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Abstract
Chemokine receptors undergo internalization and desensitization in response to ligand acti-

vation. Internalized receptors are either preferentially directed towards recycling pathways

(e.g. CCR5) or sorted for proteasomal degradation (e.g. CXCR4). Here we describe a

method for the analysis of receptor internalization and recycling based on specific Bir A-

mediated biotinylation of an acceptor peptide coupled to the receptor, which allows a more

detailed analysis of receptor trafficking compared to classical antibody-based detection

methods. Studies on constitutive internalization of the chemokine receptors CXCR4 (12.1%

± 0.99% receptor internalization/h) and CCR5 (13.7% ± 0.68%/h) reveals modulation of

these processes by inverse (TAK779; 10.9% ± 0.95%/h) or partial agonists (Met-CCL5;

15.6% ± 0.5%/h). These results suggest an actively driven internalization process. We also

demonstrate the advantages of specific biotinylation compared to classical antibody detec-

tion during agonist-induced receptor internalization, which may be used for immunofluores-

cence analysis as well. Site-specific biotinylation may be applicable to studies on trafficking

of transmembrane proteins, in general.

Introduction
Chemokine receptors belong to the family of G protein coupled receptors (GPCR) which form
the largest group of signal transducing transmembrane proteins [1,2]. Chemokine receptors
and their ligands are expressed on various cell types in different tissues and activate a wide
range of downstream effectors due to their nonexclusive agonist repertoire [3]. They are
involved in several pathological relevant processes such as metastasis, HIV infection and
inflammation [4–8]. Regulation of chemokine receptor expression levels in order to limit che-
mokine-induced cellular responses is important. The underlying mechanisms are still not well
understood.

Several methods have been established to analyze GPCR trafficking. By far the most com-
monly applied method is direct staining of the receptors or a related tag with fluorochrome-
labeled anti-receptor antibodies in combination with flow cytometry [9]. In combination with
immunofluorescence this approach can also be used to determine the intracellular receptor dis-
tribution [10]. Other less commonly applied methods are based on the quantification of
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radioligand uptake or on antibody feeding experiments [11,12]. These methods are potentially
limited by masking of functionally relevant domains or by unspecific binding which may also
facilitate receptor endocytosis [10,13].

These methods are sufficient to detect rapid changes in receptor expression levels but are
less well suited for quantification of slower events, e.g. during constitutive internalization. Here
the internalization process is obscured by parallel processes such as receptor recycling or trans-
location of newly synthesized receptors to the plasma membrane. To address this problem we
developed a detection method based on specific biotinylation of AP-tagged receptor popula-
tions which allows tracking of distinct receptor populations. This approach may be applicable
to the study of transmembrane protein trafficking, in more general terms.

Receptor endocytosis is triggered by an agonist-induced conformational rearrangement of
the receptor leading to activation of associated G proteins followed by C terminal phosphoryla-
tion of receptors via second messenger-dependent protein kinases or GPCR kinases [14–16].
Phosphorylation is crucial for the internalization process whereby alterations in single phos-
phorylation sites result in critical changes for the internalization process [17,18]. Internaliza-
tion is mediated by β-arrestin binding which directs the receptor towards clathrin-coated pits
[19–21]. Once receptors are internalized and transported to early endosomes they are sorted
either for receptor degradation or recycle back to the cell surface [22]. Some chemokine recep-
tors including CCR5 rapidly recycle back to the cell surface to contribute to resensitization
while others, such as CXCR4, recycle poorly but are mainly directed into lysosomes for proteo-
somal degradation [23–26]. These structural similarities and differences in endocytic process-
ing make both receptors interesting candidates to analyze and quantify endocytic trafficking.

We provide quantitative data on the constitutive internalization process of both receptors
and its modulation by receptor ant-/agonists. Furthermore, we demonstrate the effect of rapid
reinternalization after agonist-induced internalization and its importance for the regulation of
the cell surface expression of these receptors.

