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Abstract.  An analytical framework is proposed to describe the elasticity, viscosity 
and fragility of metallic glasses in relation to their atomic-level structure and the 
eective interatomic interaction. The bottom-up approach starts with forming 
an eective Ashcroft–Born–Mayer interatomic potential based on Boltzmann 
inversion of the radial distribution function g (r) and on fitting the short-range 
part of g (r) by means of a simple power-law approximation. The power exponent 

λ represents a global repulsion steepness parameter. A scaling relation between 

atomic connectivity and packing fraction φ∼ λ+Z 1  is derived. This relation is then 
implemented in a lattice-dynamical model for the high-frequency shear modulus 
where the attractive anharmonic part of the eective interaction is taken into 
account through the thermal expansion coecient which maps the φ-dependence 
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into a T-dependence. The shear modulus as a function of temperature calculated 
in this way is then used within the cooperative shear model of the glass transition 
to yield the viscosity of the supercooled melt as a double-exponential function of T 
across the entire Angell plot. The model, which has only one adjustable parameter 
(the characteristic atomic volume for high-frequency cage deformation) is tested 
against new experimental data of ZrCu alloys and provides an excellent one-
parameter description of the viscosity down to the glass transition temperature.

Keywords: glasses (structural), plasticity, viscoelasticity
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1.  Introduction

1.1. State of the art

One of the most puzzling properties of glasses is the huge increase of viscosity, by 
many orders of magnitude, within a narrow range of temperature T upon approach-
ing the glass transition temperature Tg. As a consequence, considerable interest is 
being devoted to understanding this phenomenon in terms of the underlying atomic-
level structure and dynamics of supercooled liquids. In recent years, much attention 
has been devoted to the roles of both short and medium-range order in promoting 
structural and dynamical arrest upon approaching the glass transition from the liq-
uid side. Various order parameters have been proposed to quantify the local order 
in supercooled liquids, starting from the bond-orientational order parameter [1], 
until more recent proposals which showed evidence that glassy properties correlate 
strongly with the local breaking of inversion-symmetry at the atomic scale. As a 
matter of fact, the local inversion-symmetry breaking turns out to be the key micro-
structural aspect which controls both the nonane soft elasticity and the boson 
peak of glasses [2].

In terms of materials applications, there is little doubt that disordered glassy mat
erials represent part of the future of materials science, due to their advanced applica-
tions, in particular in terms of their outstanding performance under mechanical loading 
[3]. Metallic glasses have emerged as the most important class of glassy materials from 
this point of view, and it remains one of the major challenges of current research to 
understand the relationship between atomic dynamics and macroscopic mechanical 
response in these materials.

Due to the current limitations in terms of experimental and computational tech-
niques, the most abundant and reliable information about the atomic-scale structure 
of liquid and glassy metals comes from two-point correlation functions such as the 
structure factor S(q), which can be extracted from neutron and x-ray scattering, and 
gives access to the radial distribution function, g (r). In the theory literature [4], 
attention has been devoted, over the last decades, to multi-point correlation func-
tions such as the four-point correlation function χ4, which exhibits more significant 
changes upon crossing the Tg, whereas the g (r) remains substantially unaltered upon 
going from the liquid into the glass. In reality, appreciable changes in g (r) can be 
detected upon vitrification, although the extent of these changes appears to vary 
from system to system, and this represents a possible way of linking structural evol
ution to dynamics [5].

Among the most popular pictures proposed to link the phenomenology of the Angell 
plot for the viscosity η versus T near Tg, is the one which associates fragile glass formers 
(with the steepest dependence of η on T ) to an underlying steep interparticle repulsion 
at contact, whereas strong glasses (with Arrhenius dependence of η on T ) are associated 
with softer interparticle repulsion. This picture, which is largely based on the two-point 
correlation dynamics and local structure, and on the Weeks–Chandler–Anderson [6] 
idea that the repulsive part of two-body interaction is what controls the overall struc-
ture of liquids, has been demonstrated convincingly for the case of soft colloidal glasses 
by the Weitz group [7].

http://dx.doi.org/10.1088/1742-5468/2016/08/084001
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1.2.  ‘Soft atoms make strong glasses’

Using a theoretical argument based on the high-frequency quasi-ane shear modulus 
and its relation to interatomic connectivity and thermal expansion, some of us [8] 
recently showed that this picture (‘soft atoms make strong glasses’) may be applicable 
to metallic glasses as well. In particular, we showed that a global interatomic repulsion 
parameter can be defined from theory and can be linked to the ascending part of g (r) to 
describe the full Angell plot (from strong to fragile) for metallic alloys of very dierent 
composition. In this theory, an important role is played also by thermal expansion: the 
fragile behaviour is linked with higher values of the thermal expansion coecient αT. 
This is another ‘global’ parameter, this time related to the longer-ranged anharmonic 
part of the interaction, which may also account, in a coarse-grained way, for eects of 
medium-range order. Both these global interaction parameters, λ and αT, are sensitive 
functions of the elemental composition and stoichiometry of the alloy, and may account 
for microalloying eects as well [9].

1.3. Medium-range atomic dynamics

Other very recent studies have appeared which substantially support this picture from 
dierent angles. Busch and co-workers [10] have shown, for various alloys, that fragile 
behaviour indeed correlates with higher thermal dilation, and with shallow changes 
in the first coordination shell. The first feature, is seen in the structural evolution 
on a scale of 3–4 atomic diameters, where long-range interaction eects and anhar-
monicity control the incorporation of volume upon changing T. The shallow structural 
change observed at the level of first coordination shell for fragile melts, instead, can 
be explained by the steepness of the potential: upon reducing T, systems with steeper 
repulsion experience an increased resistance towards further approach of two nearest-
neighbours, thus leading to the observed shallow variation in the position of the first 
maximum of g (r). In recent work, this picture has also been connected to the Arrhenius 
crossover temperature, which marks the appearance of the high-T liquid regime where 
full Arrhenius behaviour of transport properties is recovered [11, 12].

