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Abstract
We investigate with numerical simulations the dynamoproperties of liquidflows in precessing cubes.
There are some similarities with theflow in precessing spheres. Instabilities in the formof triad
resonances are observed. Theflow is turbulent far above the onset of instability but simplifies to a
single vortex for certain control parameters. The criticalmagnetic Reynolds numbers for the onset of
magneticfield generation are lower than, but comparable to, the numbers known for precessing
spheres, and are larger than the Reynolds numbers realizable in an experiment currently under
construction inDresden.

1. Introduction

The dynamomechanism is generally believed to be responsible for the generation ofmagnetic fields in planets
and stars. In this scenario, the kinetic energy of themotion of an electrically conducting fluid is transformed into
magnetic energy. It is frequently assumed that thermal or chemical buoyancy supplies themotion of the fluid
with energy, butmechanical energy injection is possible, too. Precession drivenmotionwas demonstrated
numerically to allow for dynamo action in spheres [1, 2], ellipsoids [3], plane layers [4] and cylinders [5], and
tidally [6], libration [7] and collision driven dynamos [8] exist, too.

The study of convection driven dynamos is farmore advanced than the investigation ofmechanically forced
dynamos. This is partly due to the fact that numerical simulations of convective dynamos are less demanding. It
is a reasonablemodel to study these dynamos for example in spherical shells with stress free boundaries, thus
avoiding the need to resolve Ekman boundary layers. Precession on the contrary is unable tomaintain a
stationary state with a non-trivialmotion in a liquidfilled container with stress free boundaries rotating about an
axis of symmetry [9]. Previous simulations of precession drivenflows eithermade the effort to resolve the
boundary layers on no slip boundaries, or simulated transients [9], or introduced special boundary conditions
[3]. In non-axisymmetric containers, pressure forces exerted by thewalls are potentially able to drive aflow
which leads to dynamo action, so that no viscous coupling towalls and no slip boundaries are necessary.

The rationale of the present paper is tofind a systemwhich allows to investigate precession dynamos in
laminar and if possible turbulent states withminimal numerical effort, whichmeans chieflywith stress free
boundaries.We chose a cube as non-axisymmetric container because it allows us to discretize space on a
Cartesian grid. Precessing cubes have been studied once before [10], but in a parameter regime inwhich the
existence of dynamos is at doubt. A cube is of course not an astrophysically relevant geometry, but onemay
naively expect the flow in a cube to resemble theflow in the largest sphere enclosed by the cubewith deadwater
in the corners. At any rate, there are some features common to precessing flows in all geometries, such as the
appearance of triad resonances, so that any geometry is useful as amodel system. Apart from geophysics and
astrophysics, there is also an interest in precession for laboratory dynamo experiments dating back toGans [11]
andwhich is currently revived [12, 13]. Themain challenge for a laboratory experiment is to build an apparatus
capable of sustaining anymagneticfield at all. It is not realistic to build a spherical precessing dynamo based on
the numbers in [1], but onemay hope that the corners of a cube lead to amore efficient stirring of the fluid and
better dynamos.We already have examples of dynamos inwhich rough boundaries or boundaries with some
complexity are preferred over smooth boundaries. TheVKS experiment [14] drives liquid sodiumwith two
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rotating disks with blades attached to them, because smooth disks without blades do not provide enough energy
input. Spherical Couette flow is a dynamo, and it is predicted that rough spherical boundaries are helpful in this
case [15]. The application to laboratory experiments is themainmotivation for the study presented here.

The next section presents themathematical formulation of the problem and the numericalmethods used to
solve the equations. The subsequent sections will study in turn the laminarflow, its hydrodynamic instability,
and the kinematic dynamo effect.

2.Mathematicalmodel andnumericalmethods

Consider a cube of side length Lfilledwith incompressible liquid of density ρ and viscosity ν, rotatingwith
angular frequency w̃D about the x-axis and precessing with angular frequency W̃P . The x-axis is part of a
Cartesian tripod attached to the cube, whose sides are parallel to x y, and z-axes. The indexD in w̃D stands for
diurnal rotation, a termborrowed from the geophysical application [16]. The precession axis forms the angleα
with the x-axis.

In order to remove dimensions form the equation ofmotion, we choose L as unit of length and the inverse of
the total rotation frequency about the x-axis as unit of time. This is approximately w̃1 D in astrophysical
applications because w W˜ ˜

D P, but in laboratory experiments, w̃D and W̃P can be comparable, so that we take
w a+ W( ˜ ˜ )1 cosD P as unit of time. w̃D and W̃P in an experiment are the rotation rate of amotormounted on the

x-axis of the cube and the rotation rate of a turntable precessing the x-axis in inertial space, respectively. Their
non-dimensional counterparts wD and WP are:

w
w

w a a
=

+ W
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+ W
˜

˜ ˜ ( )
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, 1D
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W
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with w wW = W = W̃ ˜P D P D. Let hats denote unit vectors. In the x, y, z-frame, whichwewill call the ‘boundary
frame’ fromnowon, the vector of precessionWP is given by

aW = W + Wˆ ( ) ( )x p tcos 3P P P

with

a w w= -( ) ( ˆ ˆ) ( )p y zt t tsin cos sin . 4D D

The equation ofmotion for the (non-dimensional) velocity v ( )r t, as a function of position r and time t and the
pressure ( )rp t, reads in the frame attached to the cube

v v v v
v w
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=
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cos
. 7

