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Abstract

Mantel-based tests have been the primary analytical methods for understanding

how landscape features influence observed spatial genetic structure. Simulation

studies examining Mantel-based approaches have highlighted major challenges

associated with the use of such tests and fueled debate on when the Mantel test

is appropriate for landscape genetics studies. We aim to provide some clarity in

this debate using spatially explicit, individual-based, genetic simulations to

examine the effects of the following on the performance of Mantel-based meth-

ods: (1) landscape configuration, (2) spatial genetic nonequilibrium, (3) nonlin-

ear relationships between genetic and cost distances, and (4) correlation among

cost distances derived from competing resistance models. Under most condi-

tions, Mantel-based methods performed poorly. Causal modeling identified the

true model only 22% of the time. Using relative support and simple Mantel r

values boosted performance to approximately 50%. Across all methods, perfor-

mance increased when landscapes were more fragmented, spatial genetic equi-

librium was reached, and the relationship between cost distance and genetic

distance was linearized. Performance depended on cost distance correlations

among resistance models rather than cell-wise resistance correlations. Given

these results, we suggest that the use of Mantel tests with linearized relation-

ships is appropriate for discriminating among resistance models that have cost

distance correlations <0.85 with each other for causal modeling, or <0.95 for

relative support or simple Mantel r. Because most alternative parameterizations

of resistance for the same landscape variable will result in highly correlated cost

distances, the use of Mantel test-based methods to fine-tune resistance values

will often not be effective.

Introduction

A primary goal of landscape genetics is to understand

how landscape features influence observed spatial genetic

structure (Manel et al. 2003). Mantel tests (Mantel 1967;

Sokal 1979) and partial Mantel tests (Smouse et al. 1986)

have been the predominant analytical methods for accom-

plishing this goal (Storfer et al. 2010). Mantel tests assess

the correlation between two distance matrices—in land-

scape genetics, typically a matrix of interindividual or

interpopulation genetic distances, and a matrix of geo-

graphic distances. Genetic distance can be quantified

using individual-based (e.g., proportion of shared alleles,

Dps; Bowcock et al. 1994) or population-based (e.g., local

pairwise FST; Nei 1973) measures. In all but the simplest

models (i.e., isolation-by-distance or isolation-by-barrier),

geographic distance is typically replaced by “effective dis-

tance” (Ferreras 2001) or “cost distance” (Adriaensen

et al. 2003), which reflects both the geographic distance

between individuals or populations and the degree to
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which the intervening landscape is hypothesized to

impede gene flow and underlying dispersal movements

(e.g., isolation-by-resistance; McRae 2006). Cost distance

is calculated across a resistance surface wherein each cell

in a geographic information system (GIS) raster is

assigned a value based on a hypothesized species-specific

resistance to traversing the landscape feature the cell rep-

resents (Spear et al. 2010).

In a typical landscape genetics approach, cost distances

among populations or individuals are calculated based on

multiple, competing resistance hypotheses. These cost dis-

tances are then evaluated against empirical genetic dis-

tances among these same populations or individuals using

Mantel tests or partial Mantel tests, sometimes within a

causal modeling (CM) framework (Legendre and Legen-

dre 2012; e.g., Cushman et al. 2006). Multiple regression

with distance matrices (MRM; e.g., Wang 2013) extends

Mantel methods to a multiple regression framework and

is likely to suffer from similar limitations, with the addi-

tional problem that model selection with AIC and similar

criteria is not valid for distance matrices (Wagner and

Fortin 2015), and hence this method was not included in

this study. Although there are other methods emerging

for evaluating the relationship between genetic divergence

and landscape features (Richardson et al. 2016), such as

multimodel optimization with uncertainty estimates

(Dudaniec et al. 2016), machine learning (Peterman et al.

2014; Ruiz-Lopez et al. 2016), and ordination techniques

(e.g., Kierepka and Latch 2014), Mantel-based methods

are still the mainstay of landscape genetic analyses.

Mantel-based approaches for understanding landscape

effects on genetic structure have been examined exten-

sively using simulations. For example, many studies have

tested the ability of Mantel tests to identify the true resis-

tance model from a series of competing hypotheses (e.g.,

Balkenhol et al. 2009; Legendre and Fortin 2010; Jaqui�ery

et al. 2011; Cushman et al. 2013a). Other studies have

explored the effect of landscape composition and configu-

ration on the ability to discern the correct resistance

model (e.g., Jaqui�ery et al. 2011; Cushman et al. 2013b;

Kierepka and Latch 2014), or the effect of sampling strat-

egy and number of loci on the performance of these

methods (Landguth et al. 2012a; Oyler-McCance et al.

2012).