1.4. 5-fold symmetry picture

In a somewhat dierent picture proposed recently by Wang and co-workers [13], fragility 
was found to correlate with the rapidity at which 5-fold (icosahedral-like) symmetry devel-
ops upon lowering T [14, 15]. Although apparently a dierent picture, this finding can be 
related to the interatomic softness parameter λ of [8]. Atoms tend to organize themselves 
in icosahedral clusters with their nearest-neighbours, as T decreases [16, 17]. This process 
becomes faster with steeper interatomic repulsion (larger λ) because the re-organization 
energy, when two atoms are not too close to each other, is comparatively less than for 
softer potentials where at the same distance atoms still experience significant energy.

1.5. Analytical relations for η(T )

Finally, several of these recent works sought an analytical relationship for the increase 
of viscosity η as a function of T in the Angell plot. Kelton and co-workers [5] provided 

http://dx.doi.org/10.1088/1742-5468/2016/08/084001
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an extended Vogel–Tammann–Fulcher (VTF) relationship which involves a structural 
parameter related to the change in the first coordination shell. Wang and co-workers 
[13] proposed another extension of the VTF relationship which, instead, involves an 
order parameter for 5-fold symmetry. Both these relations have two free fitting para
meters (in addition to the normalization constant η0).

An altogether dierent relationship, with just one adjustable parameter, has been 
proposed by Johnson and co-workers [18] and further developed in [8]. This relation, 
furthermore, is not of the VTF type, but arises from a microscopic mechanistic picture 
given by the shoving model of the glass transition due to Dyre, made microscopic by 
using an atomic theory for the high-frequency shear modulus involving the interatomic 
repulsion parameter λ and the thermal expansion coecient αT. The only adjustable 
parameter is the characteristic atomic volume Vc for cage deformation, which was found 
to be related, on a larger scale, to the volume of shear-transformation zones (STZ) [19].

In this contribution, we apply theoretical ideas [8, 18] to experimental data of metal-
lic glasses to show that a bottom-up quantitative relationship can be built between the 
atomic-scale structure and interactions and the macroscopic T-dependent viscosity. 
The resulting framework, in which a major role is played by globally-averaged interac-
tion parameters related to short-ranged interatomic softness and longer-ranged anhar-
monicity, uses the short-range g (r) as input from simulation or experimental data, to 
arrive at the viscosity for which the theory provides an excellent one-parameter fitting. 
This good agreement shows that changes at the level of first-coordination shell, encoded 
in the short-range repulsion parameter λ, as well as changes at the medium-range scale, 
encoded in the thermal expansion coecient αT, are both important in determining the 
viscosity and fragility of metallic glasses.

2.  Interatomic potential for the ion-ion repulsion in metallic glasses

In recent work [8], we analysed several alloys in an attempt to extract an eective, 
averaged interatomic potential which describes the short-range repulsion between any 
two ions in a metallic alloy melt. Based on the systematic fitting of shear modulus and 
viscosity data for various three- and 5-component alloys we proposed the following 
interatomic potential which comprises two contributions: (i) the longer-ranged Thomas–
Fermi screened-Coulomb repulsion modulated by the Ashcroft correction and (ii) the 
Born–Mayer closed-shell repulsion due essentially to Pauli repulsion. The Thomas–
Fermi contribution is more long-ranged and is described by a Yukawa-potential type 
expression. The Born–Mayer contribution is a simple exponentially-decaying function 
of the core-core separation, motivated by the radial decay of electron wavefunctions for 
the closed shells. The eective interatomic potential reads as

( )
( )

( ¯ )=
−

+ σ
− −

− −V r A
r a

B
exp

2
e

q r a
C r

2

0

TF 0

� (1)

where

( )=A Z e q Rcoshion
2 2 2

TF core� (2)
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is the Ashcroft factor [20], with Rcore being a typical value for the atom-specific core 
radius and Zion the eective ionic charge number. Furthermore, a0 is the Bohr radius 
and σ̄ is the average ionic core diameter of the alloy, which corresponds to the aver-
age size of the ionized atoms constituting the alloy. The average ionic core diameter is 
obtained by averaging the respective ionic core diameter of the constituents with their 
contributing weights given by their volume ratios in the alloy. The values for the ionic 
core diameters of the atoms constituting the alloys are taken from [21].

The quantities A and B set the energy scales for the repulsive interaction from 
the Ashcroft and Born–Mayer term, respectively. The parameter qTF is the inverse 
of the Thomas–Fermi screening length given by Thomas–Fermi theory, and its value  
is known for dierent types of alloys [22]. We choose a representative value for qTF as 

1.7 
−

Å
1
 according to the values reported in [22]. The ionic core diameter σ̄ is obtained 

by a weighted average of the core diameters of the atoms constituting the alloys taken 
from [21], where the weights correspond to the ratios of the respective atoms.

The characteristic range 1/C of the valence-shell overlap repulsion is not known a 
priori. However, its typical values are less sensitive to the atomic composition than the 
parameters σ̄, A and B. Dierent atoms have very similar values typically in the range 

C  =  1.89–4.72 
−

Å
1
 [23].

The latter cannot be easily estimated from first-principles or from literature. 
Similarly, the prefactor B of the Born–Mayer term, can be rigorously evaluated only 
from the exchange integrals of the various overlapping electrons belonging to the valence 
shells of the two interacting ions. This calculation, even in approximate form, is not 
feasible except for simple monoatomic crystals. Hence, both A and B were taken in our 
previous analysis as adjustable parameters in the mapping between our schematic loga-
rithmic potential (to be introduced below in section 3) and the Ashcroft–Born–Mayer 
interatomic potential. We shall remark that the Born–Mayer prefactor B typically 
has non-trivial large variations from element to element across the periodic table, as 
shown in many ab initio simulation studies [23, 24]. Consistent with this known fact, 
it turns out that B is the most sensitive parameter in our analysis, in the sense that 
small variations in B can lead to large deviations in the fitting of the experimental data. 
Conversely, the Ashcroft prefactor A is not a sensitive parameter, and its values are not 
crucial for the match with experiments.

