tion and the jet pT resolutions are well understood. The trigger
efficiencies are high for jets with pT > 50 GeV in the inclusive jet
sample. The requirement of |y| < 1 implies that (|y| + �R) < 3.6
over the whole analysis phase space. In this rapidity region jets are
well-measured in the D0 detector. The data are corrected for ex-
perimental effects and are presented at the “particle level”, which
includes all stable particles as defined in Ref. [12].

A detailed description of the D0 detector can be found in
Ref. [13]. The event selection, jet reconstruction, and jet energy
and momentum correction follow closely those used in recent D0
measurements of inclusive jet, dijet and three-jet production rates
[14–18]. Jets are reconstructed in the finely segmented liquid-
argon/uranium calorimeter which covers most of the solid angle
for polar angles of 1.7◦ � θ � 178.3◦ [13]. For this measurement,
events are triggered by jet triggers. Trigger efficiencies are studied
as a function of jet pT by comparing the inclusive jet cross sec-
tion in data sets obtained by triggers with different pT thresholds
in regions where the trigger with lower threshold is fully efficient.
The trigger with lowest pT threshold is shown to be fully efficient
by studying an event sample obtained independently with a muon
trigger. In each inclusive jet pT bin, events are taken from a single
trigger which has an efficiency higher than 99%.

The position of the pp̄ interaction is determined from the
tracks reconstructed using data from the silicon detector and scin-
tillating fiber tracker located inside a 2 T solenoidal magnet [13].
The position is required to be within 50 cm of the detector cen-
ter in the coordinate along the beam axis, with at least three tracks
pointing to it. These requirements discard (7–9)% of the events, de-
pending on the trigger used. Contributions from cosmic ray events
are suppressed by requiring the missing transverse momentum in
an event to be less than 70% (50%) of the uncorrected leading jet
pT if the latter is below (above) 100 GeV. The efficiency of this re-
quirement for signal is found to be > 99.5% [14,18]. Requirements
on the characteristics of calorimeter shower shapes are used to
suppress the remaining background due to electrons, photons, and
detector noise that would otherwise mimic jets. The efficiency for
the shower shape requirements is above 97.5%, and the fraction of
background events is below 0.1% for all pT , as determined from
distributions in signal and in background-enriched event samples.

The jet four-momenta reconstructed from calorimeter energy
depositions are then corrected, on average, for the response of the
calorimeter, the net energy flow through the jet cone, additional
energy from previous beam crossings, and multiple pp̄ interactions
in the same event, but not for muons and neutrinos [14,18,19]. The
absolute energy calibration is determined from Z → e+e− events
and the pT imbalance in γ + jet events in the region |y| < 0.4.
The extension to larger rapidities is derived from dijet events us-
ing a similar data-driven method. In addition, corrections in the
range (2–4)% are applied that take into account the difference in
calorimeter response due to the difference in the fractional con-
tributions of quark and gluon-initiated jets in the dijet and the
γ + jet event samples. These corrections are determined using jets
simulated with the pythia event generator [20] that have been
passed through a geant-based detector simulation [21]. The to-
tal corrections of the jet four-momenta vary between 50% and 20%
for jet pT between 50 and 400 GeV. An additional correction is
applied for systematic shifts in |y| due to detector effects [14,18].
These corrections adjust the reconstructed jet energy to the energy
of the stable particles that enter the calorimeter except for muons
and neutrinos.

The differential distributions R�R(pT ,�R, pnbr
T min) are corrected

for experimental effects. Particle-level events are generated with
sherpa 1.1.3 [22] with MSTW2008LO PDFs [23] and with pythia

6.419 [20] with CTEQ6.6 PDFs [24] and tune QW [25]. The jets
from these events are processed by a fast simulation of the D0
detector response. The simulation is based on parameterizations of
jet pT resolutions and jet reconstruction efficiencies determined
from data and of resolutions of the polar and azimuthal angles of
jets, which are obtained from a detailed simulation of the detector
using geant.