From this rich body of literature, we can identify at

least four major challenges associated with the use of

Mantel tests in landscape genetics. First, the performance

of Mantel tests depends on the structure of the study

landscape. Generally, less fragmented landscapes allow rel-

atively unencumbered movement of individuals, resulting

in only weak genetic structure and poor performance of

Mantel-based tests to correctly identify the true resistance

model from a suite of options (Cushman et al. 2013a;

Kierepka and Latch 2014). In contrast, landscapes with

higher levels of fragmentation result in more pronounced

genetic differentiation and an improved ability of Mantel

tests to correctly identify the pattern–process relationship.
Second, a substantial amount of time may be required

before the genetic signature of a change in landscape

structure is detectable with Mantel tests. Specifically, if

the genetic signature of a particular landscape change has

not yet equilibrated and become detectable, Mantel-based

tests may perform poorly compared to other approaches

(Landguth et al. 2010). We, hereafter, refer to the point

at which the landscape-genetic relationship (i.e., the cor-

relation among genetic and cost distances) has manifested

as “spatial genetic equilibrium.” Third, Mantel tests are

sensitive to violations of the underlying assumptions of

linearity and independence (Diniz-Filho et al. 2013;

Legendre et al. 2015). Violating the independence

assumption can lead to inflated type-I error rates, while

nonlinear relationships will reduce the power of Mantel

tests to detect significant relationships between genetic

and cost distances (i.e., increased type-II error). Fourth,

and perhaps most importantly, highly correlated cost dis-

tances among competing resistance hypotheses decrease

the ability of Mantel-based tests to identify the resistance

surface that gave rise to the observed genetic structure

(Balkenhol et al. 2009; Cushman et al. 2013b).

Despite substantial focus and research on the benefits

and limitations of the Mantel test for landscape genetic

analyses, knowledge gaps still exist. For example, many of

the simulation studies that evaluated Mantel tests used

only a binary habitat/nonhabitat classification. In reality,

resistance surfaces are often much more complex and

show gradients of cost values associated with continuous

habitat variables (e.g., elevation, percentage forest cover).

In landscapes with such gradients, the effects of composi-

tion and configuration on Mantel tests remain poorly

understood. Furthermore, most studies use only a single

landscape for their evaluations, despite the demonstrated

relevance of composition and configuration for the per-

formance of Mantel approaches. We are unaware of any

current studies that assessed Mantel-based tests using var-

ious gradient landscapes within a replicated study design.

Our goal is to address this current knowledge gap by

assessing the four issues described above: landscape con-

figuration, spatial genetic nonequilibrium, nonlinear rela-

tionships between genetic and cost distances, and

correlation among competing resistance models. To

accomplish this, we performed a spatially explicit, indi-

vidual-based, genetic simulation study using a variety of

heterogeneous landscape configurations while representing

resistance as a gradient. Based on previous studies, we

hypothesized that the performance of Mantel-based meth-

ods would increase (1) in more fragmented landscapes,
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Figure 1. Summary of simulation methods used in this investigation. Each landscape was replicated five times and simulated using the same

seed. A set of discriminant landscapes (using a different seed) was generated to represent a different underlying environmental variable. Gene

flow was simulated across the true resistance model for 50 Monte Carlo replications, and Mantel-based tests were evaluated using causal

modeling (a = 0.05, 0.005), relative support, and simple Mantel r.
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(2) under spatial genetic equilibrium conditions, (3) when

relationships between cost and genetic distances were lin-

earized, and (4) when cost distances associated with com-

peting resistance models were less correlated. We used

this framework to test the ability of partial Mantel tests

to discern the true resistance model using a suite of

methods currently employed in the literature (hereafter,

collectively referred to as “Mantel-based methods”): (1)

causal modeling (CM) with a significance level of

a = 0.05, (2) CM with a stricter significance level of

a = 0.005, (3) relative support from partial Mantel r val-

ues (i.e., relativized Mantel r values; Cushman et al.

2013b; Castillo et al. 2014), and (4) simple Mantel r

values.

Materials and Methods

Simulating landscape variables and
resistance models

A conceptual diagram for our study design is provided in

Figure 1. We generated gradient landscapes 200 9 200

cells in size using R software (R Development Core Team

2011) and mimicked the effects of fragmentation by

incorporating different scales of spatial autocorrelation

and levels of noise into the underlying geospatial struc-

ture (Fig. 1.1). Starting with a random normal variable,

we averaged cells within a moving window of 5 9 5 or

100 9 100 cells to produce landscape variables with

short- or long-range spatial autocorrelation, which we

denoted as R5 and R100, respectively. In addition, we

incorporated two levels of strength of spatial autocorrela-

tion: strong autocorrelation without noise (N0) or weak

autocorrelation with 50% noise (N50) by adding a ran-

dom error. Noise was added by standardizing the land-

scape variable and adding a random variable with a

standard deviation of one (see Appendix S14 for R code).

This resulted in a factorial design with four types of land-

scape structure (Fig. 2B), which formed the basis for our

four resistance model clusters (see below): R5N0, R5N50,

R100N0, and R100N50.

We derived four alternative parameterizations of land-

scape resistance for each landscape variable to mimic the

subtleties of fine-tuning resistance values for a single

landscape feature (e.g., elevation). The four resistance

models represent four combinations of linear (U; values

followed a uniform distribution) versus nonlinear func-

tions (SQ; values followed a squared distribution) of the

values of the landscape variables, and low (10; values

between 1 and 11) versus high resolution (100; values

between 1 and 101) of the resistance values (Fig. 1.2).

