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Dynamic and flexible H3K9me3 bridging via HP1b
dimerization establishes a plastic state of
condensed chromatin
Kyoko Hiragami-Hamada1,*, Szabolcs Soeroes1,*,w, Miroslav Nikolov1,2, Bryan Wilkins3, Sarah Kreuz1,

Carol Chen4, Inti A. De La Rosa-Velázquez5, Hans Michael Zenn6, Nils Kost1, Wiebke Pohl7,

Aleksandar Chernev2,8, Dirk Schwarzer9, Thomas Jenuwein5, Matthew Lorincz4, Bastian Zimmermann6,

Peter Jomo Walla7,10, Heinz Neumann3, Tuncay Baubec11, Henning Urlaub2,8 & Wolfgang Fischle1

Histone H3 trimethylation of lysine 9 (H3K9me3) and proteins of the heterochromatin

protein 1 (HP1) family are hallmarks of heterochromatin, a state of compacted DNA essential

for genome stability and long-term transcriptional silencing. The mechanisms by which

H3K9me3 and HP1 contribute to chromatin condensation have been speculative and

controversial. Here we demonstrate that human HP1b is a prototypic HP1 protein

exemplifying most basal chromatin binding and effects. These are caused by dimeric and

dynamic interaction with highly enriched H3K9me3 and are modulated by various

electrostatic interfaces. HP1b bridges condensed chromatin, which we postulate stabilizes

the compacted state. In agreement, HP1b genome-wide localization follows H3K9me3-

enrichment and artificial bridging of chromatin fibres is sufficient for maintaining cellular

heterochromatic conformation. Overall, our findings define a fundamental mechanism for

chromatin higher order structural changes caused by HP1 proteins, which might contribute to

the plastic nature of condensed chromatin.
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H
eterochromatin is important for genome stability and
transcriptional silencing through folding of chromatin
into a condensed higher order structure. Methylation of

lysine 9 within the histone H3 N-terminal tail is a crucial
determinant of heterochromatin formation. The trimethylated
form of this modification (H3K9me3) can be found at pericentric
heterochromatin in virtually all higher eukaryotes and is viewed
as a hallmark of transcriptionally silenced chromatin1,2.

Multiple evidence from genetic and cell biology studies points
to an important involvement of heterochromatin protein 1 (HP1)
factors, a family of non-histone chromatin proteins found in
different isoforms in diverse organisms from S. pombe (Swi6) to
human (HP1a, b and g) in establishing and maintaining
heterochromatic states2–6.

HP1 proteins generally contain two conserved globular
domains, a chromo domain (CD) and a chromoshadow domain
(CSD), which are linked by a less conserved, flexible hinge region
(HR)3. Depending on the species and isoforms, additional
less-conserved regions are found at the N and C termini of the
proteins (NT and CT, respectively; Fig. 1a). The CD mediates
interaction with H3K9me3 histone tail peptides with relatively
low (micromolar) affinity7,8. Work on isolated chromatin
components (peptides, histones, DNA) has suggested that the
CD/H3K9me3 interaction might not be sufficient for chromatin
targeting of HP1 proteins. Contacts via the HR or CSD might also
be required. The issue is further complicated by self-dimerization

of the CSD, which provides an interaction platform for a plethora
of other proteins9,10. Several recent studies on human HP1a
(hHP1a) using in vitro reconstituted ‘designer chromatin’
containing defined histone modifications have reported
conflicting results regarding binding specificity, chromatin
effects as well as dependency on different domains of the
protein11–14.

Here we investigated the molecular parameters and
consequences of interaction between hHP1b and H3K9me3-
containing oligonucleosomes. We focused on this isoform as it is
the only essential mammalian HP1 protein, whose knockout in
mice leads to perinatal lethality and severe genomic instability15.
Our results demonstrate that mammalian HP1b is a prototypic
HP1 protein, whose specific interaction with H3K9me3
chromatin only requires dimerization and spacing of the CD as
well as general stabilization of this interaction by the NT.
We suggest a general mechanism of dynamic higher order
organization mediated by HP1 proteins that might be the basis of
the plasticity of condensed chromatin.