The pT resolution for jets is about 15% at 40 GeV, decreas-
ing to less than 10% at 400 GeV. To use the fast simulation to
correct for experimental effects, the simulation must describe all
relevant distributions, including the pT , y and �R distributions for
the inclusive jets and the neighboring jets. The generated events
are reweighted, based on the properties of the generated jets, to
match these distributions in data. To minimize migrations between
inclusive jet pT bins due to resolution effects, we use the simula-
tion to obtain a rescaling function in reconstructed pT that opti-
mizes the correlation between the reconstructed and true values.
The bin sizes in the pT distributions are chosen to be approxi-
mately twice the pT resolution. The bin purity after pT rescaling,
defined as the fraction of all reconstructed events that were gen-
erated in the same bin, is above 50% for all bins. We then use
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Fig. 1. (Color online.) The measurement of R�R as a function of inclusive jet pT for three different intervals in �R and for four different requirements of pnbr
T min. The inner

uncertainty bars indicate the statistical uncertainties, and the total uncertainty bars display the quadratic sum of the statistical and systematic uncertainties. The theory
predictions are shown with their uncertainties.
the simulation to determine bin correction factors for experimen-
tal effects for all analysis bins. The correction factors are computed
bin-by-bin as the ratio of R�R without and with simulation of the
detector response. These also include corrections for the energies
of unreconstructed muons and neutrinos inside the jets. The total
correction factors for R�R using the reweighted pythia and sherpa

simulations agree typically within 2%. The average factors, used to
correct the data, are typically between 0.98 and 1.01, but never
below 0.93 or above 1.03. The difference between the average and
the individual corrections is taken into account as an uncertainty
which is split into two contributions. One contribution corresponds
to the systematic difference between the two individual correc-
tions, and the other one corresponds to the statistical fluctuations.
The former is attributed to the model dependence and assumed to
be correlated between the data points, while the latter is included
in the statistical uncertainty of the results.

In total, 69 independent sources of experimental systematic un-
certainties are identified, mostly related to jet energy calibration
and jet pT resolution. The effects of each source are taken as fully
correlated between all data points. The dominant uncertainties for
the differential cross sections are due to the jet energy calibration
(2–5)%, and the model dependence of the correction factors (2–3)%.
Smaller contributions come from the jet pT resolution (0.5–1.5)%,
the jet φ resolution (0.5–2)%, and from the uncertainties in sys-
tematic shifts in y (0.5–1)%. All other sources are negligible. The
total systematic uncertainties are between 2% and 6%.

The results for R�R(pT ,�R, pnbr
T min) are displayed in Fig. 1 as

a function of inclusive jet pT , in different regions of �R and for
different pnbr

T min. The values of pT at which the data points are pre-
sented correspond to the geometric bin centers. A detailed docu-
mentation of the results, including the individual uncertainty con-
tributions, is provided in the supplementary material. For a given
�R region, and pnbr

T min, R�R increases with pT up to a maximum
value, above which it falls when approaching the kinematic limit.
At fixed pT , R�R increases with �R and decreases with increas-
ing pnbr

T min. At lower pT , R�R depends more strongly on pnbr
T min. For

larger pnbr
T min, both the pT and the �R dependencies are stronger.

The theory predictions for R�R which are compared to the data,
and which are later used to extract αs , are given by the product of
the NLO pQCD results and correction factors for non-perturbative
effects, including hadronization and underlying event. The non-
perturbative corrections are determined using pythia 6.425 with
tunes AMBT1 [26] and DW [27], which use different parton shower
and underlying event models. The hadronization correction is ob-
tained from the ratio of R�R at the parton level (after the parton
shower) and the particle level (including all stable particles), both
without underlying event. The underlying event correction is com-
puted from the ratio of R�R computed at the particle level with
and without underlying event. The total corrections are defined
as the combination of the corrections due to hadronization and
the underlying event and they vary between +10% and −3% for
tune AMBT1 and between −1% and −10% for tune DW. The re-
sults obtained with the two tunes agree typically within (2–4)%
and always within 11%. The central results are taken to be the
average values, and the uncertainty is taken to be half of the differ-
ence (given in the supplementary material). As a cross-check, the
non-perturbative corrections have also been derived with herwig

6.520 [28,29]. The herwig results are consistent with the results
from the pythia tunes AMBT1 and DW for all kinematic regions
considered in this analysis.