These four parameterizations of each landscape comprise

a single resistance model cluster. An example of a

resistance model cluster for a R100N0 landscape is pro-

vided in Figure 2A. One example from all four clusters is

provided in Appendix S1. For each resistance model clus-

ter, we selected either the 10U or the 100SQ resistance

model to represent our “truth”; these models were chosen

because they represent opposite ends of the spectrum for

maximum resistance value (10 vs. 100) and distribution

(uniform vs. squared). To mimic the difficulty in discrim-

inating between two different landscape features (e.g., ele-

vation and percent forest cover), we used a second

random seed to simulate a different, uncorrelated envi-

ronmental variable for each resistance model cluster with

the same level of fragmentation (Fig. 1.1). For this second

landscape, we defined only one resistance model (here-

after referred to as the “discriminant” resistance model),

using the same parameterization as our true resistance

model (i.e., either 10U or 100SQ). One discriminant

landscape was added to each resistance model cluster.

Thus, a “cluster” was a set of five resistance models: the

truth, three alternative resistance parameterizations of that

same landscape variable, and the discriminant model rep-

resenting a different landscape variable. We simulated

eight resistance model cluster types: four with the 100SQ

weighting scheme as the true model and four with the

10U weighting scheme as the true model. We created five

replicates of each resistance model cluster, for a total of 8

resistance model cluster types 9 5 landscape repli-

cates 9 50 replicate simulations.

For each of the true resistance models, we identified

the 40th percentile of cell resistance values and consid-

ered all cells with resistance values less than this arbi-

trary cutoff to be suitable habitat. We used this 40th

percentile to distribute individuals across our landscapes

(see “Simulating gene flow” below). To quantify the

amount of fragmentation in each landscape and facilitate

the comparison of spatial structure across studies with

different designs, we calculated Moran’s I, correlation

length, and patch cohesion. Moran’s I (Moran 1950)

measures the degree of spatial autocorrelation of a con-

tinuous spatial variable and was calculated directly from

the resistance values for each model. Correlation length

measures the distance that a randomly placed individual

can move before exiting a patch, while patch cohesion

measures patch continuity (Schumaker 1996). Correla-

tion length and patch cohesion were calculated from the

binary habitat maps using FRAGSTATS (McGarigal et al.

2012).

Simulating gene flow

We randomly selected 1,000 habitat cells without replace-

ment and placed one individual in each cell (Figs. 1.3, 2).

Individual locations were consistent within landscape
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Figure 2. Examples of simulated resistance

models. (A) Resistance models with equal levels

of spatial autocorrelation scale and strength

(autocorrelation range = 100, noise = 0%),

but different resolution and scaling of

resistance values. This represents a resistance

model cluster for a R100N0 landscape. (B)

Resistance surfaces with the same resolution

and scaling of resistance values (1–101 with a

squared distribution), but differing in the

strength and scale of spatial autocorrelation.

Black dots represent the locations of 1,000

simulated individuals. Gray lines represent

least-cost paths between all individuals.

ª 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 5

K. A. Zeller et al. Evaluating Mantel-Based Methods



clusters, but varied among landscape clusters and repli-

cates. We used CDPOP (Landguth and Cushman 2010)

to simulate dispersal and gene flow for 1,000 individuals

over 1,000 nonoverlapping generations across the true

resistance model for each resistance model cluster

(Fig. 1.4). We conducted 50 replicate simulations of 1,000

generations of gene flow for each true model. Sexual

reproduction with an equal male–female sex ratio was

specified, and reproduction followed a Poisson distribu-

tion with a mean litter size of four and an equal offspring

sex ratio. Because this version of CDPOP would simulate

immigrants from outside populations if the number of

offspring was too low to recolonize all 1,000 habitat

patches, we prevented unfilled habitat patches by specify-

ing high reproductive levels. At the end of each genera-

tion, offspring that had not colonized an available habitat

cell emigrated (i.e., were removed from the landscape).

We randomly initialized genotypes for 30 loci with 30

alleles per locus and specified no mutation or selection.

The maximum individual movement for mate-seeking

and dispersal was set to 15% of the maximum cost dis-

tance between individuals across the resistance surface,

mimicking a species with limited dispersal. Sexes were

assigned equal movement potential, and mate-seeking and

dispersal movements were assigned equal cost functions

(based on cost distance matrices calculated for each resis-

tance surface; details below). An inverse-squared distance

function was used to describe movement probabilities,

such that most individuals travelled relatively short dis-

tances and few individuals travelled long distances.