Results
hHP1b binds H3K9me3 chromatin with high specificity. To
obtain molecular insights into the interaction of HP1 proteins
with chromatin, we generated uniformly K9-methylated histone
H3 protein by native chemical ligation (synthetic H3 (aa 1–20)
tail peptides fused to recombinant H3 (D1–20, A21C)) or via
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Figure 1 | hHP1b–chromatin interaction is dependent on H3K9me3. (a) Domain structure of hHP1b; boundaries of domains are indicated by respective

amino acid positions. For more details see Supplementary Fig. 2. (b) Scheme of pull-down experiments in c using different H3K9me templates immobilized

on streptavidin-coated magnetic beads via C-terminal incorporation of a biotinylated lysine (peptide) or ligation of 50-biotinylated oligonucleotides to DNA

templates used in chromatin reconstitution (mono- and oligonucleosomes). (c) Immobilized H3K9me templates according to the pull-down experimental

schemes in b were incubated with recombinant hHP1b WT. Material recovered after washing was analysed by western blotting. The indicated salt

concentrations were used throughout the experiment. (d) Scheme of chromatin coprecipitation assay; factors bound to oligonucleosomes are precipitated

with the template when clustering is induced by addition of Mg2þ ions. (e,f) Chromatin coprecipitation of hHP1b (e) and hHP1a (f) proteins with

oligonucleosomes. Precipitated material was run on SDS-PAGE and stained with Coomassie blue. Input, 10%. (g) The indicated recombinant proteins were

incubated with a DNA fragment of 150 bp at 500: 1 and 1,000: 1 molar ratio. Complexes were separated by PAGE. DNA was stained with SYBR Gold.
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aminoalkylation of H3 with cysteine at position 9 instead of lysine
(methyl lysine analogue, H3KC9me) using our previously estab-
lished procedures16. Since our work has indicated sixfold reduced
binding of hHP1b to an H3-tail peptide-containing H3KC9me
compared with methylated lysine (Table 1)17, we used H3KC9me
exclusively for experiments requiring large amounts of designer
chromatin that were not available by the native chemical ligation
strategy. H3 with different modification status was incorporated
into mononucleosomes and 12-mer oligonucleosomal arrays
using DNA containing 601 positioning sequences (Supplementary
Fig. 1a,b). At saturation rates of 11±1 nucleosomes, we

observed no apparent differences in the compaction and folding
behaviour of the unmodified and H3K9me3 chromatin arrays
(Supplementary Fig. 1c–e).

In pull-down experiments of immobilized H3 tail peptides,
mono- and oligonucleosomes hHP1b was retained much more
efficiently on all three matrices in the presence of H3K9me3
as compared with the unmodified (H3K9me0) counterpart
(Fig. 1b,c; Supplementary Table 1 summarizes the different
assays and experimental conditions used to analyse hHP1b/
chromatin interaction). Since chromatin fibres undergo reversible
transitions from elongated state to compacted arrays that are

Table 1 | Interaction parameters of hHP1b WT and mutant proteins with the H3K9me3-modification in different biochemical
environment as deduced by different methods.

ITC SPR

20 mM NaCl 150 mM NaCl 150 mM NaCl

Kd (lM) N Kd (lM) N Kd (lM)

Peptide H3K9me3 WT 1.4±0.6 0.9±0.0 3.3±0.2 1.0±0.0 0.7±0.1*
I161A 1.1±0.5 1.0±0.1 3.4±0.2 0.9±0.0 7.0±0.4
CD — — 3.3±0.5 1.1±0.1 6.3±0.9

Peptide H3KC9me3 WT 11±4 1.0±0.0 21±3 1.0±0.1 —
I161A — — — — —

Mononucleosome H3K9me3 WT — — — — 1.0±0.2*
I161A — — — — 5.2±0.6

Mononucleosome H3KC9me3 WT 59±8 2.1±0.3 22±8 1.4±0.3 —
I161A 223±30 1.1±0.4 58±17 1.2±0.3 —

Oligonucleosome H3KC9me3 WT NB 11±2 1.9±0.1 —
I161A NB 132±24 1.1±0.3 —

NB, not binding; ITC, isothermal titration calorimetry; N, stoichometry of interaction; Kd, apparent dissociation constant; SPR, surface plasmon resonance; WT, wild type.
*Based on fitting of titration data to a one site-specific binding model (Supplementary Note 1).
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Figure 2 | Dimerization is necessary and sufficient for hHP1b binding of H3K9me3 chromatin. (a) Schematic representation of hHP1b mutant proteins.