D P
2

An alternative option is to formulate the problem in the ‘precession frame’ [16], which is chosen such that
the precession and rotation axes are stationary, which implies that this frame is rotating about the precession axis
when viewed from inertial space. The precession frame is of interest here because it reveals the role of non-
axisymmetric containers [9]. In the precession frame, the boundaries rotate about the x-axis but are stationary
otherwise. Suppose the container is symmetric about this axis, so that the shape of the boundaries does not
change in the course of time in the precession frame. Thework done by pressure forces, v∮ · n̂p Ad , where n̂ is
a unit normal vector to the boundary and the integral extends over the entire boundary, is then zero because
v =· n̂ 0 on the boundary. If in addition the boundaries are stress free, there is nothing left to drive aflow.
Everymotionmust come to rest with the exception of a solid body rotation in spherical boundaries because this
motion does not dissipate in the bulk and can go on for ever within stress free boundaries. However, a solid body
rotation cannot support a dynamo.We conclude that if we are looking for a precession driven dynamowith
stress free boundaries, wewill notfind any in containers rotating about an axis of symmetry.

If we opt for a cube as non-axisymmetric container, the precession frame is unpleasant to use because of the
moving boundaries andwe return to the boundary frame and equations (5) and (6). A convenientmethod for
solving these equations is afinite differencemethod implemented onGPUs. Thismethodwas already used for
the simulation of convection driven dynamos [17, 18]. Itsmain feature is to replace a strictly incompressible
fluid by aweakly compressible one in order to avoid the need for a Poisson solver running onGPUs [18]. This

2
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method introduces a sound speed c, replaces v =· 0with a linearized continuity equation vr¶ +  =· 0t

and the term-p in equation (5) becomes r- c2 . The equations actually solved by the finite difference
scheme are:

v v v v
vr w

¶ +  + + W ´
= -  +  + W ´ ´

( · ) ( ˆ ( ))
( ˆ ( )) ( )

x p

x p r

t

c t

2

Ek , 8

t P

P D
2 2

vr¶ +  =· ( )0. 9t

The sound speed c is chosen to keep theMach number v∣ ∣ c below 0.04 everywhere. In addition, c needs to
be large enough so that the time it takes soundwaves to travel across the cube ismuch less than the rotation
period, which expressed in the non-dimensional quantities requires pc 2 . In the simulations presented here,

=c 5002 . The simulations are started from r = 1and r -∣ ∣1 stays below ´ -5 10 4 during the course of the
computations.

For the kinematic dynamoproblem, the equations ofmotion are augmentedwith the induction equation for
themagneticfield ( )B r t,

v¶ +  ´ ´ =   =( ) · ( )B B B B
Ek

Pm
, 0, 10t

2

where themagnetic Prandtl number Pm is given by = n
l

Pm withλ themagnetic diffusivity of the fluid.

The boundary conditions are free slip for the velocity field. Themagnetic field is only allowed to have a
normal component at the boundaries. The tangential components are forced to zerowhich implies that the
normal derivative of the normal component is zero, too, to keep themagnetic field divergence free. These
boundary conditions approximate the vacuumboundary conditions and are frequently called pseudo-vacuum
boundaries. It would have been preferable to run the simulations for vacuumoutside the cube.However, this
leads to non-local boundary conditions andmuchmore time consuming computations.While the choice of the
magnetic boundary conditions does have some quantitative influence on the dynamoproperties of precession
drivenflow, this influence is too small to be relevant for the conclusions drawn below. A comparison of different
magnetic boundary conditions will be presented for an example in spherical geometry, where different types of
boundary conditions are easier to implement.

The time step in these simulations is limited by theCFL-criterion based on the sound speed c and the grid
size. The spatial resolutionwas routinely 1283 and increased to 2563 or 5123 for the Ekmannumber of 10−5. The
angleαwas always 60o, so that negative WP correspond to retrograde precession. The Ekmannumbers varied
from10−3 to 10−5. The second control parameter, wW = WP D was varied from−0.26 to 0. The simulations
focused on negativeΩ since in previous studies, retrograde precessionwas found to be less stable [19, 20].