Genotypes at generation 25 were used to generate

genetic distance matrices of the proportion of shared alle-

les between all pairs of individuals; these data represented

a population at spatial genetic disequilibrium. We then

identified the generation after which spatial genetic equi-

librium had been reached for each true resistance model

by plotting Mantel r versus generation for each replicate

and selecting the generation at which Mantel r began to

plateau. We used the genotypes from this generation to

construct a second genetic distance matrix for each true

resistance model that represented a population at spatial

genetic equilibrium. Our simulated populations reached

spatial genetic equilibrium by generation 500 to 1,000

after initialization (see Appendix S2). Both equilibrium

and nonequilibrium generations were used to compare

each of the Mantel-based methods.

Calculating cost distances and evaluating
relationships with genetic distance

Cost distance matrices for each resistance model were

generated using UNICOR (Landguth et al. 2012b), which

implements Dijkstra’s (1959) algorithm to identify least-

cost pathways among individuals and calculate the

cumulative path resistance (Fig. 1.5). Pearson’s product–
moment correlation coefficient (r) was calculated on a

cell-wise basis between the true resistance model and all

competing resistance models for each cluster (cell-wise

correlations; Appendix S3). Pearson’s correlation was also

calculated between the cost distances from the true resis-

tance model and the cost distances from competing resis-

tance models for each cluster (cost distance correlations;

Appendix S4).

We visually examined the relationship between genetic

and cost distances using scatterplots (Appendix S5). In

all cases, curvilinear relationships were observed. We

attempted to linearize the relationship between genetic

and cost distance by log-transforming the cost distance

values. The efficacy of the transformation was assessed by

comparing the R2 values from a linear regression model

applied to the genetic data as a function of the trans-

formed and untransformed cost distances (Appendix S5)

and also by visual reexamination of the scatterplots post-

transformation. If R2 increased when using the log-trans-

formed values, we assumed the relationship became more

linear. Both the transformed and untransformed cost

distances were used with each of the Mantel-based

methods.

Causal modeling with partial Mantel tests

We tested the ability of causal modeling (CM) with par-

tial Mantel tests (Cushman et al. 2006; Cushman and

Landguth 2010) to correctly identify the true resistance

model from alternative resistance models for each land-

scape cluster. Our approach was similar to that used by

Wasserman et al. (2010), in which all resistance models

directly compete against one another in partial Mantel

tests, in addition to competing against simple Euclidean

distance models. This method tests all resistance models

that meet the CM expectations in the Cushman et al.

(2006) method against one another so that a single top

model may be identified. R code is provided in

Appendix S14.

For each resistance model cluster, we conducted partial

Mantel tests of the general form GD ~ CD1 | CD2, where
the relationship between the simulated genetic distance

matrix (GD) and cost distance matrix of a resistance

model of interest (CD1) is assessed with an alternative

model’s cost distance matrix (CD2) partialled out

(Fig. 1.6). All possible combinations of the five resistance

models (four alternative parameterizations and one dis-

criminant) were tested according to this general form. We

also ran all possible tests with Euclidean distance par-

tialled out to serve as a null model of isolation-by-

distance; Euclidean distance was calculated from a raster
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in which all cells were assigned a value of one. Partial

Mantel tests were run using genetic distances at genera-

tion 25 and at spatial genetic equilibrium, and with

untransformed and log-transformed cost distances, using

the mantel() function in the “ecodist” (Goslee and Urban

2007) package in R.

Causal modeling supports a particular resistance model

when: (1) all partial Mantel tests of the resistance model

of interest (C1) are significant after cost distance matrices

of alternative resistance models or Euclidean distances

(C2) have been partialled out (five tests), and (2) all tests

are nonsignificant when the resistance model of interest is

partialled out for alternative model Mantel tests (five

tests). To determine whether CM successfully identified

the true resistance model, we counted the number of tests

that was consistent with expectations (i.e., P < a for

expected significant tests, or P > a for expected nonsignif-

icant tests, where a = 0.05) for each of the five resistance

models within each cluster replicate, assuming that each

model could be the true model. For each cluster replicate,

we calculated the success rate as the proportion of Monte

Carlo (MC) replicates in which all ten tests were consis-

tent with expectations for the true resistance model (i.e.,

the true model was correctly identified by CM).

Alternative Mantel-based approaches

We considered three alternative Mantel-based methods.

First, we used a more stringent criterion to assess statisti-

cal significance of Mantel test results by repeating the

above procedure with a = 0.005. This was suggested by

Oden and Sokal (1992), Diniz-Filho et al. (2013), and

Cushman et al. (2013b) to reduce type-I error rates. Sec-

ond, we used relative support (RS) based on Mantel r val-

ues (Cushman et al. 2013b; Castillo et al. 2014),

calculated as the difference in Mantel r from the comple-

mentary set of partial Mantel tests:

RS ¼ ½GD�CD1jCD2� � ½GD�CD2jCD1�
For each resistance model, we averaged RS values across

all five tests with that resistance model as CD1 in order to

obtain a summary measure of the relative support for that

resistance model compared to other resistance models

within the cluster; we denote this quantity RS. The model

with the highest RS was considered the best-supported,

regardless of the magnitude of this value. We calculated

the success rate as the proportion of MC replicates in

which RS for the true resistance model was higher than

for any of the alternative resistance models in the cluster.