White bars indicate positions of W42 and I161, respectively. (b) Chromatin coprecipitation of WT and mutant hHP1b proteins with oligonucleosomes.

Precipitated material was analysed by western blotting using antibodies that recognizes the CD of hHP1b. Ponceau staining of the region of the western blot

membrane containing histones is shown as loading control. Input, 10%. (c) The indicated proteins were incubated with a biotinylated H3K9me3 peptide

immobilized on magnetic streptavidin beads. Material recovered after washing was run on SDS–PAGE and stained with Coomassie blue. Input, 10%. (d)

SPR analysis of hHP1b WT interaction with a biotinylated H3K9me3 peptide immobilized at different density on the chip surface (very low, 5 RU; low, 24

RU; very high, 950 RU). (e) Experiment as in b using hHP1b CSD, but analyzed by SDS–PAGE and staining with Coomassie Blue.
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further aggregated by interstrand interaction18, we asked whether
specific binding was retained with oligonucleosomes at higher
order folded state. In the presence of 5 mM Mg2þ , chromatin
fibres precipitate and can be recovered from solution by
centrifugation. Under these conditions hHP1b coprecipitated
only with H3K9me1/2/3 but not H3K9me0 oligonucleosomes
(Fig. 1d,e). Further analysis with H3K4me3 and H3KC27me3
oligonucleosomes verified the specificity of this interaction
(Supplementary Fig. 1f and g). Recovery of hHP1b with
aggregated chromatin was independent of the DNA sequence
used for chromatin reconstitution (Supplementary Fig. 1h).

When analysing recombinant hHP1a in the chromatin
coprecipitation scheme, the protein displayed much less
specificity for H3K9me3 compared with hHP1b (Fig. 1f). In
agreement and as observed previously, hHP1a but not hHP1b
showed a high level of general DNA binding in gel shift
experiments (Fig. 1g)13.

Dimerization mediates H3K9me3-chromatin binding of hHP1b.
To determine the molecular requirements for the highly specific
hHP1b/H3K9me3–chromatin interaction, we prepared different
point as well as deletion mutant proteins (Fig. 2a and
Supplementary Fig. 2a). Mutation of residue W42, which
was shown previously to impair binding to H3K9me3 (ref. 7),
resulted in the loss of recovery of hHP1b with H3K9me3
oligonucleosomes (Fig. 2b). Under the same conditions neither
the monomeric CD alone nor an I161A mutant protein, which is
incapable of dimerization8, were significantly recovered with
H3K9me3 oligonucleosomes. Since both proteins bound an
H3K9me3-peptide as efficiently as hHP1b wild type (WT;
Table 1), the results implied that the CD/H3K9me3 interaction
is not sufficient for chromatin binding. In agreement, hHP1b
I161A was ineffective in competing with hHP1b WT for
interaction with H3K9me3 oligonucleosomes (Supplementary
Fig. 2b). Also, isothermal titration calorimetry (ITC)
measurements deduced a 12-fold reduced interaction of hHP1b
I161A with H3KC9me3 oligonucleosomes compared with hHP1b
WT (Table 1).

We reasoned that the difference in binding of hHP1b WT and
I161A proteins to free peptide and oligonucleosomes must be due
to the high density of H3K9me3 on the chromatin template.
Indeed, pull-down experiments with H3-tail peptides densely
immobilized on magnetic beads showed significantly reduced
recovery of I161A compared with hHP1b WT (Fig. 2c).