3.Hydrodynamics

The small amplitude response toweak precession in spheres and ellipsoids which can be described by the
linearized equations ofmotion is a particular inertialmode, the spin-overmode, which corresponds to a
rotation of thefluid about an axis different from the rotation axis of the container. For arbitrary precession in
these geometries, we even have an analytical solution for the full equation ofmotion including the nonlinear
terms for an idealfluid, the so called Poincaré solution. This is amotionwith spatially uniform vorticity. Atfinite
viscosity, we also have an analytical prediction for this vorticity, valid for small Ekman numbers and precession
rates [21], which is largely confirmed by numerical simulations [19, 22]. In analogywith studies in spheroidal
geometry, we consider the energy density of the flow in the frame of the boundaries: vò= á ñE Vd

Vkin
1 1

2
2 , where

á ñ... denotes average over time and the integration extends over the entire fluid volumeV. The division byV is in
fact immaterial here because the cube has unit volume. The rotation of the fluid is best represented in the
precession frame, because it shows themore intuitive behavior in this frame: for zero precession, the fluid rotates
about the same axis as the container, but the fluid axis departs from the container axis as precession is increased.
In order to pursue the analogywith spheres, it is useful to compute the vorticity of the fluid w averaged over
spherical shells centered at the center of the cube:

vòw w=
¢

 ´ ¢ +( ) ˆ ( )xr
V

V
1 1

2
d , 11D

where ¢V is the volume of the intersection of the shell of radius r (and thickness 1/128 in thefigures below) and
the cube. The addition of w x̂D transforms the rotation in the boundary frame into rotation in the precession
frame.

For several visualizations below, it will be necessary to obtain rotation axis for thefluid as awhole.We
compute an average rotation wF as
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D
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r r r

3
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4 d . 12F
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3 0

2

It is certainly useful to spare out the corners of the cube in this average. The average is calculatedwithD =r 0.1
in the upcoming figures which visualize flow structures in the equatorial plane perpendicular to thefluid axis
(the shaded plane infigure 1).

The time average in equation (11) is necessary even for laminarflows. The cube rotates within the precession
frame so that a vorticity which is a constant vector in this frame forms different angles with the edges of the cube
as time goes on. The interaction between the fluid and the boundaries certainly depends on the orientation of the
fluid rotation axis within the cube, andwe expect that the rotation of the fluid is never time independent.

The interactionwith corners also leads to sudden variations of the rotation profile w ( )r asΩ is varied. This is
best seen on contour plots of w∣ ∣ in the (Ω, r)-plane as the example in figure 2 for = ´ -Ek 2.5 10 4. There are
two apparent discontinuities, at W » -0.075 and W » -0.16. For- > W > -0.075 0.16, there is a local
maximumof w∣ ( )∣r at r=0, and theminimumnear r=0.5 is lower than at otherΩ. Similar transitions are
observed at different Ek, but the W∣ ∣at which the transitions occur decreasewith decreasing Ek. The radius to
the closest boundary is 0.5, which is the radius of the largest sphere enclosed by the cube. The variations of w ( )r
found in the cube are generally larger than the variations seen in the sphere at comparable parameters.

A convenient summary of the discontinuous behavior of the global rotation is given by the angle qF between
the axes of thefluid and the container, computed from w w q=· ˆ ∣ ∣x cosF F F . This angle is plotted infigure 3. The
discontinuities observed in the contour plot of w∣ ∣ (figure 2) are found again infigure 3.

Figure 1. Sketch of the system and two frames of reference: the tripod ( )x y z, , isfixedwith respect to the boundaries, with x pointing
along wD. The tripod ¢ ¢ ¢( )x y z, , moves relative to ( )x y z, , such that ¢z always points along wF .

Figure 2.Contour plot of w∣ ∣ in the (Ω, r)-plane for = ´ -Ek 2.5 10 4.

4
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The kinetic energy Ekin is shown for retrograde precession infigure 4. It has the general behaviorwell known
from spheres and spheroids,meaning that Ekin increases with increasing precession rate.However, there are
some conspicuous jumps in the curves infigure 4. These are related to the discontinuities already observed in
w∣ ( )∣r and qF . Furthermore, the behavior is hysteretic and Ekin depends onwhether a given precession rate was
reached by increasing the precession rate from a previous, lower value, or if on the contrary the simulationwas
started from a state obtained at larger precession rate. These hysteresis loops suggest that the fluid’s rotation axis
is pinned in certain positions relative to the edges of the cube.Hysteresis loops in Ekin correlate with hysteresis
loops in in qF . Note that the discontinuities at W < -0.07 showno hysteresis, neither in Ekin nor in qF .

Sudden reorientations of the fluid axis are also known from spheroids. In this case, they are due to two
possible equilibria between viscous and pressure torques [9, 23]. Thismechanism is presumably unrelated to
whatwe observe in the cube, because at fixedEk, there ismore than oneΩ at which a reorientation occurs in the
cube (and only one in the ellipsoid) and theseΩ aremuch smaller in absolute value than the corresponding value
in ellipsoids of small ellipticity, and there is no suchΩ at all in a sphere.

We next turn to instabilities. Following previous studies [19], it is convenient to consider the energyEa
contained in theflow components va antisymmetric with respect to inversion at the center of the cube:

v v v vò= + - =( ( ) ( )) ( )r r E
V

V
1

2
,

1 1

2
d . 13a a a

2

The inhomogeneous term in equation (5) has thewrong symmetry to directly force aflowwith ¹E 0a . It is only
possible tofind ¹E 0a with an intervening instability. On the other hand, the laminarflow can become unstable
to a disturbancewhich has the same symmetry as the spin-overmode so thatEa stays zero despite an instability
[24]. But ¹E 0a is a sure sign of an instability.