In [8], it was found that, in order to fit shear modulus and viscosity data of various 
alloys, values of the Born–Mayer repulsion strength B are required which are between 
two and three orders of magnitude smaller than the Born–Mayer parameters tabu-
lated for pure metals. This important dierence has at least two reasons. One reason 
is that the Born–Mayer formula used for pure substances in the literature is written 

[ ]∼ −Crexp , instead of [ ( ¯ )]σ∼ − −C rexp , which we use here. Evidently, [ ¯ ]σ >Cexp 1 
partly contributes to explain this discrepancy. However, the fact that B fitted for 
multi-component alloys is much smaller than B found for pure substances is also due 
to the so-called micro-alloying eect, whereby the addition of even a small amount of 
dierent elements with dierent ionic size and electronic structure induces a strongly 
nonlinear change in the inter-ionic potential. When there is an atomic size mismatch, 
this dierence intuitively promotes softer repulsion due to the fact that short-ranged 
packing is more ecient. Of course there could be other important reasons related to 
the change in electronic structure, e.g. the change in anisotropy of closed electronic 

http://dx.doi.org/10.1088/1742-5468/2016/08/084001
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shell, which also make the eective short-range repulsion in alloys being eectively 
milder than in pure metals. Finally, the Born–Mayer parameters in [25] refer to pairs 
of atoms, in which the outer electronic structure is clearly much dierent from metals, 
where the atoms are significantly ionized.

3. The global interatomic repulsion parameter λ

In the analysis of [8], it was found that dierent disordered alloys can be described 
by an eective interatomic potential given by equation (1) with A  =  0.3–0.5 eV, and 
B  =  5–60 eV. The value of σ̄ is uniquely determined by the elemental composition 

of the alloy, whereas =q 1.7TF  
−

Å
1
 can be kept constant, independent of composi-

tion. Furthermore, an even simpler parametrization of the interatomic potential was 
obtained by mapping equation (1) onto a logarithmic expression with a single, global 
parameter λ, which contains all the information about the steepness (or its inverse, the 
softness) of the ion–ion repulsion. This simpler expression reads as

( ) ( )λ= − −V r r aln 2 .0� (3)
The mapping between equations (1) and (3) is shown in figure 1, for representative 

parameters of metallic glasses. In all instances examined thus far, equation (1) is very 
accurately represented by equation (3).

The main advantage of representing the repulsive part of the interatomic potential) 
with the compact equation (3) is that it allows us to pack various eects into a single, 
global interaction parameter λ which contains information about the overwhelmingly 
complex details of the ion-ion interaction in metallic alloys. The interaction between 
two ions in metallic glasses is in fact the result of the intricate underlying electronic 
structure as well as of many-body and non-local eects. It is a hopeless task to devise 
a theory of the interatomic interaction due to this complexity, and our aim here is to 
present an averaged non-local parameter which, similar to the eective mass concept 
in semiconductors, takes all these non-trivial eects into account while still allowing 
one to label dierent alloys and their properties in terms of the microscopic interaction.

A second important advantage of the compact form, equation (3), is that it allows 
us to relate the repulsion parameter λ directly to the short-range ascending slope of 
the radial distribution function g (r). Upon identifying the eective interatomic poten-
tial with the potential of mean force, Boltzmann inversion provides a link between the 
eective potential of mean force between two ions and the local structure

( )/ ( )= −V r k T g rln .B� (4)
Importantly, Boltzmann inversion [24] provides a definition of V(r) as a non-local 

interaction potential which contains important many-body contributions, since the 
potential of mean force defines the eective interaction of two ions in the field of all 
the other ions and many-body interactions thereof. Upon combining equation (4) with 
equation (3), we obtain a relationship between λ and g (r), in the form of the following 
simple power-law expression

http://dx.doi.org/10.1088/1742-5468/2016/08/084001
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( ) ( )σ∼ − λg r r� (5)

The link between the g (r) and the interatomic potential V(r) is schematically illus-
trated in figure 2.

4. Analytical expression for the high-frequency shear modulus

In this section we develop a link between λ and the high-frequency shear modulus. As is 
known at least since the seminal work of Zwanzig and Mountain [26], the high-frequency 

Figure 1.  Representation of the Ashcroft–Born–Mayer interatomic potential 
equation (1) using the one-parameter logarithmic expression equation (3) in terms 
of the global interaction parameter λ (including the two separate contributions 
to the interatomic potential). This illustrative plot was generated for a repulsive 
steepness λ = 99.7.

Figure 2.  The global repulsion parameter λ and its relation to the atomic-scale 
structure. The radial distribution function g (r) (left panel) is related to the 
interatomic potential) V(r) (right panel) via equation (4). While the parameter λ 
models the eective repulsion between two ions mediated by the field of all other 
ions in the material, the attractive part of the potential of mean force can be 
parameterized via the Debye–Grueneisen thermal expansion coecient αT.

http://dx.doi.org/10.1088/1742-5468/2016/08/084001
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shear modulus of liquids can be eciently described using ane or quasi-ane elastic-
ity. In brief, the atoms forming the transient ‘cage’ around a given atom are simply 
displaced proportionally to the imposed strain, with the high-frequency of the external 
driving not allowing for nonane rearrangements. The latter dominate instead the low-
frequency response of liquids and glasses and are responsible for a dramatic softening 
of G, as they are associated with a negative contribution to the elastic free energy (in 
fact their contribution is internal work done by the system, hence negative by thermo-
dynamic principles) [27–32].

