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A PAUCITY ESTIMATE RELATED TO NEWTON SUMS
OF ODD DEGREE

JÖRG BRÜDERN AND OLIVIER ROBERT

Abstract. Paucity is established for a system of diagonal diophantine equations,
in which the degrees are the odd numbers in ascending order.

§1. Introduction. Newton’s power sums

sh = Xh
0 + Xh

1 + · · · + Xh
k (1)

play a prominent role in the theory of symmetric functions. Diophantine
equations involving such sums have also been studied extensively. The prime
example is certainly the system of equations

xh
0 + xh

1 + · · · + xh
m = yh

0 + yh
1 + · · · + yh

m (1 6 h 6 k) (2)

in which now m is at least as large as k. Estimates for the number of its integral
solutions inside a box are known as Vinogradov’s mean value theorem, and are
significant ingredients for the treatment of Waring’s problem as well as for the
determination of zero-free regions of Riemann’s zeta function. Perhaps less
commonly known, the allied problem where only odd degree equations occur
is also of assistance in various fields of application. We refer to [7] for just one
example. Thus, we now study the system of equations

x2 j−1
0 + x2 j−1

1 + · · · + x2 j−1
k = y2 j−1

0 + y2 j−1
1 + · · · + y2 j−1

k (1 6 j 6 k).
(3)

A solution of (3) in which the x0, . . . , xk are a permutation of the y0, . . . , yk
is referred to as trivial. We are interested in an upper bound for the number
Uk(B) of non-trivial integer solutions of (3) within the box

1 6 xi 6 B, 1 6 yi 6 B (0 6 i 6 k). (4)

THEOREM. Let k > 3. Then there is a number λk with λk < k + 1 and λk =
6
7 k + O(1), and such that Uk(B)� Bλk . Moreover, one has U3(B)� B34/9+ε.

An explicit admissible choice for λk is presented at the end of §4. To
appreciate the strength of this estimate, notice that there are (k + 1)!Bk+1

+

O(Bk) trivial solutions of (3) in the range defined by (4). Although the methods
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in this paper would also apply to the case k = 2, the conclusions are inferior
to an asymptotic expansion for U2(B), in which the leading term is of size
B2(log B)5. Such a formula was predicted by conjectures of Manin and Peyre,
and was confirmed in a celebrated memoir of la Bretèche [1]. The correct order
of magnitude for U2(B) was determined earlier, by Vaughan and Wooley [8].
Their contribution has initiated much recent interest in paucity. The estimate
announced in the theorem is the first of its kind for all k > 3. In these cases,
one would not expect regularly distributed non-trivial solutions. However, when
k = 3, Choudhry [3] found a four-parameter family of non-trivial solutions
of (3). Whether or not parametric families exist for larger k remains an open
question.

One may also take a projective point of view, counting rational points on the
variety defined by the equations (3). It would then be more natural to count
solutions in integers, rather than natural numbers. The system becomes more
symmetric via the substitution xk+1+ j =−y j , and now takes the shape

2k+1∑
i=0

x2 j−1
i = 0 (1 6 j 6 k).

In this new context, a solution is non-trivial if xi + x j 6= 0 holds for all 0 6
i, j 6 2k + 1, and our method estimates the number of such solutions inside the
box |xi |6 B to the same precision as the theorem does for Uk(B). We spare the
reader the details.

It is perhaps of interest to compare our result with a similar one in the context
of Vinogradov’s mean value theorem. Vaughan and Wooley [9] considered
the number Vk(B) of non-trivial solutions of the system (2) with m = k, and
established the estimate

Vk(B)� B
√

4k+5.

Note that Vaughan and Wooley discuss a system of k equations in 2k + 2
variables, as we do in our theorem. Their elementary argument resembles the
idea of a torsor, and implicitly makes crucial use of the shift invariance of the
system (2). The transition to certain auxiliary products that Vaughan and Wooley
manufacture from identities that are in essence Newton’s formulae is necessarily
of a rather different nature when one is forced to work with power sums of odd
degree only. It is mainly for this reason that our estimate is weaker than that
of [9]. We derive a product identity suitable for our needs in the next section.
The principal observation is a result on the algebraic dependence of the power
sums of odd degree that seems to be due to Borchardt [2]. In §3, the proof of
the theorem is prepared with a classification of the solutions to (3). In the final
section, the estimation of Uk(B) then proceeds along an avenue of attack that is
perhaps the most novel feature of this note.