Experimental Procedures

Materials
Cell culture media and additives were from Biochrom, Thermo Fisher Scientific or Invitrogen.
Cell culture consumables were from Greiner Bio-One. Chemicals, reagents western blot equip-
ment and further consumables were obtained from Carl Roth, Sigma Aldrich, Sarstedt or
Thermo Fisher. Primer and peptides were synthesized by Iba or JPT. Restriction enzymes,
ligases and phosphatases were from NEB. DNA purification kits were from Machery & Nagel.
Anti-receptor antibodies were from Biolegend and RnD systems. Secondary antibodies and
conjugates were from Jackson Immuno Research. Agonists and antagonists were obtained
fromMerck, Peprotech, Perkin Elmer or Sigma Aldrich.

Eukaryotic expression systems
Wildtype receptors were modified with an N-terminal AP-tag (GLNDIFEAQKIEWHE) using
PCR-based methods. Resulting DNA fragments were ligated in frame into the eukaryotic
expression vector system pEF1/Myc-His A and verified using automated Sanger sequencing.

Cell culture and transfection
Rat basophilic leukemia cells clone 2H3 (RBL 2H3) were transfected by electroporation and
selected with 0.6 mg geneticin per ml cell culture medium. Cells were cultivated in RPMI 1640
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medium supplemented with 10% heat—inactivated fetal calf serum, 100 μg/ml streptomycin
and 100 units/ml penicillin under an atmosphere of 5% CO2 at 37°C.

Generation of anti-AP specific monoclonal antibodies
A peptide corresponding to the amino acid sequence of the AP-tag with an additional C-termi-
nal cysteine residue was synthesized and coupled to maleimide-activated KLH. BALB/c mice
were immunized in monthly intervals using 50 μg conjugate with adjuvant. Monoclonal anti-
bodies were generated following standard procedures [27]. Two murine antibodies with speci-
ficity against the AP-tag (clone YC8 IgG2A/κ; clone EF10 IgG1/κ) were selected and further
characterized.

Biotinylation of cell surface receptors
Biotin ligase (BirA) was purified from transformed E. Coli lysates by nickel chelat chromatog-
raphy and functionally tested by FACS analysis of biotinylated AP-tag expressing cells. AP-tag
biotinylation was done in modification of previously described protocols in 10 mM TRIS 30
mM potassiumglutamate buffer system supplemented with 500 mM bicine (pH 8.0), 10 mM
ATP, 10 mMmagnesium oxaloacetate and 50 μM biotin. Biochemical biotinylation of intact
cells was performed using 0.01% biotin X-NHS in phosphate buffer saline (PBS), pH 8 (15
min, room temperature) [28].

Immunoprecipitation and immunoblotting
Biotinylated or non-biotinylated RBL cells were solubilized in detergent buffer supplemented
with 50 mM Tris-HCl, pH 8.0, 150 mMNaCl, 5 mM EDTA, 1% Triton X-100, 0.05% SDS, 10
mMNaF, 10 mMNa2HPO4 and 1:500 phenylmethanesulfonyl fluoride (PMSF) (10 min, on
ice). Immunoprecipitation was done using streptavidin-sepharose (StAv-sepharose) (90 min,
4°C). Samples were extensively washed with detergent buffer, dissolved in SDS sample buffer
containing 62.5 mM Tris-HCl, 2% SDS, 10% glycerol, 0.05% bromophenol blue and 10% β-
mercaptoethanol and separated using electrophoresis on a 10% SDS polyacrylamide gel matrix.
Immunoblotting was done using horseradish peroxidase (HRP) coupled anti-CCR5 R22/7
antibody and StAv-HRP in TRIS-buffered saline (TBS) supplemented with 0.1% Tween-20 and
1% bovine serum albumin (BSA) (60 min, rt). Proteins were detected by chemiluminescence.

Internalization/recycling and flow cytometry
Receptor expression levels were determined using anti-receptor or anti-AP antibodies by flow
cytometry.

