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Lithium at serum concentrations up to 1mmol/L has been used in patients suffering from

bipolar disorder for decades and has recently been shown to reduce the risk for ischemic

stroke in these patients. The risk for stroke and thromboembolism depend not only

on cerebral but also on general endothelial function and health; the entire endothelium

as an organ is therefore pathophysiologically relevant. Regardless, the knowledge

about the direct impact of lithium on endothelial function remains poor. We conducted

an experimental study using lithium as pharmacologic pretreatment for murine,

porcine and human vascular endothelium. We predominantly investigated endothelial

vasorelaxation capacities in addition to human basal and dynamic (thrombin-/PAR-1

receptor agonist-impaired) barrier functioning including myosin light chain (MLC)

phosphorylation (MLC-P). Low-dose therapeutic lithium concentrations (0.4mmol/L)

significantly augment the cholinergic endothelium-dependent vasorelaxation capacities

of cerebral and thoracic arteries, independently of central and autonomic nerve system

influences. Similar concentrations of lithium (0.2–0.4mmol/L) significantly stabilized

the dynamic thrombin-induced and PAR-1 receptor agonist-induced permeability of

human endothelium, while even the basal permeability appeared to be stabilized.

The lithium-attenuated dynamic permeability was mediated by a reduced endothelial

MLC-P known to be followed by a lessening of endothelial cell contraction

and paracellular gap formation. The well-known lithium-associated inhibition of

inositol monophosphatase/glycogen synthase kinase-3-β signaling-pathways involving

intracellular calcium concentrations in neurons seems to similarly occur in endothelial
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cells, too, but with different down-stream effects such asMLC-P reduction. This is the first

study discovering low-dose lithium as a drug directly stabilizing human endothelium and

ubiquitously augmenting cholinergic endothelium-mediated vasorelaxation. Our findings

have translational and potentially clinical impact on cardiovascular and cerebrovascular

disease associated with inflammation explaining why lithium can reduce, e.g., the risk for

stroke. However, further clinical studies are warranted.

Keywords: bipolar disorder, blood-brain barrier, endothelial barrier, endothelial function, myosin light chain,

lithium, stroke, vessel relaxation

INTRODUCTION

Themood stabilizer lithium has been successfully used in patients
suffering from bipolar disorder for decades. Safe therapeutic
concentrations of lithium are typically below 1 mol/L in
these patients (Geddes and Miklowitz, 2013; Yatham et al.,
2013; Mohammad and Osser, 2014). In preclinical and clinical
research, lithium was recognized for robust neuroprotective
effects regarding various pathologic conditions (Vo et al., 2015;
Doeppner et al., 2016; Vosahlikova and Svoboda, 2016). Recent
studies have also identified protective effects of lithium in
cardiovascular and cerebrovascular diseases (Gold et al., 2011;
Chiu and Chuang, 2012). This protective effect was highlighted
by two recent clinical studies demonstrating that prolonged
lithium treatment reduces the risk of ischemic stroke in bipolar
disorder patients (Lan et al., 2015), and improves neurological
recovery after cortical stroke (Mohammadianinejad et al., 2014).
Stroke and thromboembolism risk depend not only on cerebral
but also on general endothelial functioning. The entire body’s
endothelium is therefore relevant for these pathologies. However,
the impact of lithium on the endothelium and vasomotor tone
and potential underlyingmechanisms remain poorly understood.
In light of the clinical effectiveness of lithium in stroke, we have
recently examined lithium-endothelium interactions (Bosche
et al., 2013, 2016). Lithium treatment (Rajkowska, 2000; Lan
et al., 2015) may be effective in both ischemic and hemorrhagic
stroke, and even traumatic brain injury (Leeds et al., 2014; Gao
et al., 2016) by improving disturbances in endothelial functions,
such as: vascular or cerebrovascular autoregulation of blood
flow, vasorelaxation capacity, and dynamic endothelial barrier
permeability (Bosche et al., 2003, 2009, 2010; Gündüz et al., 2003;
Butcher et al., 2004; Dohmen et al., 2007; Meisel et al., 2012; Renú
et al., 2015; Helbok et al., 2016).

Maintenance of intracellular calcium homeostasis in cells of
the vessel wall is a prerequisite for endothelium-mediated control
of vascular tone (Förstermann and Münzel, 2006; Rahimzadeh-
Rofouyi et al., 2007; Bosche et al., 2009, 2010, 2016) and
preservation of the endothelial barrier (Garcia et al., 1995;
Bosche et al., 2013; Bosche and Macdonald, 2015), which are
both determinants of the physiological endothelial function and
vascular health (Yoo and Kim, 2009; Grove et al., 2015). In
neurons and glia, but perhaps also in the vascular endothelium,
lithium may predominantly interact with two enzymes: inositol
monophosphatase (IMPase) and glycogen synthase kinase-3 beta
(GSK-3β), both of which control a variety of cellular effectors

involving intracellular calcium concentration [Ca2+]i (Berridge,
1989, 2014; Garcia et al., 1995; Schäfer et al., 2001; Gould and
Manji, 2005; Ryglewski et al., 2007; Munaron and Fiorio Pla,
2009; Trepiccione and Christensen, 2010; Bosche et al., 2013).
Taken together, there is accumulating evidence indicating that
lithium may have protective effects also on vessel function.
On the other hand, conflicting results have been published
for the impact of low lithium concentrations on vascular and
endothelial functions; then human data are lacking almost
completely (Bakken et al., 1992; Afsharimani et al., 2007;
Rahimzadeh-Rofouyi et al., 2007; Yoo and Kim, 2009; Bosche
et al., 2016). Furthermore, there is surprisingly no human data
investigating whether low-dose lithium can actually improve
endothelial dynamic barrier functioning. Therefore, our current
experimental study fills a gap of knowledge with translational
and perhaps clinical implications (Bosche and Macdonald,
2015).