We repeated the entire process for each cluster.

Third, we used the Mantel r value from the simple

Mantel test of the form GD ~ CD1 to identify the best fit-

ting resistance model, whereby resistance models with

higher simple Mantel r were interpreted as having greater

support. We calculated the success rate as the proportion

of MC replicates in which simple Mantel r for the true

resistance model was higher than for any of the alterna-

tive resistance models in the cluster.

Performance of Mantel-based tests when
resistance models are based on different
landscape variables

We also assessed the ability of Mantel-based methods to

distinguish between the true resistance model and the less

correlated discriminant resistance model. To do this, we

repeated the above analysis but compared the truth only

to the discriminant surface, removing all other alternative

surfaces from the set of candidate models. We calculated

success rate for each method using the criteria described

above (however, with a smaller number of partial mantel

tests for CM due to the reduced number of resistance

models being compared).

Results

Each of the Mantel-based methods performed poorly

when all resistance models within a resistance model clus-

ter were tested against each other, that is, when including

alternative parameterizations of resistance values of the

same landscape variable. Traditional CM, in which Mantel

test results are evaluated using P-values and a significance

level of a = 0.05, identified the true resistance model only

22% of the time (Table 1; mean across approaches). There

was a negligible improvement in method performance to

23% success when a = 0.005 was used. However, there

was considerable variation in performance depending on

whether the cost distances were linearized and if the equi-

librium generation was used. The best performance of tra-

ditional CM (41% success rate) occurred when a = 0.005,

cost distances were linearized, and a spatial equilibrium

generation was used (Table 1). Using RS rather than sig-

nificance-based CM to evaluate resistance models boosted

CM performance to 47% (Table 1; mean across

approaches). Similar results were obtained using simple

Mantel r values, while linearizing cost distances increased

performance of both RS and simple Mantel r methods.

There was also a slight performance increase when an

equilibrium generation was used, though RS and simple

Mantel r seemed fairly robust to whether genetic equilib-

rium had been reached or not (Table 1, Log = Y/Eq = N

and Log = Y/Eq = Y columns).

Given the poor performance of the traditional CM

methods, we focus our landscape structure results on the

RS and simple Mantel r results. We observed considerable

variation in the performance of the RS and simple Mantel
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r methods among landscape clusters. Landscape variables

with fine-scale spatial autocorrelation (R5) outperformed

those with large-scale spatial autocorrelation (R100;

Fig. 3; Appendix S8). For instance, across clusters with no

noise, the correct resistance model was selected 54% of

the time for fine-scale autocorrelation (R5N0), but only

37% of the time with large-scale autocorrelation

(R100N0). Again, performance increased when the cost

distances were linearized and when an equilibrium gener-

ation was used (Fig. 3; Appendix S8). The level of noise

had a smaller but noticeable effect. Landscape variables

with noise of 50% tended to outperform those with no

noise (e.g., 47% vs. 37% for the landscape cluster with

large-scale spatial autocorrelation, R100; Fig. 3;

Appendix S8). Landscape variables with a greater range of

autocorrelation exhibited less fragmentation: Moran’s I

values were higher, and patch cohesion and correlation

length metrics were larger for the R100 landscape vari-

ables compared with the R5 landscape variables (Appen-

dices S6 and S7). Landscape variables with noise

exhibited more fragmentation with lower Moran’s I val-

ues and small patches becoming more disjointed than in

landscapes without noise (Appendices S6 and S7).

When the true resistance model was tested only against

the discriminant resistance model for each cluster, mim-

icking the problem of discriminating between resistance

due to two different landscape variables (e.g., elevation vs.

percent forest cover), performance of the two CM meth-

ods increased to 57% and 61%, respectively, while the per-

formance of RS and simple Mantel r increased to above

98% (Table 2). The discriminant resistance models had

much lower cell-wise correlations with the true model

(≤0.11) than other resistance models in the same cluster

(>0.96; Appendices S3 and S9). However, cost distance

correlations with the true model were much more variable

than cell-wise correlations (Appendix S9), ranging approx-

imately from 0.45 to 0.98 for discriminant resistance mod-

els and from 0.85 to 0.99 for alternative parameterizations

of resistance for the same landscape factor. We found that

performance of Mantel-based methods varied with cost

distance correlations (Appendix S10). Despite relatively

high cost distance correlations, RS and simple Mantel r

Table 1. Success rate of Mantel-based methods to identify the true resistance model when compared to all the competing resistance models in a

landscape cluster (including the discriminant surface). Success rate is the proportion of all 50 MC replicates in which the true resistance model

outperformed all other resistance models in a cluster. Results are pooled across truth 10U and truth 100SQ. Log refers to whether the cost dis-

tances were log-transformed to better linearize their relationship with genetic distance. Eq indicates whether the genetic data used were from a

generation that had reached genetic equilibrium or whether a prior generation was used. Numbers in table are means with standard deviations in

parentheses.