For the study of constitutive receptor internalization cells were resuspended in potassium
glutamate buffer containing 3 μM BirA and incubated at rt (30 min). Cells were washed with
binding medium (BM; RPMI 1640, 0.2% BSA, 10 mMHEPES, pH 7.4) in which they were
incubated up to 4 hours at 37°C. For the analysis of agonist-induced internalization biotiny-
lated cells were treated accordingly and 125 nM agonist was added (30 min, 37°C). Unbound
ligand was removed by acid wash with EMmedium (RPMI 1640, 0.2. % BSA, 10 mMMES, pH
2.5) at 4°C. Receptor recycling was measured with cells incubated in agonist-free BMmedium
in the presence or absence of antagonist (AMD3100 30 μM; TAK779 3 μM) (30 min, 37°C).
Biotinylated receptors were stained with phycoerythrin-labeled streptavidin (StAv-PE) and
detected by flow cytometry. Classical antibody-based detection was done accordingly by stain-
ing with anti-AP antibodies. Receptor internalization and recycling was calculated as percent-
age of expressed receptors on the cell surface at time 0 min.
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Immunofluorescence
RBL cells were grown on glass coverslips in 24-well plates (overnight, 37°C). Cells were biotiny-
lated, stimulated and fixed with 3% paraformaldehyde in PBS (20 min, 37°C). Reactive alde-
hyde groups were saturated with 50 mMNH4Cl in PBS (30 min, 37°C). Cells were
permeabilized with PBS supplemented with 0.1% saponin and 0.2% gelatin (15 min, 37°C).
Staining was done using anti-AP antibody (10 μg/ml) and StAv-Alexa647 (2 μg/ml) (60 min,
on ice). After washing with PBS-saponin Alexa488 labeled goat anti mouse Ig was used as sec-
ondary antibody (60 min, on ice). After extensive washing, cells were mounted with Mowiol
supplemented with 0.1% p-phenylenediamine. Cells were evaluated using a confocal laser
microscope.

Results

Expression of N-terminally AP-tagged chemokine receptors and
generation of an AP-tag specific antibody
To analyze internalization and recycling of distinct receptor populations RBL-cells were stably
transfected via electroporation with AP-tagged versions of CXCR4 and CCR5. Comparable
expression levels were confirmed by quantitative FACS analysis, functional integrity was
shown by ligand-induced N-acetyl-β-D-glucosaminidase (NAGA) release (data not shown).
To specifically detect the AP-tag monoclonal antibodies were generated according to standard
techniques. AP-tag specificity was confirmed by ELISA and flow cytometry. Detection of AP-
tagged receptors was fully abrogated after pre-absorption of anti-AP antibodies with an excess
of AP-peptide (Fig 1). Pretreatment of anti-receptor antibodies with AP-peptide did not result
in a decreased binding capacity. Ligand stimulation did not affect anti-AP or anti-receptor
antibody binding thus specific interaction between anti-AP antibody and AP-tag does not
interfere with ligand-binding.

AP-tag specific biotinylation mediated by BirA
In contrast to conventional primary amine biotinylation BirA catalyzes the biotinylation of one
specific lysine residue within the AP-tag sequence [29]. In order to test the ability of BirA to
specifically biotinylate AP-tagged receptors we immunoprecipitated enzymatically and bio-
chemically biotinylated CCR5- and CCR5-AP receptors in parallel (Fig 2). Precipitates detected
with anti-CCR5 antibodies showed a positive chemical biotinylation of CCR5 and CCR5-AP
expressing cells independent of the presence of AP-tag (lane 3 and 6). However, enzymatic bio-
tinylation allowed immunoprecipitation and detection only of AP-tagged CCR5 receptors, this
showing the efficiency and specificity of the biotinylation process (lane 2 and 5). When
detected with streptavidine only enzymatically biotinylated CCR5-AP receptors showed a dis-
tinct band (lanes 10 and 13) whereas biotinylation with NHS-biotin resulted in unspecific bio-
tinylation of cell surface proteins regardless of the presence or absence of the AP-tag,
underlining the specificity of the biotinylation reaction (lanes 11; 14 and 16). The distinct band
at 43 kDa was indeed biotinylated CCR5 receptor as verified by immunodetection with anti-
CCR5 antibodies (lanes 5 and 13).