The NLO pQCD prediction is given by the ratio of an inclusive
three-jet cross section and the inclusive jet cross section both eval-
uated at their respective NLO. The numerator and the denominator
both depend on the PDFs and most of the PDF dependencies can-
cel in the ratio. A residual PDF dependence remains, due to small
differences in the decomposition of the partonic subprocesses and
a slightly different coverage of proton momentum fractions x in
the numerator and the denominator. While the PDFs have no ex-
plicit αs dependence, their knowledge (i.e. PDF parameterizations)
depends implicitly on αs due to assumptions on αs during the ex-
traction procedure. Therefore, the pQCD prediction for R�R has an
explicit αs dependence stemming from the ratios of three-jet and
inclusive jet matrix elements, and an implicit αs dependence due
to the residual dependence on the PDFs.

The NLO pQCD results are computed using fastnlo [30] based
on nlojet++ [31,32], in the MS scheme [33] for five active quark
flavors. The calculations use the next-to-leading logarithmic (two-
loop) approximation of the RGE and αs(M Z ) = 0.118 in the matrix
elements and the PDFs, which is close to the current world average
value of 0.1184 [4]. The central choice μ0 for the renormalization
and factorization scales is the inclusive jet pT , μR = μF = μ0 =
pT , and the MSTW2008NLO PDFs [23] are used.

The uncertainties of the pQCD calculations due to uncalculated
higher order contributions are estimated from the μR,F depen-
dence. These are computed as the relative changes of the results
due to independent variations of both scales between μ0/2 and
2μ0, with the restriction of 0.5 � μR/μF � 2.0. These variations
affect the theory results by (3–9)%. The PDF uncertainties are
computed using the up and down variations of the 20 orthogo-
nal PDF uncertainty eigenvectors, corresponding to the 68% C.L.,
as provided by MSTW2008NLO. The R�R results obtained with
the CT10 [34] and NNPDFv2.1 [35] PDF parameterizations agree
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Fig. 2. (Color online.) The ratios of the R�R measurements and the theory predictions obtained for MSTW2008NLO PDFs and αs(M Z ) = 0.118. The ratios are shown as a
function of inclusive jet pT in different regions of �R (rows) and for different pnbr

T min requirements (columns). The inner uncertainty bars indicate the statistical uncertainties,
and the total uncertainty bars display the quadratic sum of the statistical and systematic uncertainties. The theory uncertainty is the quadratic sum of PDF and scale
uncertainties.
with those for MSTW2008NLO typically within 1% and always
within 3%.

The theory results are compared to the data in Fig. 1, and the
ratios of data and theory are displayed in Fig. 2 for all twelve
kinematic regions in �R and pnbr

T min. The PDF uncertainties are
(2–5)% and the scale uncertainties are typically (4–8)%. For higher
pnbr

T min = 50, 70, and 90 GeV, the theoretical predictions are in good
agreement with data and the ratios are independent of pT , �R ,
and pnbr

T min. Only for pnbr
T min = 30 GeV, the predictions are systemat-

ically below the data by (8–15)%. This might be caused by limita-
tions of either the perturbative calculation or the modeling of the
non-perturbative effects at low pnbr

T min.
These R�R results are then used to determine αs and to test

the two-loop RGE prediction for its running as a function of the
scale pT . In an initial study, the data are split into 12 subsets
defined by the different (�R, pnbr

T min) requirements. Assuming the
RGE, the value of αs(M Z ) is fitted to each of these subsets, and
the corresponding χ2 values are determined that compare data
and theory. Since each of these subsets covers a large inclusive
jet pT range, a violation of the RGE would be reflected in poor
χ2 values. Furthermore, the comparison of the extracted αs(M Z )

values allows the study of the dependence of the results on �R
and/or pnbr

T min. The data from kinematic regions in (�R, pnbr
T min) in

which the αs(M Z ) fit results are consistent with each other are
then used in the subsequent analysis. These data are split into 12
groups, each with the same inclusive jet pT , combining data points
for different (�R, pnbr

T min). For each group, αs is determined at the
corresponding pT , and then evolved, using the RGE, to μR = M Z .