Importantly, nonane response theory of [27, 28, 30] does correctly recover the 
Maxwell marginal rigidity criterion at the isostatic point at which the total number 
of constraints ZN/2 (where Z is the mean number of bonds per atom) is exactly equal 
to the total number of degrees of freedom per atom dN, with central-force interactions 
(leading to Z  =  2d  =  6 at the isostatic point). Conversely, previous approaches based 
uniquely on isostaticity [33] and ignoring the symmetry, are less general and of limited 
applicability.

Hence, upon taking the infinite-frequency limit of the frequency-dependent nonane 
shear modulus from nonane response theory [27, 28], as shown in [8] and numerically 
confirmed in [31], the ane modulus is retrieved, which scales as ∼G Z , where Z is the 
interatomic connectivity.

The link between the eective repulsion, encoded in λ, and the high-frequency G 
goes by the way of the atomic connectivity Z, which defines the average number of 
nearest-neighbours around a test atom and can be estimated by counting all neighbours 
contained within the first peak of g (r). This is a conservative way of counting nearest-
neighbours, as opposed to e.g. also considering atoms beyond the maximum of g (r), 
since these eectively experience a much reduced restoring force. Furthermore, these 
farther apart neighbours are within the presumably attractive part of the potential of 
mean force and the physics of this region is already accounted for in our model by the 
thermal expansion coecient αT. Therefore, at frequencies much larger than the inverse 
Maxwell relaxation time of the liquid, ωτ � 1M , the shear modulus can be evaluated 
using ane elasticity theory [28], which gives

π
κ
φ=G

R
Z

1

5
.

0
� (6)

Here, κ stands for the spring constant of a harmonic bond and R0 for the average 
interatomic spacing at rest in the equilibrated glass. The coordination number Z refers 
to the average number of mechanically-active nearest-neighbours [28, 29, 32]. While 
coordination numbers are typically defined from an integral over the first peak of g (r), 
there is no consensus about the upper limit of the integral and on how this relates to 
the mechanical activity of the nearest-neighbours being counted. For example, it is well 
known that, if the first minimum of g (r) is taken as the upper limit of integration, then 
the integral yields ≈Z 12 both in the liquid and in the glass, and this result is basically 
independent of the temperature of the system. Clearly, this definition is totally inad-
equate to estimate the average number of mechanical contacts which is required by the 
expression for G.

The value of ( )g rmax  evaluated at the first peak position rmax, increases significantly 
with increasing the packing fraction φ (and with decreasing T ), which is typical of all 

http://dx.doi.org/10.1088/1742-5468/2016/08/084001
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dense liquids with an important repulsive component of the interaction [34]. This is 
related to the fact that nearest-neighbours located within the attractive minimum of 
V(r) are more likely to contribute to the rigidity. Metals definitely fall into this cat-
egory, and their g (r) shares many features with the hard-sphere system, so that, for 
example, their g (r) can be expressed in terms of the hard-sphere g (r) using the cel-
ebrated Weeks–Chandler–Anderson method.

Most importantly, the increase of the value of ( )g rmax  with increasing atomic den-
sity is modulated by the steepness of the interatomic repulsion, since the slope of the 
ascending flank of the first peak of g (r) depends on the slope of the repulsive part of 
V(r) via the Boltzmann formula in equation (4). This fact can be intuitively understood 
by considering that the integral of g (r) up to the maximum ( )g rmax  must necessarily 
yield a larger number when the slope of the ascending part of g (r) is less steep com-
pared to the case of a steeper slope (for the same maximum height). Hence, Z must be 
an increasing function of the atomic density modulated by λ.

Using the fact that the upper integration limit of rmax increases with the packing 
fraction φ, integrating equation (5) up to a threshold which is proportional to φ, as 

done in Appendix A, yields the scaling law φ∼ λ+Z 1 . Although the upper limit of the 
integral could be perhaps identified with rmax, since we are interested here in the quali-
tative behaviour we prefer to leave it as a generic threshold φ∝  such that the limit 

→Z 0 is correctly recovered when →φ 0.
Moreover, the definition of the Debye–Gruneisen thermal expansion coecient αT, 

in terms of the atomic packing fraction /φ = vN V  (with v the characteristic atomic vol-

ume and N the total number of ions in the material) gives ( )φ ∼ α−T e TT , as discussed in 
[30]. According to this result, φ decreases with increasing temperature T, an eect medi-

ated by the thermal expansion coecient defined as ( / ) ( / )α φ= ∂ ∂ = − ∂ ∂
φ

V T TT V

1 1
.

Replacing the latter relationship between φ and T in the equation for Z, see equa-
tion  (6), we finally obtain a closed-form equation which relates G to the two global 
interaction parameters, the short-range repulsion parameter λ and the attraction 
anharmonicity parameter αT,

( ) [ ( ) ]
π
κ

λ α= − +G T
R

T
1

5
exp 2 .T

0
� (7)

An exponential decay of the shear modulus with T is found also in approaches like 
Granato’s intersticialcy theory which model the glass as a crystal with a high concen-
tration of interstitials, see e.g. [35].

Equation (7) accounts, in compact form, for all the salient features of the interatomic 
interaction, and contains the eect of repulsion steepness (short-ranged part of V(r)) as 
expressed by λ, and of anharmonicity, expressed by αT. A schematic depiction of how 
the global parameters λ and αT are related to features of V(r), is presented in figure 2. 
It is important to note that the longer-ranged, anharmonic attractive part of the inter-
action in metals also stems from non-local, volume-dependent terms in the interaction 
of the ions with the partly delocalized electron gas. Hence, a microscopic description in 
terms of pair-interactions alone is generally not valid, although for volume-preserving 
shear deformations, as considered here, it can still be used.