Focusing on the pharmacologic interplay of low therapeutic
lithium with murine, porcine and human endothelium, we
hypothesized that endothelium-mediated vasomotor function
may be ubiquitously improved in different species and different
vascular provinces, including the cerebral one. In addition, we
assume that endothelial barrier property such as the dynamic
barrier of human endothelium may be stabilized and thus
protected against imminent failure by low therapeutic lithium
concentrations. Verifying these hypotheses may have immediate
clinical impact as lithium treatment paradigms might be shifted
toward broader indications in the future. To our knowledge, this
is the first study proving human dynamic endothelial barrier to
be stabilized by a pharmacologic treatment with low therapeutic
lithium doses.

MATERIALS AND METHODS

This experimental study was approved by the University
Commission on Animal Experiments with respect to the
animal welfare regulations of Germany, in accordance
to the European Communities Council Directive and to
the National Institutes of Health (NIH) Guidelines. The
study were approved by the University Ethics Committee
of the Medical Faculty Carl Gustav Carus and conformed
to the principles of the “Declaration of Helsinki.” It was
conducted under permission EZ 203112005 of the local
authorities.
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Murine Vessel Preparation
The vessel grafts were isolated from murine aortas. Vessel
preparation was performed according to a slightly modified
method as previously described (Wilbring et al., 2013; Kopaliani
et al., 2014; Bosche et al., 2016). In brief, male CD57 mice 10
weeks of age (Charles River Laboratories, Sulzfeld, Germany)
were sacrificed by cutting off the upper cervical spinal cord
under deep anesthesia. After death, the mice were immediately
dissected. The pars thoracalis of the aorta (distal of the aortic
arch) from murine aortas were recovered, explanted and directly
placed into TiprotecTM solution only (Dr F. Köhler GmbH,
Bensheim, Germany), or supplemented with 0.2 or 0.4 mmol/L
lithium chloride or carbonate (Sigma-Aldrich, Taufkirchen,
Germany). The vessel grafts were stored at 4◦C for 48 h.
In addition, some vessel grafts were stored at physiologic
37◦C for 6 h only; these vessel grafts were incubated with
100 IU/ml Penicillin and 100µg/ml Streptomycin (GIBCO Life
Technologies Eggenstein, Germany) to avoid contaminations.
The osmolarity of the TiprotecTM solution was 305 mosmol/L
and the pH 7.0, respectively. The solution contained a
mixture of substances with individual concentrations shown in
Table 1.

Porcine Cerebral Vessel Preparation
Cerebral vessels were taken from gyrencephalic porcine
brains. The porcine cerebral vessel segments were isolated
from the proximal part of the middle cerebral artery
(M1 segment) from freshly slaughtered male swine (Sus
domesticus, 24–26 weeks of age). Extracted vessels were
collected and transported in a storage solution TiprotecTM at
4◦C. Subsequently the isolated cerebral M1 vessel segments
were flushed, cut and stored either in TiprotecTM solution only
serving as a control or Tip-rotecTM solution supplemented
with 0.4 mmol/L lithium carbonate and stored at 4◦C for at
least 72 h.

TABLE 1 | Substances of the tissue protecting solution (TiprotecTM) and

their respective concentrations.

Substance Concentration

Alpha-Ketoglutarate 2mmol/L

Aspartate 5mmol/L

N-acetyl-histidine 30mmol/L

Glycine 10mmol/L

Alanine 5mmol/L

Tryptophan 2mmol/L

Sucrose 20mmol/L

Glucose 10mmol/L

Chloride 103mmol/L

Sodium 16mmol/L

Potassium 93mmol/L

Magnesium 8mmol/L

Calcium 50µmol/L

Deferoxamine 82µmol/L

LK 614 17µmol/L

Choice of Specific Type of Arteria and
Endothelium
The thoracic aorta and the middle cerebral arteria were chosen as
studied vessel types for two reasons. (1) The risk of stroke and in
particular the risk of arterial thromboembolism is mainly based
on thoracic/cervical and cerebral arteries. (2) The aorta is an
elastic type artery containing both the ordinary vascular smooth
muscle cells (SMC) and the myointimal SMC in a relatively high
number. Furthermore, aortic endothelial cells were used in our
previous vessel graft and cell culture studies regarding [Ca2+]i
measurements after long-term and immediate use of lithium and
its influence on the specific type of endothelial cells taken from
the aorta (Schäfer et al., 2001; Bosche et al., 2013). Compared to
the described aortic vessel type, cerebral arteries show different
specific characteristics such as habitually missing the Windkessel
function, because of having less elastic fiber, less myointimal
SMC, and differently responding to certain physiological stimuli.
Because of these pathophysiologic reasons, we were particularly
interested to study both thoracic/cervical arteries that supply
the brain as well as the specialized brain arteries including both
specific types of endothelium.