Constitutive internalization of CXCR4 and CCR5 and modulation by
receptor ant-/ agonists
Membrane-expressed receptors undergo a constant cycle of ligand-independent, constitutive
internalization and re-expression at the cell surface. In order to describe this process in
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quantitative terms untreated cells were enzymatically biotinylated and stained either with anti-
AP antibodies or streptavidine.

Cells stained with classical antibody-based detection (anti—AP) showed no significant alter-
ations in receptor expression levels (Fig 3A; dashed lines). However, using the biotin detection
system we observed a constant decrease of receptors expressed at the cell surface (Fig 3A;
straight lines). In the absence of receptor ligand CXCR4 showed a constitutive internalization
rate of 12.1%/h ± 0.99%. With 13.7%/h ± 0.68% the internalization rate of CCR5 was slightly
higher compared to CXCR4.

Several CCR5 ant-/agonists have been reported to interact with the receptor and thereby
modulate receptor internalization. To analyze the consequences of antagonist binding for the
internalization process cells were treated as previously described and incubated in the presence
of CCR5- ant-/agonists.

The inverse CCR5 agonist TAK779 inhibits basal activity of the receptor. Receptors incu-
bated with TAK779 were significantly slower internalized (10.9%/h ± 0.95%) compared to
untreated cells (13.4%/h ± 0.88%) (Fig 3B; circle and square). Treatment with partial or full
agonists of CCR5 (Met-CCL5 and CCL5), which both induce receptor activation activity over

Fig 1. Binding of anti-AP and anti-receptor antibodies to RBL-CXCR4/CCR5-cells. RBL-CXR4-AP (right) or RBL-CCR5-AP (left) cells
were stained (60’/4°C) with 10 μg anti-AP (upper panels) or 1.5 μg PE-labeled anti-receptor antibody (anti CXCR4 12G5, anti-CCR5 T21/8)
(lower panels) after preabsorption of antibodies with 15 μg AP-peptide (30 ‘/rt) or pretreatment of receptor-expressing cells with 50 nM
ligand (CCL5/CXCL12) (10’/4°C). Receptor-bound antibodies were detected with FITC-labeled anti-mouse IgG antibodies. RBL-2H3 cells
served as negative control. Representative diagrams show the mean channel of fluorescence (MCF) in correlation to detected events.

doi:10.1371/journal.pone.0157502.g001
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basal levels resulted in an enhanced internalization of either 15.6%/h ± 0.5% for Met-CCL5 or
9.3%/min ± 1.0% for the natural ligand CCL5 (Fig 3B; triangle down/up).

Taken together, specific biotin labeling of chemokine receptors at the cell surface revealed
their internalization at a constant low rate of 12.1–13.7% per hour in the absence of external
stimuli. Internalization is significantly retarded (10.9%) in the presence of an inverse agonist.
These minor changes in receptor expression are obscured by receptor recycling and may not be
monitored by classical antibody-mediated detection methods.

Quantification of ligand-activated receptor internalization and recycling
in the presence or absence of receptor antagonists
To compare classical antibody-based and the newly established biotin-based detection assay
during agonist driven receptor internalization we stained enzymatically biotinylated CXCR4-/
CCR5-AP expressing cells either with anti-AP or streptavidin. Upon agonist stimulation both
receptors were rapidly and equally well internalized with both detection methods (Fig 4A).
However, after removal of the agonist in both cell lines a significant recycling of anti-AP
stained cell in contrast to the non-recycling biotinylated receptors was observed. Previous