Further analysis of the interaction kinetics of hHP1b WT and
I161A with H3K9me3 peptides immobilized on surface plasmon
resonance (SPR) chip surfaces deduced similar, very fast
association kinetics of both proteins. The signal of immobilization
rapidly reached a plateau with both proteins and on H3K9me3
surfaces of different density (Fig. 2d). The hHP1b WT and I161A
proteins differed, however, in the release from the matrices. While
the I161A protein dissociated rapidly from the H3K9me3 ligand,
hHP1b WT was released more slowly. This effect was more
pronounced at higher H3K9me3 surface densities. The residual
signals seen under these conditions were lower at higher flow
rates and could also be competed specifically with free H3K9me3
peptide ligand but not H3K9me0 (Supplementary Fig. 2c and d),
indicating that this effect is due to mass transfer limitations as
well as rebinding phenomena known to occur with SPR
measurements19. In agreement with the different binding
kinetics, we deduced 10-fold stronger binding of the hHP1b
WT protein to the H3K9me3 matrix compared with the I161A
protein in SPR titration experiments (Table 1).

Since we did not detect any binding of the CSD to
oligonucleosomes (Fig. 2e), we reasoned that its contribution

to H3K9me3/chromatin interaction is solely via mediating
dimerization. To test this hypothesis, we analysed an hHP1b
chimera where the CSD was replaced with an unrelated
dimerization module. We used glutathione S-transferase (GST),
as it is known to form dimers of similar strength as hHP1b WT in
solution (Kdo1 nM)9,20. In chromatin coprecipitation (Fig. 2b) as
well as in H3K9me3 peptide pull-down (Fig. 2c) experiments NT,
CD, HR(hHP1b)-GST indeed showed interaction similar to
hHP1b WT. On the basis of these findings, we deduced that CSD-
mediated dimerization of hHP1b WT results in kinetic trapping
of the protein on dense H3K9me3 surfaces such as provided on
peptide-bound matrices or oligonucleosomes and there in
particular after condensation and aggregation.

hHP1b induces aggregation of H3K9me3 oligonucleosomes.
Having established the interaction parameters of hHP1b with
oligonucleosomes, we investigated the effects of its binding onto
chromatin conformation. At 150 mM NaCl oligonucleosomes are
highly soluble. These are in compacted (zig-zag) state but do not
interact with each other (Supplementary Fig. 1e). Under these
conditions increasing concentrations of hHP1b WT efficiently
aggregated H3K9me3 but not H3K9me0 oligonucleosomes to a
degree that the complexes precipitated and could be collected by
centrifugation (Fig. 3a). This effect was generally reversible as
shown in resolubilization experiments (Supplementary Fig. 3a
and b). The hHP1b I161A mutant protein, in contrast, failed to
induce the aggregation of oligonucleosomes.

To obtain further insights into the chromatin aggregation
induced by hHP1b, we set up fluorescence correlation spectro-
scopy (FCS) measurements for single-molecule analysis. By
labelling the DNA in oligonucleosomes with ATTO 610, this
allowed delineating the diffusion behaviour and thereby size of the
different chromatin species (Supplementary Fig. 3c and d). In this
assay, hHP1b WT induced H3K9me3 oligonucleosomes to form
large assemblies that reached a maximum hydrodynamic radius of
450 nm at the highest protein concentration (Fig. 3b). No such
complex formation by clustering was seen with the I161A mutant
protein. With the H3K9me0 oligonuclesomes larger assemblies
only appeared at high hHP1b WT concentrations. We note that
the half-maximal effects in the FCS experiment and the chromatin
precipitation assay were seen at 3.5 and 0.4mM hHP1b WT,
respectively. Since the binding of hHP1b to peptides is slightly
enhanced at lower temperature21, we assume that the difference is
explained by the experimental setup of the FCS experiment at 23�C
and the sedimentation assay at 4�C. Also, we do not know the
minimal hydrodynamic size of aggregates that results in the
recovery in the centrifugation assay.

hHP1b clusters chromatin exposing high density of H3K9me3.
In analysing the interaction of hHP1b WT with H3K9me3 in
different biochemical context, we noticed a significant difference
in binding strength at low and high-salt concentrations.
While the protein bound better to free H3K9me3 peptide at
20 mM NaCl (Kd¼ 1.4±0.6 mM) compared with 150 mM NaCl
(Kd¼ 3.3±0.2 mM), this trend was reversed in the context of
chromatin. H3KC9me3 mononucleosomes were bound 2.7-fold
better at the higher compared with the lower salt concentration.
At 20 mM NaCl we could not detect any binding of hHP1b WT
to H3KC9me3 oligonucleosomes but deduced a Kd of 11±2 mM
for binding to the same template at 150 mM NaCl (Table 1 and
Supplementary Fig. 4). Obviously, two counteracting effects
determine binding of hHP1b to H3K9me3 chromatin. On one
end, the CD/H3K9me3 interaction is sensitive to higher salt
conditions. On the other end, at low salt concentration, the H3
tails in chromatin are not fully available, likely due to electrostatic
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Figure 3 | hHP1b clusters oligonuclesomal arrays in dependence of H3K9me3. (a) Oligonucleosomes (2.5 nM) were incubated with increasing