E Ea kin is shown as a function ofΩ for different Ek infigure 5. There can of course be no instability for
W = 0. As the retrograde precession is increased, onefinds instabilities, possibly separated by intervals with
Ea=0. This picture is again familiar from triad resonances found in spheres and ellipsoids. A triad resonance

Figure 3. qF as a function of Ω for = -Ek 10 3 (squares), ´ -2.5 10 4 (circles), 10−4 (diamonds) and 10−5 (crosses). Hysteresis loops
are indicated by dashed lines. The dashed branch is obtained by decreasing W∣ ∣and going from left to right in thefigure, the continuous
line is obtained by going in the opposite direction.

Figure 4. Ekin as a function of Ω for = -Ek 10 3 (squares), ´ -2.5 10 4 (circles), 10−4 (diamonds) and 10−5 (crosses). Hysteresis loops
are indicated by dashed lines. The dashed branch is obtained by decreasing W∣ ∣and going from left to right in thefigure, the continuous
line is obtained by going in the opposite direction.
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occurs if two inertialmodes are coupled by the laminar stableflow,which is counted as thirdmode of the triad.
The inertialmodes are viewed as solutions of the unperturbed, non-precessing flow, and the coupling appears in
a perturbation calculationwhich treats the precession rate as a small parameter. In order to obtain a triad
resonancewith an energy growing in time, the inertialmodes in the triad need to satisfy certain selection rules,
for instance concerning the azimuthal wavenumbers [25].

For flows close to the onset of instability, themodes involved in the triad can be identified visually. Further
away from the onset, theflowbecomes chaotic and inertialmodes cannot be readily recognizedwithin the
turbulence. In order tofind triads, themost convenient procedure is the one used in [2, 20]:first change to a
frame of reference ¢ ¢ ¢( )x y z, , inwhich the fluid axis defined by equation (12) points along ¢z . Then select the
‘equatorial’ plane perpendicular to the z′-axis containing the center of the cube (seefigure 1). Plots of

vv = ¢¢ · ẑaz a and v vw =  ´ +  ´ - ¢¢ (( )( ) ( )( )) · ˆr r zaz
1

2
in this equatorial planewill revealmodes in a

triad if they are excited by laminar flowswith corrections to the spin-overmode of azimuthal wavenumber 1.
Figures 6 and 7 showpairs ofmodeswith azimuthal wavenumbers 4 and 5 infigure 7 and 1 and 2 in figure 6
which fulfill the condition that thewavenumbers differ by 1. If such pairs ofmodes appeared near the onset of
instability, theywere always combinations of wavenumbers 4 and 5 or 1 and 2 in the present simulations. At
parameters away from the stability limit, theflowbecomes increasingly disordered, even if hints of underlying
inertialmodesmay still be discerned (figure 8).

No analytical solution exists for inertialmodes in cubes [26], andwe did not compute themnumerically.
Strictly speaking, we have not proven thatfigures 6–8 show inertialmodes, and even less that they form a triad
because this requires a certain interaction integral to be different from zerowhichwe did not check.However,

Figure 5. E Ea kin as a function of Ω for = -Ek 10 3 (squares), ´ -2.5 10 4 (circles), 10−4 (diamonds) and 10−5 (crosses). The graph is
split into two panels for better readability. The right panel shows the curve for = -Ek 10 4 which leads to the largest values of E Ea kin.
Hysteresis loops are indicated by dashed lines. The dashed branch is obtained by decreasing W∣ ∣ and going from left to right in the
figure, the continuous line is obtained by going in the opposite direction.

Figure 6.Visualization of the components parallel to the rotation axis of thefluid of antisymmetric velocity (left panel) and
antisymmetric vorticity (right panel) in the plane perpendicular to the rotation axis of thefluid for = W = --Ek 10 , 0.024 .
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the similarity offigures 6–8with analogous figures for spheres is compelling, so that there can be little doubt that
the same triad resonancemechanism is at work in both cubes and spheres.

It is revealing to look at the spatial distribution of antisymmetric energy because it varies withΩ. Let us define
a radial distribution a by averaging Ea over spherical shells in the sameway aswas done for w in equation (11):

ò=
¢

¢ ( ) ( )r
V

E V
1

d . 14a a

Figure 9 shows a contourmap of a in the (Ω, r)-plane at the same Ek asfigure 2. Depending onΩ, there is a
localmaximumof a near r=0, near r=0.7, or near both. The eddies visible infigures 6–8 explain the
maximumnear r=0.7, but it ismore surprising to alsofind amaximumnear the origin for some parameters.