Fig 2. BirA-mediated biotinylation of AP-tagged CCR5 on RBL cells.RBL cells (2H3) expressing CCR5, CCR5-AP or no
receptor (2H3) were either biotinylated with BirA (BirA-Biotin) or biotin-X-NHS (NHS-Biotin; 15’/rt). Cells were lysed (10’) and
immunoprecipitated via streptavidin agarose (90’/4°C). Samples were probed by immunoblotting with anti-CCR5 (T21/8; left) or
streptavidin peroxidase conjugates (right).

doi:10.1371/journal.pone.0157502.g002
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studies showed a different recycling behavior of CXCR4 and CCR5 where CCR5 preferentially
recycles back to the cell surface whereas CXCR4 stays within the cytoplasm for proteasomal
degradation [25,30]. These results are in contrast to our finding of lack of receptor recycling.
To determine whether recycled receptors rapidly re-internalize after receptor recycling to the

Fig 3. Constitutive receptor internalization and its modulation by receptor ant-/agonists. A: RBL cells
stably expressing CXCR4-AP or CCR5-AP were enzymatically biotinylated and incubated in BMmedium for
up to four hours (37°C). Cells were stained with anti-AP (dashed lines) or streptavidin (straight lines) and
analyzed by flow cytometry. B: CCR5-AP cells were either treated with (filled symbols) or without (open
symbols) ant-/agonists (CCL5 0.05 μM; Met-CCL5 0.15 μM; TAK779 3 μM) and stained in accordance to A.
All results represent the mean value +/- s.d. of at least three independent experiments.

doi:10.1371/journal.pone.0157502.g003
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cell surface we used the receptor antagonists TAK779 and AMD3100 to lock down recycled
receptors at the cell surface. Biotinylated CCR5 receptors treated with TAK779 showed a sig-
nificantly enhanced receptor recycling compared to untreated cells (Fig 4B left, black bars).
This result was confirmed by anti-AP staining (Fig 4B left, grey bars). The same effect was
observed for CXCR4 (Fig 4B right), although to a lower degree. Comparison of the recycling
rates of biotinylated CXCR4 and CCR5 showed that while CCR5 recycled back to the cell sur-
face CXCR4 was retained within the cell (Fig 4B, black bars). These data suggest that CCR5
receptors indeed recycle but also tend to rapidly re-internalize which cannot be shown by clas-
sical antibody-based detection.

Fig 4. Ligand-induced internalization and recycling in presence or absence of receptor antagonists. A: RBL cells stably expressing
CXCR4- (left) or CCR5-AP (right) were enzymatically biotinylated and incubated in BMmedium containing 125 nM ligand (30’/37°C).
Recycling was triggered by acid wash to remove the ligand and transfer into ligand-free medium (30’/37°C). Cells were stained with anti-AP
(dashed line) or streptavidin (straight line) and analyzed by flow cytometry. Each curve shows the mean percentage (+/- s.d.) of receptors
expressed on the cell surface normalized to the MCF value of untreated cells. B: Cells were treated and stained accordingly to panel A (grey
bars anti-AP, black bars streptavidin). During the recycling phase the corresponding antagonist was added (TAK779 3 μM; AMD3100
30 μM). C: RBL cells expressing CCR5-AP S/A (filled triangle up) or CCR5-APWT (open square) were enzymatically biotinylated.
Internalization was triggered as described in panel A. Staining was done with streptavidin-PE. Receptor recycling was calculated as
percentage of the difference between cell surface expression of the receptor at time points 0 and 30 minutes Results represent mean +/- s.
d. of at least three independent experiments. n.s., not significant; **, p < 0.001).

doi:10.1371/journal.pone.0157502.g004
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Since phosphorylation of the receptor C terminus was previously shown to be critical for
receptor internalization we generated a phosphorylation-deficient mutant in which all poten-
tial serine phosphorylation sites were changed to alanine (S/A). Internalization of biotinylated
receptors was significantly impaired compared to the wildtype receptor (Fig 4C). During pro-
longed agonist stimulation this effect was even more evident, with 20% less receptor internali-
zation of the S/A mutant compared to wildtype. This finding confirms previous studies
showing that truncation or Ser/Ala mutation of the receptor C-terminus results in impaired
endocytic receptor trafficking.