The αs extraction requires the theory predictions to be avail-
able as a continuous function of αs used in the matrix elements
and PDFs. The global PDF fits [23,34,35] do not provide the full αs

dependence of their results, but only PDF sets at discrete values of
αs(M Z ), in increments of �αs(M Z ) = 0.001. A continuous αs(M Z )

dependence for R�R is obtained, by cubic interpolation (linear
extrapolation) of the theory results inside (outside) the available
αs(M Z ) range. For the central results, we use MSTW2008NLO PDFs
which cover the largest range of 0.110 � αs(M Z ) � 0.130. The
fits determine αs by using minuit [36] to minimize the χ2 func-
tion [37] calculated from the differences between theory and data.
All correlated systematic experimental and theoretical uncertain-
ties are treated in the Hessian approach [37], except for the un-
certainty due to the μR,F dependence. The correlated statistical
uncertainties are taken into account via the covariance matrix. The
αs results are obtained by minimizing χ2 with respect to αs and
the nuisance parameters for the correlated uncertainties. By scan-
ning χ2 as a function of αs , the uncertainties are obtained from
those αs values for which χ2 is increased by one with respect to
the minimum value. Fits, that determine αs(M Z ) use the two-loop
solution of the RGE to translate αs(M Z ) values to the correspond-
ing values of αs(pT ) which enter the pQCD calculations for the
different pT bins. These αs(M Z ) results are therefore derived as-
suming the validity of the RGE. Those fits that extract αs(pT ) from
a group of data points in the same pT bin are almost independent
of the RGE. A small dependence on the RGE enters only due to the
residual dependence of the R�R predictions on the PDFs which
use the RGE in their DGLAP evolution. Otherwise these αs(pT ) fit
results are independent of the RGE.

In the αs determination, we consider the correlations of the sta-
tistical uncertainties and all 69 sources of correlated experimental
systematic uncertainties. The theory uncertainties include the un-
certainties of the non-perturbative corrections, the PDF uncertain-
ties and the μR,F dependence of the pQCD calculations. Following
Refs. [38–40], the uncertainty due to the μR,F dependence is com-
puted by repeating the αs fit for different choices of μR,F and the
largest difference to the central result (obtained for μR,F = pT )
is taken to be the corresponding uncertainty for αs . The αs fits
are also repeated for CT10 and NNPDFv2.1 PDFs, and the largest
differences are quoted as “PDF set” uncertainty. The uncertainties
from the scale variation and from the different PDF sets are added
in quadrature to the other uncertainties to obtain the total uncer-
tainty.

Before the central αs results are obtained, the consistency of
the individual results for the 12 different (�R, pnbr

T min) regions,
listed in Table 1, is tested. Assuming the RGE, the values of αs(M Z )

are fitted to each of the 12 subsets, and listed in Table 1 together
with the corresponding χ2 values. All χ2 values are consistent
with the expectations based on the number of degrees of freedom
(Ndof), χ2 = Ndof ± √

2Ndof. This means that the RGE is consistent
with the observed pT dependence of αs(pT ) over the studied pT

range in all �R regions and for all pnbr
T min. For the same pnbr

T min,
the αs(M Z ) results for different �R regions are consistent with
each other, i.e. there is no �R dependence. The αs(M Z ) results are
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Table 1
The αs(M Z ) results with their absolute uncertainties and the χ2 values from the
fits to the R�R data in each of the 12 kinematic regions, defined by the pnbr

T min and
�R requirements.