Isometric Force Measurement of Different
Vessel Types
Vessel function was assessed according to themethod ofMulvany
and Halpern (1977) as described previously (Wilbring et al.,
2013; Kopaliani et al., 2014; Bosche et al., 2016). Briefly, aortic
and cerebral vessel grafts (2mm in length and 0.5–0.6 or
1.2–1.4 mm internal width, respectively) were transferred to
carbogen equilibrated phosphate saline solution (PSS; inmmol/L:
119 NaCl, 4.7 KCl, 2.5 CaCl2, 1.17 MgSO4, 1.18 KH2PO4, 25
NaHCO3, 5.5 glucose, 0.027 EDTA) and equilibrated for 30
min at 37◦C and subsequently mounted in a myograph (DMT-
610 M, Power Laboratory/400; AD-Instruments, Spechbach,
Germany) for isometric force measurements. The DMT tissue
bath system 700 MOTM in combination with PowerLab Data
Acquisition SystemTM (AD-Instruments Spechbach, Germany)
was used for data acquisition. Data recording was performed with
LabChartTM software (AD-Instruments Spechbach, Germany).
For maximal responses, vessels were stretched with a resting
tension that was equivalent to an intraluminal pressure of
100mmHg. After an accommodation phase of 10 min, when a
steady state tension had been reached, maximal contraction with
potassium-enriched PSS solution (124 mmol/L KCl) and/or 10
µmol/L phenylephrine (α1-adrenoceptor agonist) was recorded.
After inducing a steady-state preconstriction with 10 µmol/L
phenylephrine, concentration-response curves were determined
for vessel relaxation with acetylcholine (ACH) and sodium
nitroprusside (SNP) to assess endothelium-dependent and/or
endothelium-independent relaxations.

Drugs Inducing Endothelium-Dependent
and -Independent Relaxation Responses
We used acetylcholine (Sigma-Aldrich) to stimulate the
endothelial nitric oxide (NO) production and thereby
provoked an endothelium-dependent vasodilatation.
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Sodium nitroprusside (Sigma-Aldrich) was applied to induce
endothelium-independent vasodilatation by directly decreasing
the vascular SMC tone. The vessels grafts were pre-contracted
by using phenylephrine (Sigma-Aldrich), which induced a
SMC-mediated vasoconstriction.

Human Endothelial Cell Isolation and
Cultivation
Human endothelial cells were isolated from umbilical cords
and cultured as described previously (Gündüz et al., 2003;
Aslam et al., 2010). Briefly, the cells were cultured in
PromoCellTM endothelial cell basal medium (PromoCell,
Heidelberg, Germany) supplemented with 10% (vol/vol) fetal
calf serum, 0.4% (vol/vol) endothelial growth supplement with
heparin, 0.1 ng/ml human endothelial growth factor, 1.0 µg/ml
hydrocortisone, 1 ng/ml bovine fetal growth factor, and 2%
(vol/vol) penicillin/streptomycin in humidified atmosphere
at 37◦C, 5% CO2. Confluent monolayers were trypsinized
in phosphate-buffered saline [PBS; composition in mM: 137
NaCl, 2.7 KCl, 1.5 KH2PO4, and 8.0 Na2HPO4, at pH 7.4,
supplemented with 0.05% (wt/vol) trypsin, and 0.02% (wt/vol)
EDTA] and seeded at a density of 7 × 104 cells/cm2 on 24 mm
round Corning TranswellTM polycarbonate membrane filters (0.4
µm). Four days after seeding, the experiments were performed
with confluent monolayers of passage #1.

Measurement of Macromolecule
Permeability of Human Endothelium
The macromolecule permeability of endothelial cells was
determined by the flux of trypan-blue labeled albumin (60µM)
through the cell monolayer in a two-compartment system
separated by a filter membrane as described previously
(Noll et al., 1999; Gündüz et al., 2003) This albumin
flux to the abluminal chamber was continuously monitored
spectrophotometrically (Specord 10; Carl Zeiss). After an
equilibration period of 10–15 min thrombin was added at a
final concentration of 0.2 U/ml as previously described (Aslam
et al., 2010), while control cells received the same volume of
solvent. In some experiments, we used (instead of thrombin)
the peptide derived from the protease-activated receptor-1 (PAR-
1), i.e., TFLLR-NH2 (Tocris Bioscience, Bristol, UK)—a selective
PAR-1 receptor agonist at a final concentration of 12 µM. On
the other hand, comparative pre-experiments showed that mouse
microvascular endothelial monolayers did not reach similarly
tight permeability values in our culture model such as found
for the established and well-optimized human endothelium
approach. Thus, human endothelium had priority for our model.

Quantification of Myosin Light Chain
Phosphorylation in Human Endothelial
Cells
The myosin light chain (MLC) phosphorylation in human
endothelial cells was measured by western blot analysis (Aslam
et al., 2010). Therefore, cells were harvested in 2x SDS-
PAGE sample buffer and separated by 12.5% SDS-PAGE

and transferred onto nitrocellulose membranes by semi-
dry blotting. Membranes were probed using anti-phospho-
MLC-2 (Cell Signaling Technology, Danvers, MA, USA)
and anti-actin (Sigma-Aldrich) in Tris-buffered saline with
0.1% (v/v) Tween 20 and 5% (w/v) BSA in a dilution
of 1:3000 and 1:5000, respectively. Respective secondary
HRP-conjugated anti-rabbit and anti-mouse IgG antibodies
(Amersham BioSciences Buckinghamshire, UK) were used
in a dilution of 1:10:000. Immunoreactivity was detected
by Fusion-FX7 (PeqLab, Erlangen, Germany) with enhanced
chemiluminescence and quantified by densitometric analysis by
using Quantity One software (Bio-Rad,Munich, Germany). MLC
phosphorylation was expressed in relation to the intracellular
amount of actin.