Intracellular distribution of internalized and pre-stored receptors
determined by immunofluorescence
BirA-mediated labelling of distinct receptor populations at the cell surface may be used to fol-
low their intracellular fate during agonist-induced internalization and recycling using immu-
nofluorescence microscopy.

In the absence of agonist a clear and distinct staining at the cell surface was observed with
staining of additional internal vesicular structures using anti-AP antibodies (Fig 5). Upon ago-
nist stimulation, receptors started to redistribute into distinct punctate vesicles and this corre-
lated with a significant reduction of cell surface expression. However, internalized CCR5
receptors did not fully co-localize with the pre-stored receptor subpopulation but instead were
found in a distinct niche in the perinuclear area (Fig 5, top, 30 min). This shows the potential
of the biotin system to follow the fate of internalized receptors, whereas classical antibody-
based detection shows no difference between internalized and pre-stored receptors. The inter-
nal distribution of vesicular structures differed significantly between CCR5 which was localized
in close proximity to the perinuclear area and CXCR4 which displayed a more diffuse distribu-
tion. After removal of the agonist membrane expression of both receptors was restored. How-
ever, biotinylated CXCR4 receptors were preferably retained in the cytoplasm compared to
CCR5 receptors. Taken together, CXCR4 and CCR5 differ significantly in the distribution of
internalized receptors which may also correlate with their different recycling behavior as
reported before.

Discussion
Chemokine-chemokine receptors axes control migration and positioning of immune cells in
physiological (homeostasis) and pathological conditions e.g., inflammation [31,32]. Chemo-
kine receptors and their ligands are associated with several diseases and play also a crucial role
in tumor progression and metastasis [33–36]. Chemokine receptor trafficking is still a subject
of intensive research [26]. Several methods have been established to quantify intracellular
GPCR trafficking, while still the most commonly used method is based on classical antibody
staining [9,37]. Antibody-based methods are sufficient to detect rapid changes in receptor
expression levels but are less applicable to the study of less pronounced changes in receptor
expression since they are potentially affected by cycling and newly synthesized receptors. These
limitations were addressed by dye-conjugated antibodies which target extracellular epitopes
and selectively label subpopulations of expressed receptors in a process known as “antibody
feeding” [11,38]. Both methods are also suitable for the intracellular detection of internalized
receptors by immunofluorescence microscopy [10,39]. However, a clear differentiation
between internalized receptors and those which are pre-stored in intracellular compartments is
still a technical challenge [40]. Other methods were devised and optimized for high-through-
put-screening (HTS) of receptor internalization including ELISA, enzyme-based assays (lacta-
mase, galactosidase complementation and luciferase), fluorogen activating protein (FAP) and
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Fig 5. Double immunoflourescence of CXCR4-/CCR5-expressing cells during ligand-induced internalization
(30’) and recycling (60’). Prior to stimulation and staining CXCR4-AP (bottom) and CCR5-AP (top) expressing RBL
cells were seeded on glass cover slips. Cells were enzymatically biotinylated and stimulated with the corresponding
ligand (125 nMCCL5, CXCL12; 30’/37°C). Recycling was induced by acid wash and transfer into ligand-free
medium containing receptor antagonists (30 μMAMD 3100; 3 μMTAK779). Cells were fixed with 3% PFA (15’/37°C)
and permeabilized with 0.1% saponin (15’/37°C). 10 μg/ml anti-AP antibody (anti AP; with or without preincubation
with 2mg /ml of the AP-peptide) and 2 μg/ml streptavidin-Alexa647 (Biotin) was used for staining (60’/on ice/dark).
Samples were fixed with mounting medium and analyzed by confocal laser scanning microscopy. Scale bar 10 μM.

doi:10.1371/journal.pone.0157502.g005
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fluorescence resonance energy transfer (FRET) [41–46]. Most recently, a technique based on
diffusion-enhanced resonance energy transfer (DERET) was applied, which is easy to imple-
ment and combines the advantages of single labeling accompanied with a high signal to noise
ratio [47]. However, DERET is not suited for the analysis of endogenous expressed receptors.