pnbr
T min �R αs(M Z ) Total uncertainty χ2/Ndof

30 GeV 1.4–1.8 0.1290 +0.0073 −0.0078 6.9/11
30 GeV 1.8–2.2 0.1276 +0.0078 −0.0049 12.6/11
30 GeV 2.2–2.6 0.1249 +0.0133 −0.0020 15.3/11
50 GeV 1.4–1.8 0.1197 +0.0089 −0.0061 7.3/11
50 GeV 1.8–2.2 0.1168 +0.0083 −0.0039 14.1/11
50 GeV 2.2–2.6 0.1193 +0.0076 −0.0043 13.7/11
70 GeV 1.4–1.8 0.1168 +0.0101 −0.0073 4.9/9
70 GeV 1.8–2.2 0.1132 +0.0069 −0.0047 12.1/11
70 GeV 2.2–2.6 0.1156 +0.0080 −0.0039 16.8/11
90 GeV 1.4–1.8 0.1135 +0.0084 −0.0087 1.2/9
90 GeV 1.8–2.2 0.1136 +0.0067 −0.0069 9.7/9
90 GeV 2.2–2.6 0.1166 +0.0099 −0.0083 17.3/11

rather independent of pnbr
T min for pnbr

T min � 50 GeV. Only the αs(M Z )

results for the lowest requirement, pnbr
T min = 30 GeV, are signifi-

cantly higher. As mentioned earlier, at lowest pnbr
T min limitations of

the perturbative calculations or the non-perturbative models may
become visible. The data with pnbr

T min = 30 GeV are therefore ex-
cluded when the final results of this analysis are determined.

All remaining data points with the same pT (from all three
�R regions and for pnbr

T min = 50, 70, and 90 GeV) are combined
to fit αs(pT ), at the pT value corresponding to the geometric
center of the bin. This is done for all 12 different pT bins in
the range 50 < pT < 450 GeV and the results are listed in Ta-
ble 2 and displayed in Fig. 3(a). Using the RGE, the individual
results are then evolved to μR = M Z , and shown in Fig. 3(b).
These αs results from R�R , extracted using NLO pQCD, are in
good agreement with our previous results from inclusive jet cross
section data [38], extracted using NLO plus 2-loop contributions
from threshold corrections [42], and with the results from a re-
analysis of event shape data from the ALEPH experiment at the
LEP e+e− collider, extracted using NNLO calculations [41]. A com-
bined fit, using the same data set integrated over pT , and for
MSTW2008NLO PDFs, gives the αs(M Z ) result listed in Table 3. The
results obtained for CT10 PDFs (αs(M Z ) = 0.1189) and NNPDFv2.1
(αs(M Z ) = 0.1167) are used to define the uncertainty due to the
PDF set. This result is in good agreement with our previous result
of αs(M Z ) = 0.1161+0.0041

−0.0048, obtained from inclusive jet cross sec-
tion data at pT < 145 GeV [5], and the world average value [4].
Fig. 3. (Color online.) The strong coupling αs at large momentum transfers, Q , pre-
sented as αs(Q ) (a) and evolved to M Z using the RGE (b). The uncertainty bars
indicate the total uncertainty, including the experimental and theoretical contribu-
tions. The new αs results from R�R are compared to previous results obtained from
inclusive jet cross section data [38] and from event shape data [41]. The αs(M Z ) re-
sult from the combined fit to all selected data points (b) and the corresponding RGE
prediction (a) are also shown.

The RGE prediction for this result is displayed in Fig. 3(a). The new
αs(pT ) results from R�R are well described by the RGE predic-
tion including the region 208 < μR < 400 GeV, in which the RGE
is tested for the first time.