The notational conventions applied in this paper are standard, or otherwise
introduced at the appropriate stage of the argument. Whenever the letter ε occurs
in a statement, it is asserted that ε is a positive real number, and that the statement
is valid for any positive value assigned to ε. Implicit constants suppressed by the
use of Vinogradov’s or Landau’s well-known symbols may depend on ε and k.
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§2. Preparatory algebra. In our first lemma we shall be concerned
with polynomials in indeterminates S1, S3, S5, . . . , S2k−1. The weight of
the monomial S j1

1 S j3
3 · · · S

j2k−1
2k−1 is the number j1 + 3 j3 + 5 j5 + · · · + (2k −

1) j2k−1. The weight of a polynomial in these indeterminates is the largest weight
of a monomial that occurs with a non-zero coefficient.

LEMMA 1. There exists a polynomial Pk ∈Q[S1, S3, . . . , S2k−1] of weight
1
2 k(k + 1) such that

Pk(s1(X1, . . . , Xk−1), s3(X1, . . . , Xk−1), . . . , s2k−1(X1, . . . , Xk−1))= 0.

This is Satz 1 of Perron [5], in slightly different notation, but a result of this
type, apparently, was first obtained by Borchardt [2]. The interesting aspect of
Perron’s approach is that his method is constructive. Thus, one may compute
Pk for small values of k, beyond the obvious P2 = S3 − S3

1 . See Perron [6] for
historical comments and also Foulkes [4] for related work, including formulae
for P3 and P4.

We now introduce two further indeterminates, and for convenience write X=
(X0, X1, . . . , Xk) and X′ = (X1, X2, . . . , Xk−1). Consider the polynomial
Q ∈Q[X0, . . . , Xk] defined by

Q(X)= Pk(s1(X), s3(X), . . . , s2k−1(X)).

For odd h ∈ N, one has sh(X)≡ sh(X′) mod X0 + Xk , whence X0 + Xk divides
Q(X). By symmetry in the X j , it follows that whenever i 6= j , then X i + X j

divides Q(X), and so will then the product

5k(X)=
∏

06i< j6k

(X i + X j ). (5)

This product is a homogenous polynomial of degree 1
2 k(k + 1), and, by

Lemma 1, Q(X) has the same total degree. It follows that 5k is a rational
multiple of Q. In Lemma 1, however, Pk is not unique, and one may replace
Pk by any non-zero rational multiple. Hence, we may suppose from now on that
Pk is chosen such that

Pk(s1(X), s3(X), . . . , s2k−1(X))=5k(X). (6)

LEMMA 2. Suppose that x, y ∈ Ck+1 satisfy the equations (3). Then
5k(x)=5k(y).

Proof. By hypothesis, s2 j−1(x)= s2 j−1(y) for 1 6 j 6 k. The lemma now
follows from (6). 2

It is useful to observe that Lemma 2 yields further product relations with
fewer factors.
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LEMMA 3. Suppose that x, y ∈ Ck+1 satisfy the simultaneous equations (3).
Moreover, suppose that xi + x j 6= 0, yi + y j 6= 0 for 0 6 i < j 6 k. Then

k∏
j=1

(x0 + x j )(y j − x0)=

k∏
j=1

(y0 + y j )(x j − y0). (7)

Proof. By Lemma 2,5k(x)=5k(y), and by hypothesis, this number is non-
zero. Another solution of (3) is obtained by substituting −y0 for x0, and −x0 for
y0. By Lemma 2 again,

5k((−y0, x1, . . . , xk))=5k((−x0, y1, . . . , yk)).

It follows that

5k((−y0, x1, . . . , xk))/5k(x)=5k((−x0, y1, . . . , yk))/5k(y),

and a rearrangement of terms yields (7). 2

There is another important application of (6) which will help identifying
trivial solutions. It will be useful to formulate this for power sums in k variables.

LEMMA 4. Let x= (x1, . . . , xk) and y= (y1, . . . , yk) be vectors of
complex numbers, with xi + x j 6= 0 for all 1 6 i < j 6 k. Suppose that
s2 j−1(x)= s2 j−1(y) for 1 6 j 6 k. Then, the entries in x are a permutation
of the entries in y.

Proof. Let t be a complex variable. We substitute X0 = t and X j = x j for
1 6 j 6 k in (6). Then

Pk(s1(x)+ t, s3(x)+ t3, . . . , s2k−1(x)+ t2k−1)= pk(t; x)
∏

16i< j6k

(xi + x j )

(8)
where

pk(t; x)=
k∏

j=1

(t + x j )= tk
+ σ1(x)tk−1

+ · · · + σk(x)t0.