Log = N

Eq = N

Log = N

Eq = Y

Log = Y

Eq = N

Log = Y

Eq = Y Mean across approaches

Causal modeling (a = 0.05) 0.009 (0.044) 0.313 (0.426) 0.153 (0.310) 0.388 (0.450) 0.216 (0.374)

Causal modeling (a = 0.005) 0.013 (0.052) 0.326 (0.427) 0.173 (0.323) 0.414 (0.448) 0.231 (0.379)

Relative support (RS) 0.430 (0.425) 0.397 (0.424) 0.511 (0.405) 0.547 (0.423) 0.471 (0.420)

Simple Mantel r 0.462 (0.414) 0.468 (0.455) 0.522 (0.419) 0.554 (0.437) 0.501 (0.429)

Mean across methods 0.228 (0.367) 0.376 (0.434) 0.339 (0.405) 0.475 (0.442) 0.354 (0.421)
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Figure 3. Model performance as judged by the proportion of MC

replicates in which the true resistance model outperformed all other

resistance models. Proportion success is averaged across the RS and

simple Mantel r methods. Error bars represent the 95% confidence

intervals. Causal modeling results have been omitted. Truth 10U and

100SQ results are pooled. (A) Model performance by landscape

cluster. (B) Model performance by all possible combinations of

linearity and spatial genetic equilibrium. Log refers to whether the

cost distances were log-transformed to linearize their relationship with

genetic distance. Eq indicates whether the genetic data used were

from a generation that had reached spatial genetic equilibrium or

whether a prior generation was used.
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performed very well at selecting the true resistance model

over the discriminant model, especially when the relation-

ship between cost and genetic distance was linearized. The

success rate of the CM methods was more sensitive to

these cost distance correlations, with the success rate drop-

ping for cost distance correlations >0.85, even when the

relationship between cost and genetic distance was lin-

earized (Appendix S10A).

Discussion

We simulated multiple continuous landscape variables to

examine the performance of four Mantel-based methods

for assessing landscape resistance. While our results are

generally consistent with findings from previous simula-

tions studies, they provide several novel insights that fur-

ther clarify the utility of the various Mantel-based

methods for landscape genetics. We note that our simu-

lated landscapes represented extremes of spatial autocor-

relation, and the effects of landscape characteristics on

method performance should be further studied. Further-

more, the specific results may depend to some degree on

the details of our study design and analysis (e.g., we did

not attempt to linearize the relationship between genetic

distance and Euclidean distance). We had a larger sample

size and thus higher power than most real-world studies.

To determine whether our results were applicable to

smaller sample sizes, we repeated our analyses with a ran-

dom sample of 100 individuals and found that our con-

clusions remain unchanged (Appendices S12 and S13).

This corroborates the findings of Landguth et al. (2012a)

who found that the results of Mantel tests were relatively

unaffected by sample size when compared with the num-

ber of loci and number of alleles. Oyler-McCance et al.

(2012) found sample size and sampling strategy to affect

performance of Mantel-based tests, particularly when

populations are not at genetic equilibrium. Therefore, to

fully understand how sampling would affect our results,

further research is needed that examines sample size, sam-

pling strategy, and the number of loci and alleles.

Comparison of Mantel-based methods

Each of the Mantel-based methods performed poorly

when all resistance models within a cluster were tested

against each other, underscoring the difficulties in dis-

criminating between alternative parameterizations of the

same underlying landscape variable. However, substantial

differences became evident when contrasting resistance

models derived from different landscape variables (i.e.,

the true resistance model vs. the discriminant resistance

model). CM methods did not perform as well as RS and

simple Mantel r. This was especially true when alternative

parameterizations of resistance for the same landscape

variable were included. The sheer number of tests that

need to be passed for CM to select a resistance model

made it difficult for CM to identify the true resistance

model, particularly when competing models were highly

correlated. In contrast, RS and simple Mantel r performed

very well at discriminating among resistance models

derived from different underlying landscape variables and

were >98% successful when the relationship was lin-

earized. This suggests that these Mantel-based methods

may be very effective for discriminating among different

landscape variables and that their use is justified in this

narrow application.

Challenge 1: Effects of landscape structure

Previous studies have shown that the composition and

configuration of resistant features across landscapes of

interest can affect Mantel test performance. Cushman

et al. (2013a) and Kierepka and Latch (2014) found that

landscapes with lower levels of fragmentation allowed rel-

atively unencumbered movement of individuals, resulting

in only weak genetic structure and poor performance of

Mantel-based tests to correctly identify the true resistance

model from a suite of options. Landscapes with higher

levels of fragmentation resulted in more pronounced

genetic differentiation and the ability to correctly identify

the pattern–process relationship. This finding was also

Table 2. Success rate of Mantel-based methods to identify the true resistance model over the discriminant resistance model (i.e., proportion of

50 MC replicates in which true model outperformed discriminant model) when only those two models are included as competing hypotheses.