concentrations of hHP1b WT or I161A at 150 mM NaCl. DNA remaining in the supernatant after centrifugation was incubated with EtBr and measured by

fluorescence reading. Data were normalized to amounts in absence of added protein. Averages of three independent experiments are plotted; error bars

represent s.d.; n¼ 3. (b) Analysis of the hydrodynamic radius of oligonucleosomes (10 nM; DNA labelled with ATTO 610) in the presence of increasing

concentrations of hHP1b WT or I161A by FCS at 150 mM NaCl. For details on experimental setup see Supplementary Fig. 3. Error bars represent s.d.; n¼ 3.

(c) Oligonucleosomes were reconstituted after mixing H3K9me0 and H3K9me3 octamers at different ratio. Chromatin precipitation analysis at 150 mM

NaCl was carried out with hHP1b WT at saturating concentration. Data are presented as in a. (d) Precipitation behaviour of oligonucleosomes (2.5 nM) was

analysed at different concentrations of NaCl with hHP1b WT at saturating concentration. Data are presented as in a. (e) H3K9me3-containing chromatin
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microscopy. Control, no protein added; scale bar, 100 nm. (h) Quantification of results representatively shown in g according to the classification on the top:

A, extended; B, partially condensed; C, fully condensed; D; aggregates; n450 for each condition.
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binding to DNA18,22. Conditions of higher salt increase the
availability of the H3 tails and induce chromatin condensation.
The high density of H3K9me3 in this situation provides a
favourable binding platform for hHP1b interaction, which in turn
promotes clustering of chromatin.

If this interpretation were correct, we would expect the effect of
hHP1b chromatin clustering to be dependent on the level of
H3K9me3 in the oligonucleosomes. Indeed, when mixing
H3K9me0 and H3K9me3 at different ratios for oligonucleosomal
reconstitution, we observed that a content of more than 50%
H3K9me3 was required for hHP1b to induce efficient chromatin
clustering (Fig. 3c).

To further test the idea that hHP1b preferentially binds to
condensed chromatin and mediates clustering, we performed
salt titration of H3K9me0 and H3K9me3 oligonucleosomes in
presence of the protein. We found a transition of hHP1b
inducing clustering of H3K9me3 oligonucleosomes at salt
concentrations above 50 mM NaCl, which are known to
promote intrafiber condensation (Fig. 3d). No clustering of
H3K9me0 chromatin was seen in the presence of hHP1b even at
150 mM NaCl.

Mg2þ -induced chromatin aggregation requires minimally the
N-terminal tails of H3 or H4. In contrast, the tails of H2A and
H2B are not sufficient for this process23,24. To further analyse
hHP1b-dependent chromatin clustering, we set up H3K9me3
oligonucleosomal templates containing tailless H2A, H2B or H4.
Compared with oligonucleosomes containing WT histones these
required higher MgCl2 concentration for inducing intrafiber
aggregation and precipitation (Supplementary Fig. 5), as was
shown previously24. We determined the Mg50 value for WT
H3K9me3 oligonucleosomes at around 2 mM, whereas the Mg50
for H3K9me3 oligonucleosomes containing tailless H2A or H2B
were around 3 mM and that for H3K9me3 oligonucleosomes
containing tailless H4 was around 4 mM. While hHP1b clustered
H3K9me3 oligonucleosomes containing tailless H2A or H2B as
efficiently as H3K9me3-oligonucleosomes containing WT core
histones, the effect on H3K9me3 oligonucleosomes containing
tailless H4 was impaired (Fig. 3e). Also and in agreement with the
altered aggregation behaviour (Supplementary Fig. 5), chromatin
coprecipitation showed reduced recovery of hHP1b with
H3K9me3 oligonucleosomes in the absence of the H4
N-terminal tail at 3.5 mM MgCl2, whereas recovery at 7.0 mM
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Figure 4 | hHP1b bridges nucleosomes on the same and different chromatin fibres. (a) Chromatin precipitation analysis of oligonucleosomes with hHP1b
wild-type (WT) or mutant proteins under saturating conditions. DNA remaining in the supernatant after centrifugation was incubated with EtBr and