We developed an alternative method for the quantitative analysis of receptor trafficking
which is based on the specific biotinylation of receptors at the cell surface with biotin ligase
(Bir A) (28,48). BirA catalyzes the covalent biotinylation of a 15 aa peptide (AP-tag) sequence
on cell surface proteins [29,48]. Various proteins have been biotinylated via the AP-tag for dif-
ferent purposes, including in vitro biotinylation [28,49–53]. We refined this approach to quan-
tify endocytic trafficking of CXCR4/CCR5 without having to consider translocation of newly
synthesized receptors towards the plasma membrane. To simultaneously detect all receptors
expressed within a cell we generated an anti-AP specific monoclonal antibody, which binds to
the AP-tag even in the presence of prior ligand or streptavidin binding. The system may be also
used for double immunofluorescence analysis to discriminate between pre-stored receptors
and actively internalized (biotinylated) receptors, which is not easily achieved with previously
described methods. In contrast to similar techniques based on the modification of acyl carrier
protein (ACP) by phosphopantetheine transferase (PPTase) our method does not allow direct
labeling with dye-conjugated biotin. This further reduces the potential to quantify highly
dynamic processes during receptor trafficking [54]. In general, enzyme-based detection meth-
ods require certain buffer conditions which can differ significantly from normal cell culture
conditions. Furthermore enzymatic reactions are susceptible to interference and therefore a
constant efficiency level is not guaranteed.

In this study we used the BirA-based biotinylation system to determine constitutive inter-
nalization of CXCR4 and CCR5. Internalization rates for both receptors were at a comparable
level (CXCR4 12.1%/h ± 0.99%, CCR5 13.7%/h ± 0.68%), which suggests a slow but constant
flow of receptors into endocytic compartments.