A point of view complementary tofigure 5 is to study E Ea kin as a function of Ek at fixedΩ, as infigure 10. It
is clear that for  ¥Ek , all instabilities have to disappear and Ea is zero. It is therefore not surprising to see
E Ea kin rise infigure 10 as Ek is decreased starting from large values. Perhapsmore surprisingly, there is an Ek at
which E Ea kin reaches amaximum forΩ fixed, and E Ea kin decreases with decreasing Ek at small Ek. In order
to trigger an instability, the basicflowneeds to be different from a pure solid body rotation. The profile of w∣ ( )∣r
and hence deviations from solid body rotation, depends in a complicatedway onΩ and Ek because of the
corners of the cube, as exemplified infigure 2. A simplification of the hydrodynamic behavior in general and of
E Ea kin in particular is expected if deviations from solid body rotation are not only induced by corners. In an
ellipsoid for instance, the Poincaréflowof inviscid fluid contains shear related to the ellipticity of the container

Figure 7.Visualization of the components parallel to the rotation axis of thefluid of antisymmetric velocity (left panel) and
antisymmetric vorticity (right panel) in the plane perpendicular to the rotation axis of thefluid for = ´ W = --Ek 2.5 10 , 0.025 .

Figure 8.Visualization of the components parallel to the rotation axis of thefluid of antisymmetric velocity (left panel) and
antisymmetric vorticity (right panel) in the plane perpendicular to the rotation axis of thefluid for = ´ W = --Ek 2.5 10 , 0.145 .
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[25], in absence of any corners. The best Cartesian approximation to an ellipsoid is a cuboid. These
considerations led us to perform a few simulations in a cuboidwith side lengths in the ratio 1:1:1.85. And indeed,
we found E Ea kin to reach a plateauwithout noticeable variation below a certain Ek. This finding confirms that
the behavior infigure 10 is specific to a cube and does not exist in a general cuboid.We now also expect tofind
the same behavior in spheres, where it has not been reported up to now, possibly because simulations never used
small enough Ekmannumbers and sufficiently largeΩ.

With the aimof building a precession driven dynamo experiment inmind, it is of interest tofind geometries
which divert asmuch energy as possible from the basic Poincaréflow,which is toroidal and ineffective as a
dynamo, intomore complicated flow. E Ea kin therefore serves as a figure ofmerit, because a larger E Ea kin

guarantees that a larger fraction of energy is in the antisymmetricmodeswhich cannot be part of laminar
precession driven flow.Onemotivation to study cubes instead of spheres is that one expects E Ea kin to be
generally larger in the cube. At equal average vorticity of the interior flow, theflow either flows over smooth
boundaries in a sphere, or passes the edges and corners of a cube. One expects the latter case to stir the fluidmore
efficiently because of a stronger coupling between the boundaries and the fluid, and one expects larger E Ea kin in
the cube.

When comparing the results for the cubewith those obtained for spheres in [1, 2], one has to keep inmind
that the Ekman andReynolds numbers in those references are based on radius instead of diameter. For the
purpose of comparison, these Ekman andReynolds numbers have to be divided by 4 andmultiplied by 2,
respectively.

The expectation of a larger E Ea kin in the cube is roughly fulfilled. For instance, in a sphere at
= ´ -Ek 1.25 10 4 with a =  E E60 , a kin is less than ´ -6 10 3 at allΩ [1]. In the cube at
= > ´- -E EEk 10 , 6 104

a kin
3 for- < W < -0.24 0.006with amaximumat W = -0.008which lies on the

branch of a hysteresis loop obtainedwhen decreasing W∣ ∣ (figure 5). However, the instability occurs through a
triad resonance and eigenfrequencies depend on container shape, so that one can alsofind counter examples of
the sort that at someΩ, one hits a resonance in the sphere which becomes unstable, but the cube is stable at the
sameΩ, so that E Ea kin is larger in the sphere than in the cube at someΩ. This happens for example at W = -0.3
and = ´ -Ek 0.75 10 4.

Figure 9.Contour plot of a in the (Ω, r)-plane for = ´ -Ek 2.5 10 4.

Figure 10. E Ea kin as a function of Ek for W = -0.02 (squares),−0.05 (triangles) and−0.1 (circles).
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When applying the results of numerical simulations to laboratory experiments or astrophysical objects, it is
always necessary to extrapolate results to smaller Ek. This turns out to be difficult in the cube, even in
hydrodynamics withoutmagnetic fields. The reason is that at constantΩ,flowpatternsmay change qualitatively
as Ek tends to zero. The best example is W = -0.02. At = ´ -Ek 2.5 10 4, one observes twomodes withm=4
and 5 (figure 7). At = ´ -Ek 2 10 4, these twomodes have disappeared and are replaced by two othermodes
withm=1 and 2.Decreasing Ek further, one suddenlyfinds at = -Ek 10 5 aflow consisting of a single cyclonic
vortex, which decays typically every 4 to 5 rotations into small scale turbulence before reforming againwithin
less than a single rotation period (figure 11). Such a single vortex state is also observed at = -Ek 10 5 at the
neighboring precession rates of W = -0.01and−0.03, but not at−0.04 and beyond.

The single vortex state reminds of observationsmade in cylinders [27] and spheres [28] of a few vortices
forming and steadily drifting.What sets the cube apart is that the reorganization of the small scale turbulence is
so complete that only a single vortex is left over.