Statistical Analyses
Results are expressed as mean ± SEM. Confident intervals
(CI) are additionally given in some experiments. Regarding
the number of groups, intergroup differences were analyzed
using independent-sample t-test according to Student, or one-
way analysis of variance (ANOVA) with post-hoc Bonferroni
correction for multiple comparisons of three or more groups.
The general linear model for repeated measures with post-
hoc Bonferroni correction for multiple comparisons was
performed to analyze both within subject factors over time
and between group factors. P < 0.05 was considered to be
significant. Data analyses were performed using IBM SPSS (IBM,
Chicago, IL, USA).

RESULTS

Low Therapeutic Lithium Concentrations
Augment Endothelium-Dependent but Not
Endothelium–Independent Relaxation of
Mouse Thoracic Arteries
To test whether a lithium treatment at low therapeutic
concentrations improves the vessel relaxation capacity, we used
murine aortal vessels and ACH as an endothelium-dependent
vasodilator besides SNP as an endothelium-independent
one. Figure 1A shows that a pharmacologic treatment with
0.4 mmol/L lithium chloride significantly augmented the
endothelium-dependent vessel relaxation capacity of ACH in the
dose range from 10−8 to 10−6.5mol/L compared to control. After
this lithium chloride treatment the maximal ACH-induced vessel
relaxation was found at an ACH concentration of 10−6.5 mol/L
(Figure 1A). Investigations of the endothelium-independent
vessel relaxation capacity using SNP are illustrated in Figure 1B.
The treatment of vessels with 0.4 mmol/L lithium chloride did
not significantly alter the endothelium-independent relaxation
capacity compared to controls at any SNP concentration
tested. Both dose response curves were found nearly congruent
(Figure 1B).

Since lithium carbonate is predominantly used for clinical
treatment, we then tested whether lithium carbonate may
also improve the vessel relaxation capacity after stimulating
with ACH and/or SNP, respectively. Figure 2A illustrates that
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FIGURE 1 | Dose-dependent acetylcholine- and sodium nitroprusside-induced vessel relaxation and the influence of lithium on those relaxation

capacities. (A) The lithium chloride pre-treated (0.4 mmol/L) murine thoracic arteries showed a significantly improved endothelium-dependent relaxation compared to

control at an acetylcholine concentration range from 10−8 to 10−6.5 M. (B) Whereas, the lithium treatment did not significantly alter the endothelium-independent

vessel relaxation at any sodium nitroprusside concentration tested. Data are shown in percent of the maximal vessel relaxation and expressed as mean ± SEM of n =

4–6 vessels per group of independent preparations, *P < 0.05, **P < 0.01 compared to control, respectively. Emax, maximal possible effect; EC50, half maximal

effective concentration for the ACH respectively SNP.

FIGURE 2 | Acetylcholine- and sodium nitroprusside-induced vessel relaxation and the influence of lithium pre-treatment on relaxation capacities. (A)

The lithium carbonate pre-treated (0.2 and 0.4 mmol/L) murine vessels showed significantly improved maximal endothelium-dependent vessel relaxation compared to

control. (B) Whereas, lithium treatment did not significantly change maximal endothelium-independent vessel relaxation capacities. Data are shown as percent of the

maximal vessel relaxation and expressed as mean ± SEM of n = 4–5 vessels per group of independent preparations, *P = 0.018, **P = 0.004 compared to control,

respectively.

either a treatment with 0.2 or 0.4 mmol/L lithium carbonate
significantly augmented the maximal ACH-induced vessel
relaxation capacity compared to control. Thereby, the later
lithium carbonate concentration (0.4mmol/L) most sufficiently
increased the relaxation capacity leading to a highly significant
difference compared control (Figure 2A). Figure 2B reveals

that we found neither for 0.2 nor for 0.4 mmol/L lithium
carbonate a significant difference of the maximal SNP-mediated
(endothelium-independent) vessel relaxation between lithium
treated vessels and control. These experiments (compare
Figure 2A and Figure 2B) were partly repeated following a
modified protocol using a lithium pre-treatment at 37◦C
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for 6 h. We found similar results; lithium carbonate (0.4
mmol/L) significantly increased the maximal ACH-induced
vessel relaxation compared to control (82.36 ± 2.36% vs. 52.94
± 5.52%, n = 4–5 per group, P = 0.003). Whereas, the SNP-
induced vessel relaxation was not significantly altered by lithium
carbonate (105.09 ± 4.08% vs. 102.63 ± 1.04%, n = 5 per group,
P = 0.583, n.s.); similar (non-significantly altered) results were
found when submaximal SNP concentrations (e.g., 10−8.5 mM)
were used for vasodilatation with or without 0.4 mmol/L lithium
carbonate pre-treatment (80.15± 6.45% vs. 81.01± 13.82%, n=

5 per group, P = 0.902, n.s).