The above expression, equation (7), can be rewritten as

http://dx.doi.org/10.1088/1742-5468/2016/08/084001
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( ) ( )
⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟
⎤

⎦
⎥
⎥

α λ= + −G T C T
T

T
exp 2 1 ,TG g

g
� (8)

where ( )= ε
π
κ α λ− +C e
R

T
G 5

2T

0

g  is defined as the shear modulus value at the glass transition 

temperature Tg, i.e. ( )≡C G TG g . The constant ε stems from the integration of αT and 
from the dimensional prefactor in the power-law ansatz for g (r). All the parameters 
in this expression are either fixed by the experimental/simulation protocol or can be 
found in the literature. The parameter λ has to be extracted from g (r) data, according 
to the protocol that we give in section 6.2.

5. Analytical expression for the viscosity

We can now use our model for G (T ) to evaluate the activation energy E (T ) involved 
in restructuring the glassy cage and, hence, the viscosity ( )η T  of the melts. Within the 
framework of the cooperative shear or elastic model of the glass transition [18, 36–39], 
the activation energy for local cooperative rearrangements is ( ) =E T GVc. The charac-
teristic atomic volume Vc appearing here is accessible through the theoretical fitting of 
the viscosity data, although its value cannot be arbitrary and it must be representative 
of the atomic composition of the alloy and of the atomic sizes of its constituents.

Replacing the expression for E (T ) in the Arrhenius relation given by the coopera-
tive shear model of the glass transition, and using equation (8) for G (T ) inside E (T ), 
we obtain the following analytical expression for the viscosity,

T V C

k T
T

T

T
exp exp 2 1 ,c

T

0

G
g

g

( ) ( )
⎪ ⎪

⎪ ⎪
⎧
⎨
⎩

⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟
⎤

⎦
⎥
⎥

⎫
⎬
⎭

η
η

λ α= + −� (9)

where η0 is a normalisation constant set by the high-T limit of η.
It is important to consider how the double-exponential dependence of the viscosity on 

the temperature arises. The first exponential stems from the elastic activation described 
in the framework of the cooperative shear model, whereas the second exponential is due 
to the Debye-Grüneisen thermal expansion rooted in lattice-dynamical considerations 
of anharmonicity. This formula accounts for both anharmonicity, through αT, and for 
the repulsion steepness λ (or softness /λ1 ).

6. Estimating λ from the radial distribution function of binary ZrCu alloys

We can now apply the tools introduced above to find an analytical connection between 
the interatomic interaction parameters and the ( )η T  and G (T ) of the melt up to Tg. To 
this end, we will apply our model to the binary system of ZrCu alloys. The atomic-level 
structure of this system is studied by means of numerical simulations, and we present 
here also ad-hoc experimental data for ( )η T  and g (r) for the special case of Cu50Zr50. 
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Using our analytical model and the g (r) data from simulations, we can build an analyti-
cal connection between g (r) and ( )η T , which makes use of the parameter λ introduced 
above. The model will be tested against ad-hoc experimental data of viscosity as a func-
tion of temperature for the Cu50Zr50 melt.

We also should notice that the λ value is sensitive to the elemental composition 
and stoichiometry, but is less sensitive to temperature changes. This fact can be read-
ily understood by considering that the interatomic potential results from the electronic 
structure of both valence and conduction electrons. In the temperature regime that we 
consider here and in the comparison with viscosity data below, it is quite unlikely that 
the electronic and ionic structure change with temperature, and this is reflected in the 
fact that the slope of the ascending flank of the the first peak of g (r) does not change 
significantly in the range of T under consideration. What changes with T, is the posi-
tion of the first peak, of course, because the average distance between ions increases due 
to thermal expansion. For these reasons, in our comparison for the viscosity, below, we 
will use the value of λ determined near Tg.

6.1. Numerical simulations of g (r) for ZrCu alloys

In order to extract the λ parameter from sensible data, we carried out Molecular 
Dynamics (MD) simulations of the Zr100−x system (where x  =  20, 35, 46, 50, 60, 65, 80), 
by employing an interatomic potential proposed by Duan et al [40]. This potential is a 
semi-empirical many-body potential developed in analogy to the tight-binding scheme 
in the second-moment approximation [41, 42]. The equations of motion were integrated 
by using the Verlet algorithm with a time step of  5 fs. The configurations were prepared 
starting from a cubic cell box of ×1.28 105 atoms in the B2 structure and periodic 
boundary conditions in all directions. In each case, the positions of all atoms were redis-
tributed randomly within the simulation cell and the resulting systems were first equili-
brated at 300 K in the isothermal-isobaric ensemble (NPT) for 100 ps and subsequently 
heated up to 2000 K for melting. After sucient equilibration in the liquid state, the 
configurations were cooled down to 300 K (always in the NPT ensemble) with a cooling 
rate of 10 K ps−1, and they were finally equilibrated for 100 ps (always in NPT). The 
structural changes of the system were studied by calculating the total g (r) together 
with the Faber–Ziman partials every 100 K upon cooling. In figure 3 we show plots of 
the radial distribution function g (r) for dierent compositions of the binary alloy.

6.2. Fitting protocol of g (r) data

Also shown in figure 3, are the fittings obtained using the power-law ansatz ( ) ( )σ∼ − λg r r . 
In order to make quantitative fittings, the numerical coecients in this ansatz need to 
be specified, so that we write

( ) ( )σ= − + λg r g r b .0� (10)

The numerical coecients g0 and b take care of two important facts. Firstly, the g (r) 
is dimensionless by its definition, hence the prefactor g0 takes care of dimensionality 

and has dimensions of 
λ−

Å , if we express lengths in units of Å in the above formula. 
Secondly, it is not realistic that g (r)  =  0, exactly, at σ=r . The probability density of 
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two ions at that distance will be extremely small, but not identically zero. Hence, the 
parameter b  >  0 takes this fact into account. Finally, both parameters g0 and b control 

the value of g (r) at the hard-core distance σ = a2 0, since ( )σ = λg g b0 . Hence, the two 
parameters must satisfy the condition ( )σ = λ�g g b 10 .