Themechanism responsible for the formation of this vortex remains to be elucidated. An inverse cascade is a
natural candidate. But it should be noted that already at less extreme parameters, increased cyclonic vorticity
appears at the origin, as for instance at = ´ -Ek 2.5 10 5 near W = -0.14 as shown infigure 2.

4. Kinematic dynamos

The induction equation (10) is now solved together with the equations ofmotion to investigate the generation of
magnetic fields. The back reaction of themagnetic field on theflow is not included so that therewill not be any
information about the saturation field strength. Ifmagnetic fields grow froma seed field, theywill do so
exponentially in a time independent flow. If theflow is turbulent and statistically stationary, the time evolution
of themagnetic field over long times can still befitted to an exponential. The growth rate deduced from such afit
is determined for different Pm. Of particular interest is the criticalmagnetic Prandtl number, Pmc, abovewhich
magnetic fields growwhereas they decay for <Pm Pmc.

We tried to reproduce the results of [10]who studied a precessing cubewith perfectly conducting
boundaries. It was a simplematter to implement these boundary conditions instead of the pseudo-vacuum
boundaries, butwe did not use the same initial conditions to start the simulations. At any rate, we could notfind
any growingmagnetic fields for the control parameters given in [10] and assume that these simulations simply
were not run for long enough. The graphs shown in that paper cover intervals of time shorter than the transients
in our simulations. Transient growth of course did occur, but eventually, allfields decayed.

Dynamos have been found only inflowswith ¹E 0a , at least for Pm 11. This implies that a
hydrodynamic instability is necessary. A selection of critical Pm is shown infigure 12. The smallest Pmc is 0.24
and corresponds to theflowwith a single vortex (figure 11). Flowswithout a single vortex at the same Ek have a
Pmc larger by at least 30%. Infigure 12, there is a general trend for Pmc to decrease with decreasing Ek. This
suggests that criticalmagnetic Reynolds numbersmay asymptote towards constants at small Ek andmotivates
us to investigatemagnetic Reynolds numbers.

Figure 11.Visualization of the components parallel to the rotation axis of thefluid of total velocity (left panel) and total vorticity (right
panel) in the plane perpendicular to the rotation axis of thefluid for = W = --Ek 10 , 0.025 . Note thatfigures 6–8 show
antisymmetric, not total velocity or vorticity.
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There are several potentially useful definitions ofmagnetic Reynolds number. First, there is the critical
magnetic Reynolds number based onEa, defined as

= ERm 2 Pm Ek.c,a a c

This definition ismotivated from the observation that the total kinetic energy includes the basic solid body
rotation of the spin-overmodewhich is not useful for the dynamo, whereasEameasures onlymotionwhich is
essential to the dynamo. Ea is notmodified upon changing between the boundary frame, the precession frame,
and the inertial frame. Rmc,a puts a number onwhether theflow excited by instability is an efficient dynamo
or not.

Rmc,a is shown infigures 13 and 14 as a function ofΩ and Ek. The smallest value in this collection is 155
(obtained for = ´ -Ek 2.5 10 4 and W = -0.044). The other criticalmagnetic Reynolds numbers are between
155 and 3000. For comparison, the lowest value known for a precessing spherical dynamo is approximately 400
(based on the diameter of the sphere), which is found for = ´ -Ek 1.25 10 4 (again based on the diameter of the

Figure 12. Pmc as a function of Ek for W = -0.02 (squares),−0.05 (triangles) and−0.1 (circles).

Figure 13. Rmc,a as a function of Ω for = ´ -Ek 2.5 10 4 (circles) and 10−5 (crosses).

Figure 14. Rmc,a as a function of Ek for W = -0.02 (squares),−0.05 (triangles) and−0.1 (circles).
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sphere), a = 60 and W = -0.3 [1], whereas =Rm 1280c,a for W = -0.14 [2]. Using Rmc,a as figure ofmerit,
the dynamos in precessing cubes are better than dynamos in spheres by a factor ofmore than 2. It is not clear
where this improvement comes from, considering the similarity of the flows in the two geometries.

Infigure 13, Rmc,a has twominima as a function ofΩ for = ´ -Ek 2.5 10 4. Awell defined triad dominates
theflow around W = -0.05, whereas theflow ismore chaotic and is dominated by different azimuthal
wavenumbers for W = -0.11and contains again a recognizable triad at W = -0.15. In addition, the radial
variation of rotation is different at bothΩ (figure 2), which leads to differentω-effects in the parlance ofmean
fieldmagnetohydrodynamics. It is not surprising that different combinations of inertialmodes and differential
rotation lead tomore or less efficient dynamos, even though it requires detailed numerical computation to tell
which combination is optimal.