Low Therapeutic Lithium Concentrations
Improve Endothelium-Dependent
Relaxation of Cerebral Arteries
To test whether low lithium concentrations also augment
the endothelium-dependent relaxation capacity of cerebral
vessels from gyrencephalic brains, we performed another set of
experiments using porcine M1 segments of the middle cerebral
arteries (MCA) and lithium carbonate treatment. Cerebral
vessels of good to excellent functions (e.g., constriction force
≥8 mN/mm for 34 mM [K+]e, a representative example is
given in Figure 3A) were used for these lithium pretreated
ACH-induced vasorelaxation experiments. Figure 3B illustrates
that 0.4 mmol/L lithium carbonate significantly augmented the
endothelium-dependent cerebral vessel relaxation in response to
10−6.5 mol/L ACH (at a mechanical pre-dilatation/constriction
equal to a vessel lumen pressure of 100 mmHg) compared to
control. These findings of porcine cerebral and thoracic vessels
indicated lithium (at low therapeutic concentrations) as an agent
equally augmenting endothelium-mediated relaxation capacities
of different vascular provinces and species in a directmanner (i.e.,
not via central and autonomic nervous system-associated routes).

Low Therapeutic Lithium Concentrations
Appear to Reduce Resting Human
Endothelial Permeability
The universally positive influence of low lithium concentrations
on the endothelium-dependent vessel relaxation capacity
prompted us to further investigate, whether other
endothelium functions could also be modified or improved
by pharmacological lithium treatment at low therapeutic
concentrations. Translationally, we were most interested
in human endothelial functions such as endothelium
permeability/impermeability. Therefore, we scrutinized the
basal permeability of human endothelial monolayers (passage
#1), but also the dynamic hyper-permeability induced by
thrombin (see below). We continuously accessed the albumin
turnover of the monolayers in a resting state that were treated
with 0 (control) and 0.4 mmol/L lithium. Over the entire
observation period of 120 min, the basal permeability of lithium
treated human endothelial monolayers was lower compared to
control (Figure 4A). This was, however, only reflected by strong
statistical trends comparing the values (e.g., after 40 min, n =

4–6 per group, P = 0.076) or the integrals, i.e., areas under

FIGURE 3 | Endothelium-dependent cholinergic vessel function and

the influence of lithium carbonate on the relaxation capacity of

cerebral arteries. (A) Representative pre-assessment of physiologic vessel

functions (e.g., potassium-induced constriction force [mN/mm]) for further

relaxation capacity measurements. (B) The lithium carbonate (0.4mmol/L)

pre-treated porcine middle cerebral arteries showed significantly improved

endothelium-dependent vessel relaxation compared to control. Data are

shown as 1 mN/mm and expressed as mean ± SEM of n = 3–4 vessels per

group of independent preparations, **P = 0.006 compared to control.

the curve of permeability to control (AUC, n = 4–6 per group,
P = 0.064, n.s., Figure 4B).

Low Therapeutic Lithium Concentrations
Significantly Abolish Human Dynamic
Endothelial Hyper-Permeability
Since thrombin plays a relevant pathophysiologic role for the
endothelial barrier failure or impairment (Coughlin, 2000), e.g.,
during and after cerebral ischemia and hemorrhages (Stokum
et al., 2016), we investigated the impact of lithium treatment
on the thrombin-induced hyper-permeability of human
endothelium. Regarding the basal permeability before thrombin
addition, we again found similarly strong trends between
lithium 0.2, respectively, 0.4mmol/L treated endothelium
and control [0.4156 ± 0.0253, respectively 0.5189 ± 0.0714
vs. 0.8315 ± 0.1491 (× 106 cm/s), n = 4–6 per group, P =

0.070 and P = 0.095, both n.s.]. Figure 5A illustrates that
thrombin significantly increased the endothelial permeability
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FIGURE 4 | Effect of lithium at low therapeutic concentrations on the basal permeability of human endothelium. Confluent human endothelial

monolayers were exposed to different concentrations of lithium for 48h. (A) Basal albumin permeability is shown after pre-treating with TiprotecTM solution in

absence of lithium as control ( ) or with the same solution containing 0.4 mmol/L lithium ( ). Over the entire observation period, the lithium pre-treated

endothelial monolayers showed a lower permeability (i.e., a tighter basal barrier function). Differences were reflected by strong statistical trends at certain time points

(see Result Section); AUC, areas under the curve. (B) By comparing the integrals, i.e., AUC (compare part A) of permeability assessments as a single measure for

120 min, the barrier built by the lithium treated human endothelium appears to be tighter compared to control (‡P = 0.064, not significant [n.s.]). Data are expressed

as mean ± SEM of n = 4–6 separate experiments per group of independent cell preparations.

of all groups in a transient way (all, P < 0.001, respectively,
Table 2). More importantly, Figure 5 shows that the treatment
with lithium chloride (0.4 and 0.2 mmol/L) significantly
reduced the permeability/hyper-permeability (P = 0.004 and
P < 0.001, respectively); Table 3 summarizes mean differences
with the respective statistics in detail. Correspondingly, hyper-
permeability expressed as AUC was significantly lower in human
endothelium treated with 0.4 and 0.2 mmol/L lithium compared
to control (AUC, n = 4–6 per group, P = 0.019 and P = 0.003,
respectively, Figure 5B).

To investigate the hypothesis whether the lithium-
attenuated dynamic hyper-permeability of human endothelium
was mediated by an involvement of the receptor PAR-1
and downstream signaling, we repeated the experiments
(compare Figure 5A) using the selective PAR-1 receptor
agonist TFLLR-NH2. Lithium chloride (0.2 and 0.4 mmol/L)
likewise significantly abolished the TFLLR-NH2-induced
hyper-permeability (Figure 6).