Currently it is still a matter of debate whether constitutive receptor internalization is merely
a consequence of normal turnover of the plasma membrane in a passive manner or whether it
is attributed to an equilibrium between active and inactive forms of the receptor where the sub-
population of active receptors undergoes constitutive internalization [55–57]. In recent studies
several ant-/agonists showed their potential to directly influence receptor internalization
[58,59]. To analyze the effect of antagonist binding on receptor internalization and to further
address the question of active vs. passive internalization we treated CCR5 expressing cells with
the inverse agonist TAK779 and the partial agonist Met-CCL5 [59,60]. Compared to untreated
cells (13.9%/h) Met-CCL5 treatment induced an enhanced internalization of CCR5 (15.6%/h)
whereas TAK779 treated receptors were internalized at significantly lower levels (10.9%/h). In
recent studies it was demonstrated that the functional versatility of GPCRs is highly dependent
on structural plasticity, which is also the reason for receptors to provoke a basal level of activity
in the absence of an endogenous agonist [61]. Thereby basal activity is accompanied with C-
terminal phosphorylation and β-arrestin-binding [62–65]. Binding of ant-/agonists interferes
with general plasticity of the receptor by stabilizing a discrete receptor conformation which is
either susceptible to C-terminal phosphorylation or not [61,66–69]. Our results show it is very
likely that changes in receptor conformation are indeed the main reason for constitutive recep-
tor internalization. Binding of Met-CCL5 or TAK779 stabilizes the receptor in confirmations
favoring C-terminal phosphorylation and consecutive β-arrestin binding or not. Whereas Met-
CCL5 binding only partially supports C-terminal phosphorylation the full agonist CCL5
appears to fully stabilize an active receptor conformation which results in a robust internaliza-
tion at an initial rate of 9.3%/min ± 1.0%.
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In contrast to constitutive internalization which came into focus recently, agonist-induced
internalization and different processing of internalized CXCR4 and CCR5 receptors has been
studied for over two decades [23,26,30,70,71]. In our study receptor recycling of CXCR4 and
CCR5 correlated with the biotinylation status of the receptor (Fig 4A) which is noteworthy
since previous studies were mostly done using non-biotinylated receptors and classical anti-
body detection [23,72]. In previous studies it was reported that in contrast to other GPCRs
vesicular acidification is not mandatory for CCR5 to initiate receptor recycling [73–76].
Instead, ligand-occupied and phosphorylated CCR5 receptors are presumably re-expressed at
the cell surface to transit the endocytic machinery multiple times without repeated stimulation
[30,76,77]. To exclude the effect of rapid receptor reinternalization we treated cells with the
inverse agonist TAK779 to actively displace bound agonist from recycled receptors and lock
them at the cell surface [76,78]. TAK779-treated CCR5-expressing cells showed increased recy-
cling compared to untreated cells (Fig 4B, left) indicating that rapid reinternalization indeed
interferes with the quantification of recycled receptors. Similar results were obtained after
AM3100 treatment of CXCR4-expressing cells (Fig 4B, right). Lower recycling rates of biotiny-
lated and AMD3100-treated CXCR4 cells compared to CCR5 cells may result of partial agon-
ism of AMD3100 or subsequent ubiquitination and degradation of internalized CXCR4
receptors [25,63,71]. Differences in the recycling characteristics of biotinylated and non-bioti-
nylated receptors may refer to translocation of stored receptors from the trans-Golgi network
towards the cell surface [79]. However, this difference still needs to be further addressed since a
majority of earlier studies were done using direct staining of non-biotinylated receptors.

Over the years the different intracellular distribution of internalized CXCR4 and CCR5
receptors was studied in detail [59,80,81]. Although a perinuclear localization of internalized
CCR5 receptors had been shown different subcompartments for the site of receptor accumula-
tion were taken into consideration including early endosomes, the endosomal recycling com-
partment and the golgi apparatus [30,58,59,76,79,82–84]. In our studies we combined
detection of biotinylated and non-biotinylated receptors during immunofluorescence analysis
to allow a distinct differentiation between newly internalized and cycling receptors in agonist
stimulated cells (Fig 5, 30 min). CCR5-expressing cells showed a delineation of cycling and bio-
tinylated receptors which supports the hypothesis of accumulation of internalized receptors in
the trans golgi region in close proximity to cycling and newly synthesized receptors [79,85].
However, it cannot entirely ruled out that receptor accumulation already occurs in the endoso-
mal recycling compartment because of a fluent transition between both compartments
[30,79,84,85]. In agonist-treated CXCR4-expressing cells no distinct accumulation of internal-
ized receptors was observed which indicates proteasomal degradation of CXCR4 in diffusely
distributed lysosomes [22,23,25,85]. However, a small amount of internalized CXCR4 recep-
tors can recycle back to the cell surface [71,86]. According to our data this is not accompanied
by detectable receptor accumulation in distinct compartments.

In summary, we provide additional evidence that constitutive internalization is indeed an
active process which is dependent on the structural plasticity of the receptor. Therefore, bind-
ing of receptor ant-/agonists can positively or negatively influence this active process by stabi-
lizing distinct receptor conformations. Recycling studies of biotinylated receptors supported
the hypothesis that CCR5 receptors transit the endocytic machinery multiple times whereas
CXCR4 receptors were predominantly retained in the cytoplasm. Immunofluorescence analysis
of biotinylated and non-biotinylated receptors showed that internalized CCR5 receptors accu-
mulate in close proximity to cycling receptors whereas CXCR 4 receptors showed no such
accumulation.

Overall this biotin-based detection system may be generally applicable to the analysis of
transmembrane protein trafficking.
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