The single vortex flowoffigure 11 is also a dynamo, with =Rm 824c,a . This is however not a very relevant
number, because theflow in the vortex has thewrong symmetry to contribute toEa. Also, Rmc,a is not a number
directly useful for the design of laboratory experiments, which are limited among others by the power delivered
by themotors driving the experiment. Let us therefore consider the criticalmagnetic Reynolds number based on
Ekin, defined as

= E ERm Rm .c,E c,a kin a

If =E 0kin , there is nomotion of the fluid relative to the boundaries and no dissipation. The dissipationwill
increase with Ekin, even though the exact functional dependence is not known. If one designs an experiment, one
certainly wants tominimize Rmc,E. One can hope that the cube further improves upon the sphere by this
measure because of the larger E Ea kin found atmost parameters. Disappointingly, figure 15 shows that this is not
the case, because for the dynamoswith a small E ERm ,c,a a kin is actually relatively small. The smallest Rmc,E

found in the cube is approximately 2800. The two spherical dynamos cited in the previous paragraph have
=Rm 4560c,E (for W = -0.3) and =Rm 16500c,E (for W = -0.14).

Another experimental limit is the rotation rate that can be imparted to the container, best quantified as the
magnetic Reynolds number based on the rotation speed, Rmrot, which is given by

= ( )Rm Pm 2Ek .rot

The design for the experiment inDresden [12, 13] for instance is limited to <Rm 1420rot . The values found for
the critical Rmrot in the simulations exceed this limit bymore than a factor of 2 (figure 16). The smallest
simulated Rmrot is around 3200. Fromfigure 17, one cannot expect that this numberwill bemuch reduced in
going from the simulated Ekmannumbers of 10−5 and larger to the Ekmannumbers of the experiment of 10−8.

Infigures 14–17, themagnetic Reynolds number seems to generally increase with decreasing Ekmannumber
for Ek below 10−4.With the units chosen in this paper, velocities are given inmultiples of the global rotation
speed, so that the adimensional velocity is directly a Rossby number. This number is less than 1 in all simulations
presented here and there is no systematic dependence of themagnetic Reynolds numbers on the Rossby
number. It is thus impossible to detect any effect of a rotational constraint on theflow. But decreasing Ek also
broadens the spatial spectrumof the turbulent fluctuations and adds small scales to the flow. The increase of the
magnetic Reynolds numbers at small Ek indicates that these small scales increase themagnetic eddy diffusivity
without increasing in the same proportion the induction andmagnetic field generation.

Extrapolations to small Ekman numbers are uncertain due to the hydrodynamic transitions described in the
previous section, in particular the appearance of a flow consisting of a single vortex. It is not yet knownwhether
such a state will arise for all precession rates for small enough Ek. Among the examples of single vortexflowswe
know, the smallestmagnetic Reynolds numbers are =Rm 7700c,E and = ´Rm 1.2 10rot

4.

Figure 15. Rmc,E as a function of Ek for W = -0.02 (squares),−0.05 (triangles) and−0.1 (circles).
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Themagnetic field generated by the vortex reflects the underlying flow in that the field is wrapped around the
vortex (figure 18). In the other flows, plots ofmagnetic field intensity reveal large amplitudes along the perimeter
of the flowwith little signature of the structures of themodes in the triad resonance (figure 19). This ismostly
due to the fact that thesemodes are part of the antisymmetricmotion, whichmakes up a small fraction of the
total energy. The symmetricmotion on the other hand ismostly a rotationwith deadwater in the corners and
shear zones surrounding the core of the flowwhich stretch themagnetic field and lead to the large amplitudes
seen infigure 19.

The boundary conditions implemented in our simulations are not a perfect representation of an experiment.
However, the simplification of boundary conditions has no dramatic impact on critical Reynolds numbers in

Figure 16. Rmc,rot as a function of Ω for = ´ -Ek 2.5 10 4 (circles)and 10−5 (crosses).

Figure 17.The critical Rmrot as a function of Ek for W = -0.02 (squares),−0.05 (triangles) and−0.1 (circles).

Figure 18.Visualization of themagnitude of themagnetic field in the plane perpendicular to the rotation axis of thefluid for
= W = --Ek 10 , 0.025 .
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precessing flows, presumably because of the large shear between the boundary layers and the Poincaréflow in the
interior. Shear occurs in boundary layers in precessing spheres with no slip boundaries, and themagnetic field
amplitudes at the perimeter of the core visible infigure 19 are also indicative of shear. To test the effect of
boundary conditions for themagnetic field, we simulated dynamos in precessing spheres for three different
boundary conditions withminormodifications of the code of [1]: (1) vacuumoutside the sphere, (2) pseudo-
vacuumconditions (normal derivative of normal component and tangential components of B are zero) and (3)
perfect conductor outside the sphere (normal component and normal derivatives of tangential components of B
are zero). The example chosen for this comparison is one of the dynamos infigure 2 of [1] at = ´ -Ek 0.75 10 4

(Ek being computedwith the diameter of the sphere) and aW = - = 0.3, 60 . The critical Pm for vacuum and
pseudo-vacuumboundaries arewithin 1%of each other, whereas the Pmc for a perfect conductor outside the
sphere is 20%below the Pmc for vacuumboundary conditions. Among the three standardmagnetic boundary
conditions, the perfectly conducting boundaries lead to the smallest criticalmagnetic Reynolds numbers.