measured by fluorescence reading. Data were normalized to amounts present in the input. Error bars represent s.d.; n¼ 3. (b) Scheme of UV-mediated

hHP1b-histone H3 cross-linking experiments. (c) Photo cross-linking according to the scheme in b was done with H3K9me0 or H3KC9me3

oligonucleosomal arrays and hHP1b N57X Q158X. Samples were run on SDS–PAGE (top, shorter run; bottom, longer run) and stained with Coomassie blue.

Black arrows indicate crosslinked hHP1b dimer crosslinked to one untagged histone H3 and one His6-tagged histone H3. (d) Histograms of intensity scans

of Coomassie blue stained SDS–PAGE gels shown in c.
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MgCl2 was comparable to the level obtained with H3K9me3
oligonucleosomes containing WT core histones (Fig. 3f).

Since the salt titration had shown that at 50 mM NaCl
discriminatory effects of hHP1b onto H3K9me0 and H3K9me3
oligonucleosomes become apparent (Fig. 3d), we selected this
condition to visualize the chromatin complexes formed by
hHP1b using scanning force microscopy (Fig. 3g). Due to the
clear dose response (Fig. 3a,b), we reasoned that at this
intermediate condition different states of hHP1b-dependent
chromatin clustering could be observed at different concentra-
tions of the protein. At 0.5 mM hHP1b WT, we mostly observed
structures whose size was consistent with individual but
highly condensed H3K9me3 chromatin species. At 5mM hHP1b
WT larger clusters that must contain multiple oligonucleosomes
were visible. Similar to the ‘in solution’ assays, the frequency
of condensed chromatin fibres and large chromatin
clusters was much lower for H3K9me0 chromatin with hHP1b
WT or for H3K9me3 chromatin with I161A mutant protein
(Fig. 3h).

hHP1b bridges H3K9me3 of different chromatin fibres. We
next investigated whether dimerization is sufficient for the effect
of the hHP1b CSD in chromatin clustering. At 150 mM NaCl
5 mM hHP1b WT are sufficient for inducing maximal chromatin
clustering (Fig. 3a). Under these conditions, neither the I161A
mutant, nor the isolated CD or CSD had any effect on modified
or unmodified chromatin (Fig. 4a). As expected, mutation of
W42A that abolishes interaction with H3K9me3 also failed to
cluster oligonucleosomes. However, artificial dimerization of the
NT, CD and HR domains of hHP1b via GST (NT, CD,
HR(hHP1b)-GST) was sufficient to induce the maximal response
in this assay.

To determine whether hHP1b promotes interfiber association
by bridging different chromatin strands, we set up a cross-linking
strategy, where we mapped linkage of dimeric protein to H3
(Fig. 4b). The photo-crosslinkable unnatural amino acid
p-benzoyl-L-phenylalanine (pBpa) covalently binds to aliphatic
side chains of amino acids within a distance of o4 Å on
ultraviolet irradiation (l¼ 365 nm). On the basis of the available
three-dimensional structures of CD/H3K9me3 and CSD/CSD
complexes, we used stop codon suppression to generate a
recombinant hHP1b protein containing pBpa at positions 57
and 158 (N57X and Q158X) for cross-linking of the CD and CSD,
respectively (Supplementary Fig. 6a)25. Incorporation of pBpa
at these sites did not affect the binding of hHP1b to
H3K9me3 oligonucleosomal arrays (Supplementary Fig. 6b). To
distinguish H3 from different chromatin fibres, we reconstituted
oligonucleosomes with untagged and His6-tagged H3 unmodified
and containing the H3KC9me3 methyl lysine analogue (Fig. 4b).
Chromatin coprecipitation analysis verified that the His6-tagging
of H3 did not have any effect on hHP1b recruitment
(Supplementary Fig. 6c).