In [8], we found that, in order to simultaneously fit shear modulus and viscosity 
data of dierent alloys, values of the exponent λ in the order of magnitude λ∼ 100, are 
required. In turn, this constraint on the order of magnitude of λ, puts constraints on 
the orders of magnitude of the coecients g0 and b. Hence, for example, the only accept-
able fitting of the g (r) of the Cu50Zr50 alloy with λ∼ 100, can be achieved with λ = 80. 

This value, in turn, constrains the values of the other coecients to be = × −g 1 100
28 

and b  =  2.16 Å.
Using the same values of the g0 and b coecients also for the other compositions for 

which g (r) was obtained from simulations, we produce the fittings reported in figure 3 
for dierent values of stoichiometry.

6.3. Dependence of the interatomic repulsion parameter λ on the stoichiometry and the 
underlying electronic structure

From the fittings we see that λ is approximately constant for all alloys that are richer 
in Zr up to the Cu50Zr50. As the alloy becomes richer in Cu, a trend becomes visible, 
where the λ value increases as Cu becomes the dominant component. This eect might 
be explained in terms of electronic structure of the ions, along the lines of [8]. In part
icular, Zr–Zr interactions may be eectively softer because of the pronounced d-wave 

Figure 3.  Plots of g (r) as obtained from numerical simulations (symbols) at 
T  =  700 K, together with the power-law fittings of the repulsive flank using 

equation (10) (solid lines). The values of the coecients used for the fitting are 

= × −g 1.0 100
28 and b  =  2.16 Å for all compositions, while the values of λ reported 

in the figure panels and depend on the stoichiometry of the specific alloy, also 
reported in the figure panels.
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character of the outer electron shells of Zr which is a transition element, compared to 
the eectively more steeply repulsive Cu–Cu interaction, dominated by the more pro-
nounced s-wave character of the Cu ions. Based on this picture, the Zr-Cu interaction 
may be comparatively the most steeply repulsive, as the smaller Cu atoms tend to nest 
in the corners, in between the lobes of the d-wave structure of Zr.

We also see from figure 3, that for the alloy richest in Zr, Cu20Zr80, two slopes in the 
repulsive ascending flank of the first peak are visible. In order to obtain more insight 

into this phenomenon, we have studied also the Faber–Ziman partials ( )αβg r , where 

α β =,  Zr, Cu, for this particular composition. The results are shown in figure 4. It is 
seen that the left-most slope is due to the Cu–Cu contribution, which is steeper and 
shorter-ranged and thus contributes a higher value to the eective λ which is larger 
than the partial contribution due to the Zr–Zr contribution which is softer, as argued 
above because of the more pronounced d-wave character of the Zr ion. The lower slope 
of the second flank is in fact due to the Zr–Zr contribution. From this analysis, it 
appears that the short-range repulsive part of g (r) is dominated by the Zr-Cu contrib
ution which is responsible for the λ = 80 overall value, which varies only weakly with 
composition. This can be explained if one considers that smaller Cu atoms tend to 
surround larger Zr atoms and to nest into the corners of the d-wave outer shell of Zr. 
We also note here that similar electronic interactions aect the slowing down of the 
dynamics in Zr-(Cu/Ni/Co) melts with Al additions via an enhanced short-range pack-
ing between the Al and late-transition metal species [43–45].

Figure 4.  Faber–Ziman partials of g (r) for the Cu20Zr80 stoichiometry, together 
with their power-law fittings of the respective repulsive flanks using equation (10) 
(solid lines). The values of the coecients used for the fitting are = × −g 1 100

28 
and b  =  2.158 Å for all compositions, while the values of λ reported in the 
figure panels and depend on the stoichiometry of the specific alloy, also reported 
in the figure panels.
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6.4. The interatomic repulsion parameter λ is independent of T

In order to explore a possible dependence of the interatomic repulsion steepness para
meter λ on the temperature T, we performed numerical simulations on the same alloy 
melts at dierent temperatures. To this end, we have determined g (r) from simulations 
of the Cu50Zr50 melt at T  =  600 K and T  =  800 K, in addition to the T  =  700 K data 
reported in figure 3.

The comparison is shown in figure 5. As is evident, the only dierence that comes 
from varying T is the decrease in the height of the first peak of g (r) upon increasing T. 
This eect is trivial and is attributed to the less pronounced smearing of atomic cor-
relations as T is increased [46]. Moreover, this observation clearly supports our main 
assumption that the connectivity changes with T, a manifestation of which is the fact 
that the parameter Z in our model decreases upon increasing T. Thermal expansion 
greatly enhances this eect in experimental systems, as volume is not constant but is 
allowed to change following a change of temperature. It is also evident, that T has no 
eect whatsoever on the slope of the repulsive left-hand-side flank of g (r). The conclu-
sion of this analysis is, therefore, that our repulsion steepness parameter λ, which is 
directly related to the slope of the left flank of g (r), is independent of T. In the following 
steps of our model we will thus take λ as independent of T.

7. Comparison with experimental data of viscosity versus T

We are now able to evaluate our analytical model linking the interatomic potential 
and the g (r) with the macroscopic viscosity of the alloys upon approaching Tg from 
the high-T end. Since, unfortunately, experimental viscosity data over the wide range 
of CuZr compositions modeled here are not readily available, we use experimental 
data for the Cu50Zr50 composition taken from ad-hoc measurements as detailed in the 
appendix.