Here, the σ j denote the elementary symmetric functions. By hypothesis,
replacing x with y will not change the left-hand side of (8). It follows that

pk(t; x)
∏

16i< j6k

(xi + x j )= pk(t; y)
∏

16i< j6k

(yi + y j ).

By hypothesis, the product of the xi + x j on the left-hand side here does not
vanish. Comparing coefficients at powers of t , it first follows that the product
of the yi + y j on the right is also non-zero, and then that σ j (x)= σ j (y) holds
for 1 6 j 6 k. It follows that pk(t; x)= pk(t, y). Considering the roots of these
polynomials yields the desired conclusion. 2
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LEMMA 5. Let x, y ∈ Ck+1, and suppose that the simultaneous equations (3)
hold. Moreover, suppose that there are numbers 0 6 i 6 k, 0 6 j 6 k with xi =

y j . Then, this solution of (3) is trivial, or else there are l, m with 0 6 l, m 6 k,
l 6= i 6= m with xl =−xm .

Proof. By symmetry, we may suppose that x0 = y0. The conclusion of
Lemma 5 now follows immediately from Lemma 4. 2

§3. Preparatory arithmetic. In this section, we investigate some of the
diophantine consequences of the work in the previous section. Consider the
diophantine system (3), and suppose that for exactly k + 1 of the variables xi , y j
integer values have already been assigned in accordance with (4). Let N denote
the number of solutions to (3) in the remaining k + 1 variables.

LEMMA 6. In the notation introduced above, one has N � Bε.

Proof. Suppose that l + 1 of the variables xi , and k − l of the variables y j
have their fixed values assigned. By symmetry, we may suppose that at least
one of the xi has a value assigned, whence l > 0. Again by symmetry, we
may suppose that x0, x1, . . . , xl , yl+1, . . . , yk are the numbers that are fixed.
If some of the xi in this list coincides with some y j in the list (if any), then by
Lemma 5 all such solutions to (3) in positive integers are trivial. Hence, in that
case, we have N � 1. In the contrary case where xi 6= y j for 0 6 i 6 l < j 6 k,
write x ′i = xi for 0 6 i 6 l, and x ′i =−yi for l < i 6 k. Similarly, let y′i = yi
for 0 6 i 6 l and y′i =−xi for l < i 6 k. Then (3) holds with x ′i , y′i for xi ,
yi , and one also has x ′i + x ′j 6= 0 for all pairs i, j . Hence, 5k(x′) 6= 0. By

Lemma 2, it follows that N is bounded above by the number of y′ ∈ Zk+1 with
5k(y′)=5k(x′). In particular, for any pair i, j with i < j , the number y′i + y′j
is non-zero and a divisor of the non-zero number 5k(x′). Moreover, recall
that |x ′i |6 B, whence |5k(x′)|6 (2B)(1/2)k(k+1). A divisor function estimate
now shows that there are no more than O(Bε) possibilities for each of the
numbers y′i + y′j . Since these will determine the y′j , we deduce that N � Bε,
as required. 2

Now suppose that x, y is a non-trivial solution of (3) in positive integers. Our
next goal is a parametrization of these solutions. By Lemma 5, we have x0 6= y j
and y0 6= x j for 1 6 j 6 k. By Lemma 3, the identity (7) holds, and the products
there are non-zero. It will be convenient to introduce the non-zero integers

w j = x0 + x j , v j = y0 + y j , u j = y j − x0,

t j = x j − y0 (1 6 j 6 k).
(9)

The equation (7) then reads

w1w2 · · · wku1u2 · · · uk = v1v2 · · · vk t1t2 · · · tk . (10)

We describe a recursive process to cancel factors in these products.
For i, j ∈ N2 we write i< j if either i1 < j1, or i1 = j1 and i2 < j2.
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Now put a11 = (w1; v1), b11 = (u1; t1), and then for 1 6 i1, i2 6 k define
inductively

ai =

(
wi1∏
j<i

j1=i1

aj
;

vi2∏
j<i

j2=i2

aj

)
, bi =

(
ui1∏
j<i

j1=i1

bj
;

ti2∏
j<i

j2=i2

bj

)
.