Lithium-Attenuated Human Dynamic
Endothelial Permeability Is Mediated by a
Reduced Endothelial Myosin Light Chain
Phosphorylation
The endothelial MLC phosphorylation is regulated by the
protein kinase C and chiefly controls the contractile apparatus of
endothelial cells (Garcia et al., 1995). Due to this phosphorylation
the active contractile apparatus [Ca2+]i-dependently develops
small paracellular gaps and thus hyper-permeability (Aslam

et al., 2010). Lithium is known to inhibit the inositol
monophosphatase/glycogen synthase kinase-3-β signaling-
pathways including [Ca2+]i in neurons and perhaps other
cells (Berridge, 1989, 2014; de Sousa et al., 2015; Bosche
et al., 2016). These down-steam pathways may affect MLC
phosphorylation; we therefore studied the MLC phosphorylation
(with or without lithium) as possible link to endothelial
permeability. Figure 7 demonstrates that a prolonged lithium
treatment significantly reduced the endothelial intracellularMLC
phosphorylation during thrombin-induced hyper-permeable
conditions compared to control [1.75 ± 0.26 vs. 3.20 ± 0.23
(ratio of MLC-P/actin) n = 3 per group, P = 0.014] suggesting
a potential mechanism of the lithium-attenuated dynamic
permeability of human endothelium.

DISCUSSION

We conducted an experimental study using lithium as a
pharmacologic treatment for murine, porcine and human
vascular endothelium with three interrelated goals. First, we
wanted to clarify whether low concentrations of lithium
help support endothelium-dependent vessel relaxation, since
conflicting results had previously been published (Bakken et al.,
1992; Afsharimani et al., 2007; Rahimzadeh-Rofouyi et al., 2007;
Bosche et al., 2016). Second, we wanted to assess whether
low concentrations of lithium carbonate, as a commonly used
drug in bipolar disorder and other psychiatric/neurological
conditions (Geddes and Miklowitz, 2013; Yatham et al., 2013),
correspondingly augment endothelium-dependent thoracic and
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FIGURE 5 | Effect of lithium at low therapeutic concentrations on the dynamic, thrombin-induced hyper-permeability of human endothelium. Confluent

human endothelial monolayers were exposed to lithium for 48 h. (A) Basal and dynamic, thrombin-induced hyper-permeability after pretreating with TiprotecTM

solution in absence of lithium as a control ( ) or with the same solution containing 0.4 ( ) or 0.2mmol/L lithium ( ). Thrombin induced a highly significant

increase in permeability of control and both lithium treated groups (all, ***P < 0.001 compared to their basal permeability, respectively). Before addition of thrombin the

basal albumin permeability of 0.4 and 0.2mmol/L lithium treated human monolayers was slightly but non-significantly lower compared to control (P = 0.095 and P =

0.070, n.s., respectively). Both types of lithium treated human endothelium showed a significantly lower dynamic thrombin-induced hyper-permeability compared to

control (##P = 0.004 and ###P < 0.001, respectively; see also Table 3 for further details). (B) Consistently, the dynamic hyper-permeability of lithium treated

endothelium (0.4 and 0.2 mmol/L, integrals/AUC, compare part A) was significantly lower compared to control (*P = 0.019 and **P = 0.003, respectively). Data are

expressed as mean ± SEM of n = 4–6 separate experiments per group of independent cell preparations.

TABLE 2 | Permeability increase (basal to peak) of human endothelium

after treatment with different lithium concentrations.

Group Mean increase (106 × cm/s) SEM P-value

Control 5.3962 ±0.4043 <0.001

Lithium 0.2 mmol/L 2.9419 ±0.1747 <0.001

Lithium 0.4 mmol/L 3.9716 ±0.3881 <0.001

cerebral vessel relaxation capacity. Third and most important,
we aimed to find similar evidence as to whether low lithium
concentrations can improve other endothelial functions such as
the basal and dynamic permeability (Coughlin, 2000; Gündüz
et al., 2003; Aslam et al., 2010; Bosche et al., 2013) particularly
of human endothelium (Gündüz et al., 2015). Moreover, we
wanted to provide some first hints for a mechanistic explanation
of the findings; and modified MLC-P appeared to be a possible
candidate.

It is worth to mention that models with denervated vessels
were performed to investigate the isolated vessel reaction in
direct response to different concentrations of a pharmacologic
lithium treatment independently of the influence of lithium on
the central and hence the vegetative nerve system including its
remote control of the vessel tones.

The data presented here suggested that lithium improved and
stabilized endothelium-dependent vascular relaxation capacity
and the human endothelial dynamic barrier, respectively. The
latter represents a unique finding for human endothelium.

After pharmacologic treatment with lithium carbonate at low
therapeutic concentrations (up to 0.4mmol/L), arterial relaxation
capacities were significantly improved in different vascular
provinces. This means that the improvement was similarly
mediated through both aortal and cerebral endothelium. An
endothelium-independent mechanism was not involved, in
concordance with previous reports showing that removal of the
endothelium hindered the lithium-augmented vasorelaxation
(Bosche et al., 2016). Moreover, the endothelium-independent
NO donor effect (induced by SNP) remained unaltered by
lithium again shifting endothelium as a lithium target into
focus. The findings of lithium carbonate also originated
from two different vertebrate species (mouse and swine) and
additionally different vascular provinces suggesting a general
rather than a locally circumscriptive endothelial characteristic.
We then followed up those experiments, by investigating
endothelium isolated from human vessels. The impact of
low therapeutic lithium on dynamic endothelial barrier
functioning was directly measured for human endothelium
and represented a novel finding determining lithium to
significantly stabilize endothelial barrier. These findings
underline the concept of lithium being a promising approach of
targeting human endothelium for treating (or at least positively
influencing) vascular and cerebrovascular dysfunctions such as
impaired autoregulation and endothelial barrier breakdown,
as found after cerebral ischemia (Bosche et al., 2003; Dohmen
et al., 2007; Wijdicks et al., 2014) or hemorrhagic stroke
such as subarachnoid hemorrhage (Bosche et al., 2009,
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TABLE 3 | Comparison of the dynamic thrombin-induced hyper-permeability of groups of human endothelium treated with or without lithium.