Figure 5.  Plot of the total simulated g (r) for the Cu50Zr50 stoichiometry, at three 
dierent temperatures of the melt.
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The value of the interatomic repulsion steepness λ = 80.0 for this system was 
obtained from the fitting of g (r) in figure 3. We have also compared the g(r) from our 
simulations with the one measured experimentally using combined neutron and syn-
chrotron x-ray diffraction: the two are in excellent agreement, and the comparison is 
shown in figure 6 for two different temperature regimes in the liquid. Using equation (9) 
it is therefore possible to obtain a one-parameter fitting of the experimental viscosity 
data for the Cu50Zr50 alloy as a function of T, as shown in figure 7. Furthermore, we 
recall from equation  (8) that CG is defined as the value of the high-frequency shear 
modulus G at =T Tg. For the Cu50Zr50 alloy, the value of =C 31.3G  GPa was obtained 
from experimental measurements in the literature [47]. The only adjustable parameter 
in equation (9) is thus the characteristic atomic volume Vc. From the fitting we obtain 
Vc  =  0.0039 nm3.

In figure 7 (left panel) we also reported a fitting done with the VFT-type model 
of [4], which uses the concept of kinetic fragility D*to provide a more physical inter-
pretation to the VFT relation (which normally has three adjustable parameters). The 
VFT-type relationship of [4] is given by ( ) [ /( )]η = −∗T a D T T Texp 0 0 , where a and T0 
are free parameters, while D* was adjusted to the experimental Cu50Zr50 data in [4] 
and interpreted as the kinetic fragility. In the fitting shown in figure 7, T0  =  578.6 K 
was used to obtain the best fitting, which is very far from the Tg value of this system, 
=T 770g  K as determined from our simulations and experiments for the Cu50Zr50 sys-

tem. Therefore, the VFT-type fitting of [4] uses two free parameters, D* and T0 (with-
out considering the parameter a which plays the same role as η0 in our equation (9) and 
is set by the high-T behaviour of viscosity). In contrast, our equation (9) has only one 
free parameter, Vc. In spite of having one adjustable parameter more than our model, 
the fitting of [4], provides a less accurate fitting in comparison, especially in the regime 
T  >  1200 K.

The characteristic volume is defined within the framework of the cooperative shear 
model as ( / )( ) /= ∆V V V2 3c

2  and was derived by Dyre [39] using linear elasticity for 
an expanding sphere. The quantity ∆V  is the activation volume or the local volume 

Figure 6.  Comparison between RDFs of Cu50Zr50 extracted from experiment and 
simulations. The dataset on top has been arbitrarily shifted for clarity.
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change associated with a cooperative shear event and can be expressed as ∆ ≈V V480 c. 
Furthermore, V in these relations can be identified with the volume of a shear-trans-
formation zone (STZ), and in [8] it was found that, for various alloys, the approximate 
relationship ≈V V320 c holds.

The Vc  =  0.0039 nm3 value obtained here for Cu50Zr50 is on the same order of magnitude 
but smaller than the value obtained in our previous analysis [8] for Zr41.2Ti13.8Ni10Cu12.5Be22.5, 
for which a characteristic volume of 0.0085 nm3 was found, which compares well with inde-

pendent determinations on similar alloys [8]. Moreover, for Cu50Zr50, we obtain an activa-

tion volume of ∆ ∼V 100 Å
3
, which is somewhat larger than ∆ =V 84.3 Å

3
, which was 

determined in MD simulations on a similar binary Cu56Zr44 alloy [48].
Finally, in figure 7 (right panel) we have also shown the underlying eective inter-

atomic potential corresponding to the repulsion steepness value λ = 80 obtained from 
the analysis of the g (r), and its mapping to the Ashcroft–Born–Mayer potential in 
equation (1). Some parameters used in the mapping are fixed and independent of the 

alloy composition, such as =q 1.7TF  
−

Å
1
, from [22], and C  =  2.8 Å

1−
, perfectly within 

the range 1.89–4.72 
−

Å
1
 as discussed in [8]. The parameters A and B, instead, set the 

characteristic energy scales of the Ashcroft and Born–Mayer terms, respectively, in 
equation (1). The values that we found here for Cu50Zr50 are quite close to the values 
found in [8] for other metallic glasses, which reflects the robustness of this approach.

Figure 7.  Calculated and experimental viscosity as a function of T (left panel) for 
the alloy Cu50Zr50, and the underlying eective interatomic potential described by 
λ = 80 (right panel). (a) Symbols are experimental data, the solid line is a one-
parameter fit using equation (9), with the calculation parameters λ = 80 determined 
from the g (r) fitting and =C 31.3G  GPa from [47]. =T 770g  K is the glass transition 
temperature for the Cu50Zr50 system and is therefore not a fitting parameter. 
The only adjustable parameter is, hence, the characteristic atomic volume of the 
cooperative shear model Vc  =  0.0039 nm3, which turns out to be a meaningful 
value in comparison with previous estimates for similar alloys [8]. The dashed line 
is a fitting made with the VFT model ( ) [ /( )]η = −∗T a D T T Texp 0 0  of [4]. Here 
three fitting parameters are used: a  =  0.223, T0  =  578.6 K and the kinetic fragility 
D*  =  4.8. (b) The logarithmic potential of mean force from Boltzmann inversion 
of the repulsive flank of the g (r) first peak, dashed line, and its fitting (solid line) 
using the Ashcroft–Born–Mayer interatomic potential, equations (1) and (2), with 

parameters A  =  0.121 eV, =q 1.7TF  
−

Å
1
, as in [8], B  =  5.61 eV, C  =  2.8 

−
Å

1
, as in 

[8], and σ̄ = 1.35 Å from the average of ionic core sizes for Cu50Zr50.
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8. Conclusion

In summary, we developed a protocol which takes the short-range repulsive part of g (r) 
from simulation (or experimental) data as the input to qualitatively infer the viscosity 
of metallic alloys as a function of temperature upon vitrification, and their fragility. 
Using a combination of simulation and experimental data for the case of the binary 
Cu-Zr alloys, it has been possible to produce a one-parameter theoretical fit of the vis-
cosity as a function of temperature for the Cu50Zr50 system. Importantly, the steepness 
of the viscosity rise upon approaching the glass transition, is controlled by two aver-
aged interaction parameters: the λ interatomic-repulsion parameter introduced in [8], 
and the thermal expansion coecient αT.