Now put

v′′j =

k∏
i=1

ai j , t ′′j =
k∏

i=1

bi j , w′′i =

k∏
j=1

ai j , u′′i =
k∏

j=1

bi j ,

and then write

v j = v
′

jv
′′

j , u j = u′j u
′′

j , wi = w
′

iw
′′

i , ti = t ′i t
′′

i .

Any common factors between a wl and a vh in (10) have now been coded
into the numbers ai, and likewise for ul and th which have their common
factors coded into the bi. We now repeat this argument, and consider remaining
common factors between ul and vh , and between wl and th . Thus, we now put
c11 = (u′1; v

′

1), d11 = (w
′

1, t ′1), and then for 1 6 i1, i2 6 k define inductively

ci =

( u′i1∏
j<i

j1=i1

cj
;

v′i2∏
j<i

j2=i2

cj

)
, di =

(
w′i1∏
j<i

j1=i1

dj
;

t ′i2∏
j<i

j2=i2

dj

)
.

All prime factors dividing the left-hand side of (10) have now been assigned
to a factor ai, bi, ci or di, and by unique factorization, it follows that

v j =

k∏
i=1

ai j ci j , |t j | =

k∏
i=1

di j bi j ,

wi =

k∏
j=1

ai j di j , |ui | =

k∏
j=1

ci j bi j

(11)

holds for 1 6 i, j 6 k. We may summarize these deliberations as follows: with
any non-trivial solution of (3) in positive integers, there are four k × k matrices
A = (ai j ), B = (bi j ), C = (ci j ) and D = (di j ) with positive integral entries, and
these matrices determine the numbers v j , w j , |u j |, |t j |. Another view of this is
a 2k × 2k matrix-like diagram

v1 . . . vk |t1| . . . |tk |
w1 a11 . . . a1k d11 . . . d1k
...

...
...

...
...

wk ak1 . . . akk dk1 . . . dkk
|u1| c11 . . . c1k b11 . . . b1k
...

...
...

...
...

|uk | ck1 . . . ckk bk1 . . . bkk

where the product of the entries in a row gives the number on the left, and the
product of the entries in a column is the number on top.
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§4. Counting non-trivial solutions. We now embark on the main counting
argument. Let k > 3, and define numbers J = [k/2] and I = k − 1− J . Then
I = [k/2] when k is odd, and I = 1

2 k − 1 when k is even. From now on, let I ,
J denote subsets of {1, . . . , k} with #I = I , #J = J . For any non-trivial
solution of (3) in natural numbers, we consider

z1(I ,J )=
∏

i∈I , j∈J

ai j and z1 = max
I ,J

z1(I ,J ).

We begin by counting non-trivial solutions of (3) and (4) for which z1 takes
a prescribed value. First choose I ,J with z1 = z1(I ,J ). By (11), the
numbers ∏

i∈I

ai j ,
∏
j∈J

ai j (12)

are divisors of v j and wi , respectively. Moreover, by (9) and (4), we have
v j 6 2B, wi 6 2B. On the one hand, this shows that z1(I ,J ) divides the
product of the v j with j ∈J , and hence that z1 6 (2B)J . Therefore, there are
no more than O(Bε) choices for ai j with i ∈I , j ∈J , as one readily confirms
by invoking a divisor function estimate. On the other hand, this also implies that
for a particular choice of (ai j )i∈I , j∈J , the number of possibilities for v j with

j ∈J is O(B J z−1
1 ). Similarly, the number of choices for wi with i ∈I is

O(B I z−1
1 ). Now fix one of the O(B2) choices for x0, y0. Then, by (9), this fixes

also xi , y j with i ∈I , j ∈J , so that 2+ (I + J )= k + 1 of the variables
in (3) are determined. Lemma 6 shows that this leaves O(Bε) possibilities for the
remaining variables. On collecting together, we see that at most O(Bk+1+εz−2

1 )

non-trivial solutions of (3) and (4) have z1(I ,J )= z1.
Fix a parameter Z with 1 6 Z 6 Bk/2. A non-trivial solution of (3) with

z1 > Z and counted by U (B) is said to be of type I, and we write U (I)(B) for
their number. Then, the above estimate implies that

U (I)(B)�
∑
z>Z

Bk+1+εz−2
� Bk+1+εZ−1.

We perform a similar analysis with the matrix C . In this case, we choose I ,
J as above, but with the additional constraint that these two sets are disjoint.
Thus, we now put

z2(I ,J )=
∏

i∈I , j∈J

ci j and z2 = max
I∩J=∅

z2(I ,J ).