5. Conclusions

Fluid instabilities in precessing cubes and spheres share similarities which take root in similar laminar basic
flows. In a sphere, this is a simple solid body rotationmodified by viscous effects at the boundaries. In a cube, the
basicflow is stillmainly a rotation,modified by the presence of corners. The instability, detected by the energyEa
of the antisymmetricmodes, proceeds through a triad resonance. This phenomenon is well studied in spheres
[2, 28], and themain features of thismechanism reappear in the cube. In the present study,Ea is a function of two
control parameters,Ω and Ek. Close to the lineEa=0 in this 2Dparameter space, it is possible to identify triads
as infigures 6 and 7, which dissolve further away from the onset of instability into turbulent or chaotic flow. At
the smallest Ek simulated so far, the flow can become simple again by forming a single vortexwhich every time
and again decays into small scale structures before reassembling again.

Kinematic dynamos are found among the flowswith ¹E 0a withmagnetic Reynolds numbers of the same
order ofmagnitude as in spheres, irrespective of how these numbers are defined.Nonetheless, theminimal
magnetic Reynolds numbers in the cube are about a factor of 2 smaller than those known for the sphere. The
magnetic Reynolds number can be based on three different velocities: the typical velocity of antisymmetric
components, the total velocity relative to the container, and the rotation velocity of the container. Thefirst of
these tells us whether the velocity profile in antisymmetricmodes could be optimized in order to reduce the
criticalmagnetic Reynolds number. Comparing the numbers found herewith those of, for instance, the
spherical dynamos in [29], and taking into account that the instabilities also excite symmetric components
presumably helpful to the dynamonot accounted for inEa, we conclude that this criticalmagnetic Reynolds
number cannot be reasonably expected to bemuch smaller than the numbers computed here. It is in fact
surprising that the cube improves upon the sphere by a factor of 2.On the other hand, onemight have expected
further improvement regarding the other definitions of the Reynolds number, because the corners and edges of
the cube act as a surface roughness comparedwith the sphere and lead to better coupling between fluid and
boundarymotions. Thefluid dynamics globally confirm this expectation, but Rmc,a is large in theflowswith a

Figure 19.Visualization of themagnitude of themagnetic field in the plane perpendicular to the rotation axis of thefluid for
= ´ W = --Ek 2, 5 10 , 0.024 .
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large E Ea kin, so that there is no further significant net reduction of criticalmagnetic Reynolds number of any
definition in going from the sphere to the cube.

The criticalmagnetic Reynolds numbers are at any rate larger than those accessible experimentally [12, 13].
Themagnetic Reynolds number of the global rotation can be on the order of 1000 in experiments, but this in
itself is useless because pure rotation cannot lead to dynamo action.Modest precession rates, easily realized in
experiments, incline the rotation axis of the fluidwith respect to the rotation axis of the container by enough so
that roughly half of the Reynolds number of the global rotation is available in the rotation relative to the
boundaries. This is still a largemagnetic Reynolds number and judiciously shaped containers possibly lead to a
dynamo effect even in laminar precession driven flow. In simple geometries such as spheres and cubes, an
instability is necessary to create flow structures helpful formagnetic field generation. In the examples simulated
here, themagnetic Reynolds number of the antisymmetricmotions (which are an indicator of instability) is
always less than 10%of themagnetic Reynolds number of the global rotation. It is the smallness of this ratio
which hurts the enterprise of building a precession driven dynamobased onflow instabilities.

Precession driven flow consisting of few vortices has been observed in cylinders and spheres [27, 28, 30].
Theseflows are without a doubt related to single vortexflows in the cube. The single vortex state is also a
dynamo, with criticalmagnetic Reynolds numbers typical of precession drivenflow in general, i.e. of the same
order ofmagnitude as those offlows resulting from triad resonances.

We conclude from this study that themain challenge for building a precession driven dynamo is tofindways
of channeling energy from the global rotation intomotions helpful to the dynamo. Viscous effects at the
boundaries are known tomodify the Poincaréflow in spheres in awaywhich leads to dynamo action [1], albeit at
magnetic Reynolds numbers which render this effect irrelevant for both astrophysical and laboratory
applications which usually involve very small Ekman numbers. The next option is to generate the flow capable of
dynamo action through an instability. If precession driven dynamos exist in celestial bodies, theymust operate
this way.However, the energy taken from the Poincarémode is too small to lead to experimentallymanageable
criticalmagnetic Reynolds numbers. The situation seems to be similar in cylinders, where the energy outside
modes driven directly by precession does not exceed a fewpercent of the total energy [31]. Themost promising
route to a laboratory precession dynamomay therefore be the search for container shapes with a laminarmode
which is already a dynamo.

We also conclude that cubes and cuboids are convenient geometries for the numerical study of precession
drivenflows as they allowed us to collect data for a larger sample of control parameters thanwould have been
possible in an axisymmetric geometry inwhich no slip boundaries are essential. Even though the cube is the
simplest andmost symmetric Cartesian shape, futureworkwill focus on cuboids since the flow in this geometry
promises to be less sensitive to the corners and to allowmore reliable extrapolation toward small Ekman
numbers.
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