This result confirms the picture according to which high thermal expansion 
coecients favour fragile behaviour, alongside with steep short-ranged interatomic 
repulsion. The repulsion steepness is related to shallow changes at the level of nearest-
neighbours upon decreasing T, whereas thermal expansion, associated with the long-
range part of the interatomic potential, in metallic alloys is related to medium-range 
order eects and to the ability of the system to expel free volume at the level of the 
3rd–4th coordination shells [10].

In contrast to VFT-type relations for the viscosity as a function of T, our analyti-
cal theory is derived from the underlying atomic dynamics as shown in [8], and gives 
the viscosity as a double-exponential decreasing function of T. The outer exponential 
comes from the shoving model of the viscosity derived by Dyre, while the inner expo-
nential is due to the exponential decrease of interatomic connectivity with increasing T 
due to thermal expansion [30]. By estimating the repulsion parameter λ from numerical 
simulations of g (r) (validated at higher T against experimental data), we have shown 
here how a quantitative fitting of viscosity as a function of T can be obtained with just 
one fitting parameter, which is the characteristic atomic volume in the shoving model. 
Also, all parameters involved in our viscosity expression have a clear microscopic physi-
cal meaning.
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Appendix A. Scaling between the connectivity Z and the global interatomic 
repulsion steepness λ

When increasing T, the average spacing between atoms in the coordination shell 
becomes larger, and the probability of nearest neighbours leaving the connectivity 
shell increases. It is then possible to use the radial distribution function g (r) to relate 
the change in atomic packing fraction φ, due to an externally imposed change in 
temperature T, to the change in connectivity Z. Following along the lines of [30], the 
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connectivity can be written as usual as an integral over the g (r), typically written as 

( )∫≈Z r g r rd
r

0

2max
 up to a threshold which could be perhaps set conservatively as the 

maximum of g (r). In amorphous systems, the peak of g (r) increases upon increasing the 
packing fraction (and upon decreasing T as is visible in figure 5) due to many-body 
excluded-volume interactions, and this eect translates into a larger value of Z. A way 
to describe this eect, is to shift the upper limit of the integral which gives Z in pro-
portion to φ, as φ=r cmax , where c is some proportionality constant, and one can write

( )∫≈
φ

Z r g r rd ,
c

0

2
� (A.1)

where r represents the separation distance between two ions in the system. This rela-
tion correctly recovers the limit →Z 0 in the limit →φ 0.

From figure 5 it is also seen that the ascending part of the first peak of g (r) hap-
pens within a narrow r-interval, which is quite close to the metallic diameter of the  
system, ≈2.2 Å. At this very short separation between the ions, one can approximate 
the local geometry as being eectively Cartesian, instead of spherical, which removes 
the metric factor from equation  (A.1). This is a customary simplification in dealing 
with small gaps between two spheres, and is widely used in colloidal systems, where it 
is known as the Derjaguin approximation [49]. Upon replacing our approximation for 
the ascending part of g (r) equation (9) we thus obtain

( )∫ σ≈ − +
φ

λZ r b rd .
c

0
� (A.2)

Next, we make the standard change of variable in the integral σ= − +x r b, and 
the integral becomes

∫≈
φ

λ
+

Z x xd ,
c q

0
� (A.3)

where q is some coecient. We then realize that the following approximation can be 
used

( )∫ ∫ ∫ φ= + ∼
φ

λ λ
φ
λ λ

+ +
+x x x x x x cd d d .

c q q

q

q c

0 0

1

Hence we obtain the key asymptotic scaling

φ∼ λ+Z ,1� (A.4)

used in our model to link the g (r) with the high-frequency shear modulus G and then 
with the viscosity η.

Appendix B. Experimental measurement of g (r) and viscosity for the  
Cu50Zr50 system

The g (r) of the Cu50Zr50 melt was determined previously in combined neutron and syn-
chrotron x-ray diraction experiments, described in detail in [50]. From the total neu-
tron and x-ray static structure factors S(q), two of the three Bhatia–Thornton partial 
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structure factors [51], Snn(q) and Snc(q), were able to be determined with good precision. 
The corresponding gnn(r) and gnc(r) were calculated by Fourier transformation of Snn(q) 
and Snc(q), respectively.

The viscosity values were determined in both the equilibrium and undercooled 
states of the Cu50Zr50 melt at the Institute for Materials Physics in Space of the German 
Aerospace Center (DLR) in Cologne, Germany. An electrostatic levitation (ESL) appa-
ratus under ultra-high vacuum conditions of ≈10−8 mbar was used to levitate an elec-
trically charged sample with a mass of 50 mg. Heating was achieved via two 25 W 
IR lasers and the temperature measured contact-free by a pyrometer directed at the 
sample side. A high-speed camera allowed determination of the vertical sample radius 
Rz(t ) as a function of time t. The levitated sample was brought in to the liquid state 
and heated to an initial temperature of 1308 K, which is 100 K higher than the liquids 
temperature =T 1208liq  K, taken from the published phase diagram [52]. Measurements 
of the viscosity were carried out isothermally during cooling using the oscillating drop-
let method [53]. The viscosity was determined at each temperature by measuring the 
decay of surface oscillations induced by a sinusoidal electric field described by

( ) ( / ) ( )τ ω δ= + − +R t R A t texp sin ,z 0 0 0� (B.1)
where R0 is the quiescent sample radius, A the oscillation amplitude, τ0 the decay time 
constant, ω the frequency and δ0 the phase shift. Using Lamb’s law [54], the viscosity 
was calculated as

η
ρ
τ

=
R

5
,0

2

0
� (B.2)

where ρ is the macroscopic density of the droplet, also determined in these ESL experi-
ments combined with video diagnostic techniques [53, 55].
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