Group comparison Mean difference (106 × cm/s) SEM P-value 95% CI

LB UB

Control Lithium 0.2 mmol/L 1.6430 ±0.3351 <0.001 0.7533 2.5327

Control Lithium 0.4 mmol/L 1.0248 ±0.2681 0.004 0.3130 1.7366

Lithium 0.4 mmol/L Lithium 0.2 mmol/L 0.6182 ±0.0307 0.181 −0.1972 11.4337

CI, confidence interval; LB, lower bound; UB, upper bound.

FIGURE 6 | Effect of lithium at low therapeutic concentrations on the

dynamic, TFLLR-NH2-induced hyper-permeability of human

endothelium. TFLLR-NH2 is an oligopeptide (Thr-Phe-Leu-Leu-Arg-NH2),

which acts as a PAR-1 selective agonist. Confluent human endothelial

monolayers were exposed to different concentrations of lithium for 48 h. Basal

and dynamic TFLLR-NH2-induced hyper-permeability after pretreating with

TiprotecTM solution in absence of lithium as a control ( ) or with the same

solution containing 0.4 ( ) or 0.2 mmol/L lithium ( ). TFLLR-NH2

induced a highly significant increase in permeability of control and both lithium

treated groups (all, ***P < 0.001 compared to their basal permeability,

respectively). Both types of lithium treated human endothelium revealed a

significantly lower dynamic TFLLR-NH2-induced hyper-permeability compared

to control (#P = 0.031 and ##P = 0.001, respectively). Data are expressed

as mean ± SEM of n = 3 separate experiments per group of independent cell

preparations.

2010; Urday et al., 2015). Predominantly, post-ischemic
malignant brain edema after hemispheric stroke (Hacke et al.,
1996; Bosche et al., 2003) may represent a potential field
(Wijdicks et al., 2014) for a pharmacologic treatment with
lithium. However, further studies and particularly clinical
investigations will be required to provide more definitive
conclusions.

The question arises as to how lithium improves endothelial
functioning. Similarly to neurons and glia, lithium also
intracellularly interacts with IMPase and GSK-3β in vascular
endothelium subsequently altering IP3, cAMP and thus [Ca2+]i
(Berridge, 1989, 2014; Schäfer et al., 2001; Gould and Manji,
2005; Ryglewski et al., 2007; Munaron and Fiorio Pla, 2009;
Trepiccione and Christensen, 2010; Bosche et al., 2013). In

endothelial cells, lithium prevents the discharge of calcium from
endogenous storage by inhibition of the inositol trisphosphate
(IP3)-sensitive calcium channels of the endothelial endoplasmic
reticulum (ER), thus counteracting cells stress-induced cytosolic
calcium increase and conferring lithium an endothelial
cytoprotective potential (Schäfer et al., 2001; Bosche et al., 2013).
Functionally, maintenance of [Ca2+]i homeostasis at low-dose
lithium may manifest as modified endothelium-mediated
vasodilation (Förstermann and Münzel, 2006; Rahimzadeh-
Rofouyi et al., 2007; Bosche et al., 2016) but also as preserved
dynamic endothelial barrier function. Besides the effect of
lithium on IP3-sensitive [Ca2+]i (Berridge, 1989) particularly
in endothelial cells previously reported by our group (Schäfer
et al., 2001; Bosche et al., 2013), nitric oxide (Bosche et al., 2016),
and MLC phosphorylation (Aslam et al., 2010) may serve as
downstream targets mediating vasorelaxation and endothelial
contraction inducing hyper-permeability, respectively (for
review see Stokum et al., 2016). In endothelium, the MLC-P is
protein kinase C and [Ca2+]i/calmodulin-dependent (Garcia
et al., 1995; Aslam et al., 2010). By identifying the reduced
endothelial MLC phosphorylation after prolonged low-dose
lithium treatment, we found a mechanistic explanation for
the lithium-attenuated endothelial hyper-permeability and
slightly reduced basal permeability. Characterizing the detailed
endothelial mechanisms should be the next step for our future
research perhaps additionally in an in-vivomodel. If MLC-P may
also be influenced by lithium in vascular SMCs is perhaps likely
but unclear, yet, and thus requires also further research.