Truth 10U and truth 100SQ results are pooled. Log refers to whether the cost distances were log-transformed to linearize their relationship with

genetic distance. Eq indicates whether the genetic data used were from a generation that had reached genetic equilibrium or whether a prior

generation was used. Numbers in table are means with standard deviations in parentheses.

Log = N

Eq = N

Log = N

Eq = Y

Log = Y

Eq = N

Log = Y

Eq = Y Mean across approaches

Causal modeling (a = 0.05) 0.156 (0.300) 0.783 (0.317) 0.629 (0.403) 0.739 (0.321) 0.577 (0.418)

Causal modeling (a = 0.005) 0.186 (0.323) 0.820 (0.289) 0.665 (0.394) 0.784 (0.293) 0.613 (0.412)

Relative support (RS) 0.999 (0.006) 0.976 (0.094) 1.000 (0.000) 0.981 (0.084) 0.989 (0.063)

Simple Mantel r 0.999 (0.006) 0.976 (0.094) 1.000 (0.000) 0.981 (0.084) 0.989 (0.063)

Mean across methods 0.585 (0.470) 0.889 (0.239) 0.823 (0.331) 0.871 (0.249) 0.792 (0.356)
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confirmed by an empirical study that was unable to asso-

ciate spatial genetic structure in bobcats (Lynx rufus) with

habitat connectivity in landscapes with low levels of frag-

mentation (Reding et al. 2013). However, Jaqui�ery et al.

(2011) found that performance of Mantel-based methods

was poorer with increasing fragmentation. This seemingly

conflicting result is actually quite plausible under very

high levels of fragmentation, when movement and gene

flow across the landscape become so severely restricted

that a significant relationship between gene flow and

landscape resistance is no longer present. Importantly, all

three studies found an effect of landscape composition,

whereby higher degrees of contrast in resistance values led

to better performance of Mantel-based tests. These find-

ings were largely corroborated by our simulations based

on gradient landscapes with varying degrees of spatial

autocorrelation and random noise.

In landscapes with more pronounced levels of fragmen-

tation (i.e., finer-scale spatial autocorrelation and greater

noise, resulting in lower aggregation), performance of

Mantel-based methods increased. We also found that

Mantel-based methods performed better when the true

resistance model had a higher degree of contrast in resis-

tance values (100SQ vs. 10U; Appendix S11). This means

that Mantel-based methods will work best in highly frag-

mented landscapes that show strongly contrasting resis-

tance values, regardless of whether a binary or continuous

landscape representation is used.

Challenge 2: Effect of time lags

As in previous studies, we expected that the performance

of Mantel-based methods in our gradient landscapes

would be higher when the landscape effect had already

manifested itself in the spatial genetic structure of the

population. However, the use of a spatial genetic equilib-

rium generation only mildly improved the performance

of traditional CM methods, while RS and simple Mantel r

methods were robust to whether spatial genetic equilib-

rium was reached or not. In comparison with the impor-

tance of linearity and the testing of different landscape

variables (in lieu of alternative parameterizations of resis-

tance for the same landscape variable), spatial genetic

equilibrium appears to play a more minor role in the

accuracy of Mantel-based methods. This is somewhat

comforting, as many environments are changing rapidly

and most empirical studies will be unable to confirm spa-

tial genetic equilibrium of their target populations with-

out repeated sampling over long timescales and extensive

knowledge of a species’ history in an area. Previous

research has demonstrated that Mantel tests can detect

effects of barriers in otherwise homogeneous landscapes

in as few as 15 generations (Landguth et al. 2010); to our

knowledge, our study is the first to examine this issue of

time lag using a gradient of resistance values.

Challenge 3: Effects of nonlinearity

In support of previous studies, our results provide strong

evidence for the importance of checking the assumptions

of linearity when using the Mantel test (see also Diniz-

Filho et al. 2013 and Legendre et al. 2015). While there

are many reasons why the linearity assumption may be

violated (e.g., genetic or demographic stochasticity; Diniz-

Filho et al. 2013; Graves et al. 2013), most landscape

genetic studies do not assess this relationship before

applying Mantel tests (but see Shirk et al. 2010 and

Graves et al. 2013). This is actually quite surprising, con-

sidering that evaluating linearity is a relatively straightfor-

ward task to carry out prior to the final analysis. For

example, we assessed the shape of our cost/genetic dis-

tance relationships visually, and by determining whether

the R2 value increased when we transformed the cost dis-

tance values. A more flexible approach would be to use a

Box-Cox analysis (Box and Cox 1964) to identify the

exponent value (k) that would transform the data in a

way that best meets the assumptions of linearity and nor-

mality. The Box-Cox analysis is useful in that it not only

indicates whether data meet assumptions, but also identi-

fies the appropriate transformation (if needed). The

power of Mantel-based methods may be further improved

by reducing the full distance matrix to a subset of pairs

(Wagner and Fortin 2013), either using a spatial graph

model (Dale and Fortin 2010) or conditional genetic dis-

tance (Dyer et al. 2010; Garroway et al. 2011).