In summary, a measurement has been presented of a new
quantity R�R which probes the angular correlations of jets. R�R

is measured as a function of inclusive jet pT in different annu-
lar regions of �R between a jet and its neighboring jets and for
different requirements on the minimal transverse momentum of
the neighboring jet pnbr

T min. The data for pT > 50 GeV are well-
described by pQCD calculations in NLO in αs with non-perturbative
corrections applied. Results for αs(pT ) are extracted using the
data with pnbr

T min � 50 GeV, integrated over �R . The extracted
αs(pT ) results from R�R are, to good approximation, indepen-
dent of the PDFs and thus independent of assumptions on the
RGE. Therefore, these αs results are the first to provide a test
of the RGE at momentum transfers beyond 208 GeV. The results
are in good agreement with previous results and consistent with
the RGE predictions for the running of αs for momentum trans-
Table 2
Central values and uncertainties due to different sources for the 12 αs(pT ) results obtained by combining the data at the same pT from all �R regions for pnbr

T min = 50, 70,
and 90 GeV. All uncertainties are multiplied by a factor of 103.

pT range
(GeV)

pT

(GeV)
αs(pT ) Total

uncertainty
Statistical Experimental

correlated
Non-perturbative
corrections

MSTW2008NLO
uncertainty

PDF
set

μR,F

variation

50–60 55.0 0.1353 +7.2
−5.6 ±2.8 +2.6

−2.8
+2.5
−2.8

+1.3
−1.2

+0.2
−0.4

+5.4
−0.8

60–70 65.0 0.1299 +8.1
−6.6 ±4.2 +2.3

−2.7
+2.1
−2.4

+1.2
−1.4

+0.3
−1.3

+6.1
−1.5

70–85 77.5 0.1232 +4.9
−5.3 ±0.6 +1.6

−3.2
+1.4
−1.0

+1.9
−1.0

+1.8
−0.9

+3.5
−3.9

85–100 92.5 0.1180 +4.9
−3.8 ±0.8 +2.8

−2.4
+1.0
−2.2

+2.1
−1.1

+1.0
−0.0

+3.0
−1.4

100–120 110 0.1154 +2.8
−7.4 ±0.6 +2.1

−2.4
+0.3
−0.4

+1.0
−5.0

+0.0
−3.7

+1.4
−3.1

120–140 130 0.1107 +6.0
−3.9 ±0.6 +2.8

−2.2
+0.4
−0.4

+1.5
−2.5

+2.0
−0.0

+4.7
−1.9

140–170 155 0.1070 +5.4
−3.8 ±0.5 +1.6

−3.0
+0.1
−0.3

+0.9
−0.8

+1.5
−0.0

+4.9
−2.2

170–200 185 0.1041 +6.7
−4.0 ±0.5 +2.5

−2.1
+0.7
−0.4

+0.3
−1.5

+3.0
−0.0

+5.4
−2.9

200–240 220 0.1050 +5.4
−3.3 ±0.3 +2.5

−2.3
+0.6
−0.3

+1.0
−0.2

+0.8
−0.6

+4.5
−2.3

240–280 260 0.1061 +5.5
−6.3 ±0.6 +1.0

−3.2
+1.0
−0.8

+0.3
−0.7

+0.0
−3.3

+5.3
−4.2

280–340 310 0.1049 +5.4
−6.2 ±1.0 +1.6

−2.3
+0.4
−0.3

+0.3
−0.6

+0.6
−3.3

+5.0
−4.3

340–450 395 0.0966 +7.8
−10.8 ±5.4 +1.9

−5.9
+0.1
−1.0

+0.2
−0.9

+0.0
−3.3

+5.3
−4.7
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Table 3
The αs(M Z ) result for R�R , obtained by combining all data points in pT and in �R for the requirements pnbr

T min = 50, 70, and 90 GeV. All uncertainties are multiplied by a
factor of 103.

αs(M Z ) Total
uncertainty

Statistical Experimental
correlated

Non-perturbative
corrections

MSTW2008NLO
uncertainty

PDF
set

μR,F

variation

0.1191 +4.8
−7.1 ±0.3 +0.7

−0.9
+0.2
−0.1

+1.0
−0.5

+0.0
−2.4

+4.6
−6.6
fers up to 400 GeV. The combined αs(M Z ) result, obtained using
the data with pnbr

T min � 50 GeV (integrated over �R and pT ), is

αs(M Z ) = 0.1191+0.0048
−0.0071, in good agreement with the world aver-

age value [4].
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