We say that a non-trivial solution of (3) within the box (4) with z2 > Z
is of type II, and we write U (II)(B) for the number of such solutions. An
estimate for this number is readily obtained by imitating the preceding argument.
Consider the solutions with z2(I ,J )= z2, say. Then, as above, this leaves
O(B I+J+εz−2

2 ) for ui , v j with i ∈I , j ∈J . Now fix one of the O(B2)

choices for x0, y0. Then, by (9), we have fixed x0, y0 and k − 1 of the variables
y1, . . . , yk . Note that this makes crucial use of the fact that I and J are
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disjoint. By Lemma 6, there are no more than O(Bε) choices for the remaining
variables. Hence, we again find that at most O(Bk+1+εz−2

2 ) non-trivial solutions
of (3) and (4) have z2(I ,J )= z2, and as before we deduce the final estimate

U (II)(B)� Bk+1+εZ−1.

It remains to count non-trivial solutions of (3) with (4) that are neither of type
I nor II. In preparation for this task, we show that for such solutions one has the
inequalities ∏

16i, j6k

ai j � Zβ ,
∏

16i, j6k
i 6= j

ci j � Zγ (13)

with β = k2/(I J ) and

γ =
4k

k − 1
(k odd), γ =

4(k − 1)
k − 2

(k even). (14)

To demonstrate the first inequality in (13), first note that there are ( k
I )

possibilities to position I in {1, . . . , k}, and ( k
J ) choices for J . Since we are

not considering solutions of type I, we have z1(I ,J ) < Z for each of these
choices. This shows that ∏

I ,J

z1(I ,J )6 Z (
k
I )(

k
J ),

where the product extends over all admissible choices for I , J .
Now consider a particular pair (i, j) with 1 6 i, j 6 k. The number of

choices for I , J with (i, j) ∈I ×J is
(

k−1
I−1

) (
k−1
J−1

)
because there are

(
k−1
I−1

)
possibilities for I with i ∈I , and similarly for J . This implies that∏

I ,J

z1(I ,J )=
∏

16i, j6k

a

(
k−1
I−1

)(
k−1
J−1

)
i j ,

and by comparison with the previous estimate we deduce that the first inequality
in (13) is valid with

β =

(
k
I

) (
k
J

)
(

k−1
I−1

) (
k−1
J−1

) = k2

I J
,

as required.
A similar argument yields the second inequality in (13). For non-trivial

solutions of (3) and (4) that are not of type II, one has z2(I ,J )6 Z for all
disjoint admissible pairs I , J . To compute the number of possible choices for
I , J , we may first fix one of the ( k

I ) choices for I . This leaves k − I = J + 1
numbers in {1, . . . , k} that are not in I , and J must be a subset of this set,
with J elements. This leaves k − I possible choices for J . It follows that∏

I∩J=∅

z2(I ,J )6 Z (
k
I )(k−I ).
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However, we also have∏
I∩J=∅

z2(I ,J )=
∏

16i, j6k
i 6= j

cH
i j

where H = H(i, j) denotes the number of disjoint sets I , J with (i, j) ∈
I ×J . By symmetry, it is apparent that H does not depend on the particular
pair i, j . To position I in {1, . . . , k}, we have to make I − 1 choices different
from i and j , and since i 6= j , there are ( k−2

I−1 ) choices for I . There are then
k − I − 1= J elements left in {1, . . . , k} that are different form j , and this
leaves J choices for J . Hence, H = J ( k−2

I−1 ). It now follows that the product in

the second estimate of (13) is bounded by Zγ where γ = ( k
I )(k − I )H−1, and it

is readily confirmed that this value of γ coincides with the one given in (14).
We are ready to complete the counting procedure. Let K denote a sufficiently

large real number. Then, by (13), for any solution counted by Uk(B) that is not
of type I or II, at least one of the inequalities∏

16i< j6k

ci j 6 K Zγ /2,
∏

16 j<i6k

ci j 6 K Zγ /2 (15)

must hold. We say that a solution is of type III if it is not of type I or II, and
the first inequality in (15) holds. The remaining solutions are said to be of
type IV. Note that for type IV solutions, the second inequality in (15) holds.
We let U (III)(B) and U (IV)(B) be the number of solutions of type III, type IV
respectively.