In light of our current findings, lithium at low therapeutic
concentrations functionally represented a universal endothelium
protective agent, as reported by others in single species and
only one vascular province (Bakken et al., 1992; Afsharimani
et al., 2007; Rahimzadeh-Rofouyi et al., 2007). The last of these
studies, e.g., found that low lithium concentrations (0.5 mmol/L)
reduced and higher ones (2 mmol/L) improved ACH-induced
mesenteric vascular bed relaxation, which is partly at odds with
our results, perhaps because of the mesenteric vessel type used
(Rahimzadeh-Rofouyi et al., 2007). We investigated thoracic
and middle cerebral arteries. Relaxation of cerebral vessels
during and after an ischemia/reperfusion leads to collateral
cerebral blood flow, and thus characterizes an intrinsic strategy
of the cerebral vasculature to protect neuroglial structures but
also vasculature including endothelium against ischemic injury
(Heiss et al., 2001), likewise reported for the heart (Koerselman
et al., 2003; Meier et al., 2013). Indeed, cerebral collateral
status and sufficiently enlarged calibers of collateral arteries
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FIGURE 7 | Effect of low-dose lithium with or without thrombin on the

myosin light chain phosphorylation (MLC-P) of human endothelium.

Confluent human endothelial monolayers were exposed to different

concentrations of lithium: No lithium (control) and 0.4 mmol/L lithium chloride

(compare Figure 4 and Figure 5). (A) The basal endothelial MLC-P was

somewhat reduced in the human endothelium treated with 0.4 mmol/L lithium

chloride, however, in a non-significant way (P = 0.275, n.s.). (B)

Representative western blots under basal permeability conditions with or

without lithium, compare part A. (C) Thrombin (0.2 U/ml) led to an increase in

MLC-P of human endothelium, which is known to intensify the endothelial cell

contraction with subsequent inter-endothelial gap formation. The

thrombin-induced MLC-P increase was significantly abolished in the low-dose

lithium (0.4 mmol/l) treated endothelium 5 min after addition of thrombin (*P =

0.014 compared to control). (D) Representative western blots under dynamic

hyper-permeable conditions with or without lithium, compare part C. Data

from part A,B are shown as ratios of the MLC-P/actin and expressed as mean

± SEM of n = 3 separate experiments per group.

have recently been identified as most relevant for final infarct
volume, vasogenic edema formation (with subsequent midline
shift), and hence patient outcome (Volny et al., 2016; van den
Wijngaard et al., 2016; van der Hoeven et al., 2016). Therefore,
patients at risk for stroke with unfortunate collateral status
(thus portending poor outcome) could particularly profit from a
lithium treatment at low concentrations via a generally improved
endothelium-dependent vessel relaxation capacity. This might
be speculative, but on the other hand, the lithium-augmented
cerebrovascular relaxation capacity may party explain, why
continuous lithium treatment can reduce the risk for stroke
(Lan et al., 2015) or may improve neurologic recovery after
cortical stroke (Mohammadianinejad et al., 2014) potentially
caused by various beneficiary effects on neurons (Doeppner et al.,

2016; Vosahlikova and Svoboda, 2016), or platelets (Barry et al.,
2003) including the direct ones on vascular and cerebrovascular
endothelium (Afsharimani et al., 2007; Rahimzadeh-Rofouyi
et al., 2007; Bosche et al., 2013, 2016), as presented here. Directly
or secondarily impaired endothelial barrier after ischemia and
hemorrhages followed by vasogenic edema formation (Stokum
et al., 2016) were known to be highly relevant for clinical
outcome of various types of stroke (Hacke et al., 1996; Bosche
et al., 2003; Macdonald, 2014; Wijdicks et al., 2014; Urday
et al., 2015). Therefore, those patients may clinically benefit
from a lithium-stabilized, MLC-mediated dynamic endothelial
barrier with subsequently reduced vasogenic edema formation.
However, additional research is warranted, which will help
to better understand the complex phenomenon of lithium-
strengthened endothelial barrier and augmented cerbrovascualar
relaxation capacities including the potential benefit for stroke
patients.

Three limitation of our study deserve mentioning. First, the
endothelial intracellular lithium concentration was not directly
measured, e.g., by using lithium NMR spectroscopy methods
(Fonseca et al., 2004), in our study. On the other hand,
serum levels of lithium and not intracellular concentrations are
clinically relevant and used for lithium therapy monitoring.
Second, a complete mechanistic explanation for all lithium-
associated endothelial findings is not yet given in this paper.
The known effects of lithium on neurons, particularly on
neuronal GSK-3β/IMPase pathways are a matter of extensive
research over decades; however, exploring the direct lithium-
endothelium interaction has just recently started. Thus, our
knowledge is still limited and further research is needed and
planed in this field. Third, an ideal model for human endothelial
barrier respectively blood-brain barrier does not yet exist
(Helms et al., 2016). For investigating (fairly tight) endothelial
permeability, we used human endothelial cells of passage #1,
aiming to avoid culture effects due to higher passages. Using
human cerebral endothelial cells might further improve our
particular knowledge about lithium in cerebrovascular diseases.
However, commercially available human endothelial cell lines
are immortalized and hence of higher passages with many
pitfalls restricting translations to the in-vivo situation. Hence our
approach represents a compromise minimizing some but not all
methodologic drawbacks.

In conclusion, a low-dose therapeutic concentration of
the mood stabilizer lithium directly stabilizes the human
endothelial barrier by reducing MLC phosphorylation
weakening the endothelial contractile machinery and thus
avoiding paracellular gap formation. Moreover, low-dose
lithium augments endothelium-dependent thoracic and
cerebral vasorelaxation capacity. These findings of improved
endothelial functions could partly explain why long-term lithium
treatment reduces the risk for ischemic stroke in patients who
receive lithium. Therefore, our results may open a gate for
novel lithium indications potentially for patients suffering
primarily from cardiovascular and cerebrovascular diseases
with impending or already impaired endothelial functions.
However, further translational research and clinical studies are
warranted.
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