Challenge 4: Effects of correlated resistance
models and cost distances

Poor performance across methods was likely due to the

inability of the Mantel-based tests to accurately discern

the truth from a suite of very highly correlated resistance

models and their associated cost distances. In our simula-

tions, all alternative resistance models in a cluster (i.e.,

alternative resistance parameterizations based on the same

underlying landscape variable as the true model) had cell-

wise correlations ≥0.97 and cost distance correlations

≥0.93 with the true model. Changing only the scaling (U

vs. SQ) and not the resolution (10 vs. 100) reduced the

cell-wise correlation, but had a relatively small effect on

the cost distance correlations, whereas changing only the

resolution of resistance values (10 vs. 100) reduced cost

distance correlations but not cell-wise correlations.

Changing both scaling and resolution led to the largest

reductions in cost distance correlations, but correlations

among alternative resistance models and the true model
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still remained high (>0.85). As predicted, the discriminant

resistance models had very low cell-wise correlations with

the true model (<0.11). However, even very low cell-wise

correlations could result in very high cost distance corre-

lations as evidenced by the R510U discriminant models

(correlations >0.9), and it is the latter that determine per-

formance of Mantel-based methods (see Appendix S10).

In general, however, the cost distance correlations

between the discriminant model and the true model were

often lower than correlations among the true model and

alternative resistance models in the same cluster. Our

results agreed with Cushman et al. (2013b), in that we

found a drop in the performance of CM methods when

linearized cost distance correlations increased above 0.85,

which is higher than the commonly used 0.7 collinearity

threshold for regression analysis that is not based on dis-

tance matrices (Dormann et al. 2013). RS and simple

Mantel r had higher performance than CM, indicating

that they were better able to select the true model even

when cost distance correlations were high.

Our results suggest that Mantel-based methods should

not be used for fine-tuning relative weights of resistance

values when competing resistance models exhibit high-

cost distance correlations (>0.85). Even lower cost dis-

tance correlations were sometimes problematic for CM,

particularly when spatial genetic equilibrium had not been

reached (Appendix S10B). Given that most alternative

parameterizations of resistance for the same landscape

variables will result in very high-cost distance correlations,

the use of Mantel-based methods to fine-tune resistance

values will not be effective. Mantel-based methods seem

better suited to discriminate among resistance models

with different underlying landscape variables, and RS and

simple Mantel r outperform CM in this regard.

Conclusions and Recommendations

Our analysis is the first to examine all four challenges

mentioned above using spatially explicit simulations with

continuous landscape variables representing different spa-

tial compositions and configurations. We recognize that

Mantel-based tests are often used to compare resistance

models based on different parameterizations of a single

landscape variable and that comparing resistance models

that are based on independent landscape variables is often

not possible or not helpful for answering a question of

interest. We believe these methods still have applicability

for landscape genetics, but under a much more restricted

set of circumstances than they have been applied in the

past. Due to the limitations of the Mantel test found here

and in other studies (e.g., Graves et al. 2013; Guillot and

Rousset 2013), the field of landscape genetics is currently

at a crossroads. There are several alternative methods to

the Mantel test that have been proposed, but none are

able to simultaneously address spatial autocorrelation, the

testing of alternative resistance models, and the ability to

perform hypothesis testing (Richardson et al. 2016). Until

a silver bullet is found, the Mantel test will likely continue

to be used. In the absence of other methods to discern

between resistance models using the same variable, Man-

tel-based tests would provide the best outcome if (1) the

research was conducted in more fragmented (less aggre-

gated) landscapes, (2) the target population had reached

spatial genetic equilibrium, (3) the cost/genetic distance

relationship was linearized, (4) the resistance parameteri-

zations were very different from each other, resulting in

lower correlations among cost distances (<0.85 for causal

modeling, <0.95 for RS or simple Mantel r), and (5)

either RS or simple Mantel r was used as the metric of

choice. Unfortunately, options (1) and (2) above are

rarely under the control of the researcher, leaving one to

rely on options (3), (4), and (5).
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Appendix S10. (A) Cost-distance correlations plotted

against model performance for the discriminant resis-

tance models and for one of the alternative resistance

models for each cluster. (B) Cost-distance correlations

plotted against model performance for the discriminant

resistance models (circles) and for one of the alternative

resistance models for each cluster (triangles).

Appendix S11. Model performance as judged by the

proportion of MC replicates in which the true resis-

tance model outperformed all other resistance models

in a cluster.
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Appendix S12. Success rate of Mantel-based methods

when comparing amongst all resistance models within a

cluster, including those based on different parameteriza-

tions of the same landscape variable (i.e., proportion of

MC replicates in which the true resistance model out-

performed all other resistance models), and using a

random subsample of 100 individuals.

Appendix S13. Success rate of Mantel-based methods

to select the true resistance model over the discriminant

resistance model (i.e., proportion of MC replicates in

which true model outperformed discriminant model)

when only those two models are included as competing

hypotheses, and using a random subsample of 100 indi-

viduals.

Appendix S14. R and Python code for Mantel-based test

simulation analysis.
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