We begin with the estimation of U (III)(B), and first fix one of the O(B2)

choices for x0, y0. Then, for any solution of (3), we have ci i |vi − ui = x0 + y0,
for 1 6 i 6 k. This leaves O(Bε) choices for c11, c22, . . . , ckk , of which we
now fix one. By (13) and a divisor function estimate, there are O(Zβ+ε)
possible choices for the ai j with 1 6 i, j 6 k, and O(Zγ /2+ε) choices for the
ci j with 1 6 i < j 6 k, and we fix one of these choices now. Note that the
upper triangular part, including the diagonal, of the matrix C is now known,
in particular its last column. By (11), this determines vk , and therefore yk . Then,
however, uk is also known. Hence, there are no more than O(Bε) choices
for the divisors ck j of uk , for 1 6 j 6 k − 1. We fix one of these choices.
This completes the last row, and hence the penultimate column of C so that
vk−1 is determined. This determines yk−1 and uk−1. As before, the entries of
the (k − 1)th row are divisors of uk−1, leaving O(Bε) choices for the missing
entries. Repeating this argument k − 1 times, one finds that there are no more
than O(Bε) choices for y1, . . . , yk . We have now fixed the k + 2 variables x0
and y j with 0 6 j 6 k, leaving O(Bε) choices for the remaining variables by
Lemma 6. On collecting together, we infer that

U (III)(B)� B2+εZβ+γ /2.

For solutions of type IV, the previous argument also applies save that one
seeds the lower triangular part of C into the beginning of the argument. Then v1
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will be determined first, and one constructs the upper triangular part on the fly,
while fixing y2, y3, . . . recursively. The resulting estimate will be the same as
for solutions of type III.

Recalling the bounds for the number of solutions of type I and II, we conclude
that

Uk(B)� Bk+1+εZ−1
+ B2+εZβ+γ /2.

We balance terms with Z = Bθ where

θ = (k − 1)/(1+ β + γ /2).

It is immediate that θ > 0, and that θ = 1
7 k + O(1). The first part of the theorem

follows with λk = k + 1− θ .

§5. A refinement. Some of the arguments applied in the previous section are
rather crude, and call for an improvement. In particular, the variables x0 and y0
are chosen at random, and in the treatment of type III and type IV solutions we
determined k + 2 variables before using Lemma 6, although this would apply
already when k + 1 variables are fixed. However, attending to such matters
will reduce the size of λk in the theorem only by O(1), which is not of great
significance when k is large. For small values of k, however, one may obtain
rather better bounds, and we illustrate this with the case k = 3 in this section.

The notation from the previous sections will be kept. We choose i, j with
1 6 i, j 6 3, and consider solutions of (3) and (4) for which ai j and c j j take
a fixed value. In this situation, we first fix one of the O(B) choices for y0,
and then observe that there are no more than B/(ai j c j j ) choices for v j . This
determines y j . Now c j j |x0 − y j , leaving O(B/c j j ) choices for x0. Finally,
ai j |x0 + xi , leaving O(B/ai j ) choices for xi . In total, this allows no more than
B4(ai j c j j )

−2 choices for the variables x0, xi , y0, y j , and Lemma 6 fixes the
remaining ones, within O(Bε). A divisor sum argument then shows that the
contribution to U3(B) from solutions with ai j c j j > Z is O(B4+ε/Z). A very
similar argument estimates the contribution from solutions with ci j c j j > Z for
some i 6= j to the same precision. Hence, we have

U3(B)� B4+εZ−1
+U ′(B),

where U ′(B) is the number of solutions counted by U3(B) that satisfy the
inequalities

ai j c j j < Z for 1 6 i, j 6 3, ci j c j j < Z for 1 6 i, j 6 3, i 6= j . (16)

Now consider solutions counted by U ′(B) for which the numbers
c11, c12, c21, c22 take a fixed value. We then choose all ai1, ai2 and c31, c32.
There are O(Z8(c11c22)

−4) such choices, and the numbers v1, v2 are now
determined. We pick one of the O(B) values for y0, and then compute
y j = v j − y0 for j = 1 and 2. Now, however, c11c12|x0 − y1 and c21c22|

x0 − y2, leaving O(B(c11c12; c21c22)(c11c12c21c22)
−1) choices for x0. Now
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four variables in (3) are determined, and there are O(Bε) choices for the
remaining ones. This yields

U ′(B)� B2+εZ8
∑

(c11c22)
−5(c12c21)

−1(c11c12; c21c22),

where the sum is over all c11, c12, c21, c22 satisfying (16). A routine estimation
then shows that U ′(B)� B2+εZ8, and with Z = B2/9 the bound U3(B)�
B34/9+ε follows.
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