While hHP1b N57X Q158X did not cross-link to H3 in
unmodified oligonucleosomes (Fig. 4c, Supplementary Fig. 6d
shows the loading control of the experiment), western blotting
with anti-His6 and anti-H3 antibodies identified three major
crosslinks of hHP1b N57X Q158X to H3KC9me3 oligonucleo-
somes under conditions of chromatin clustering (Supplementary
Fig. 6e): 1� H3 crosslinked to 1� hHP1b monomer, 1� H3
crosslinked to 1� hHP1b dimer and 2� H3 crosslinked to 1�
hHP1b dimer. Importantly, with an equimolar mixture of
untagged and His6-tagged H3KC9me3 oligonucleosomes
crosslink of an hHP1b N57X Q158X dimer to both H3 species
was observed (Fig. 4c,d). Further analysis of the hHP1b I161A
and NT, CD, HR(hHP1b)-GST mutant proteins containing the

pBpa only at positions 57 within the CD verified that
dimerization is absolutely required for cross-linking to H3 in
this scheme (Supplementary Fig. 6f).

HR and NT of hHP1b modulate the function of CD and CSD.
To obtain further insights into the binding interfaces of hHP1b
with H3K9me3 chromatin, we set up cross-linking experiments
that were analysed by mass spectrometry. In particular, we
targeted electrostatic protein–protein interactions using 1-Ethyl-
3-[dimethylaminopropyl]carbodimine (EDC), which is a zero
length amine-carboxyl crosslinker (Supplementary Data 1 con-
tains a summary of all crosslinks identified). In free hHP1b a
large number of crosslinks originating from all domains of the
protein and connecting to other regions of the factor were
identified (Supplementary Fig. 7a). The results were in agreement
with an overall high flexibility of the protein as determined by
SAXS and nuclear magnetic resonance measurements16.

Far fewer crosslinks within hHP1b in the presence of
H3K9me3 oligonucleosomes under conditions of chromatin
clustering (Fig. 5a) and chromatin coprecipitation
(Supplementary Fig. 7b) implied less flexibility of the protein in
the bound state. In particular, all crosslinks involving the CD
were lost. Also, crosslinks within the NT and from the NT to the
CSD were suppressed. In contrast, a number of interfaces between
residues in the HR and CSD remained as in the free state. While
very few contacts with chromatin were found for H2B and H4, by
far the most connections of different regions of hHP1b were with
H3. Here especially residues in the NT were found in many
crosslinks to the N-terminal tail of H3 proximal and distal to the
K9 site. The CSD and CT also had some contacts in this area and
CD, HR and CSD were found linked to few sites within the H3
core region (aa 60–80).

To further investigate these findings, we established a series of
hHP1b proteins mutated within the NT and HR (Fig. 5b). None
of these mutant proteins differed significantly from hHP1b WT
in their binding to a free H3K9me3 tail peptide (Supplementary
Fig. 7c). To detect a wider range of effects, we refined the
chromatin clustering assay using the mutant hHP1b proteins at
non-saturating level and lowering the NaCl concentration to
100 mM. Randomizing the sequence of the HR (hHP1b
HR(scramble)) had no effect on the ability of hHP1b to cluster
chromatin. Since work on HP1a proteins has implied this
region in DNA/RNA binding26–28, we also eliminated all the
negative (hHP1b HR (all E, D to A)) or positively charged
residues (hHP1b HR (all K, R to A)) separately as well as
altogether (hHP1b HR (all E,D,K,R to A); Supplementary
Table 2). In agreement with strong, unspecific DNA binding
(Fig. 5c) the hHP1b HR (all E, D to A) mutant was recovered
much more efficiently on H3K9me3 chromatin compared
with the WT protein but also showed high recovery on the
H3K9me0 template (Fig. 5d). It had very strong chromatin
clustering activity and precipitated H3K9me0 and H3K9me3
oligonucleosomes equally well (Fig. 5e). In stark contrast, the
hHP1b HR (all K, R to A) mutant protein, which did not bind
DNA, was less recovered with the H3K9me3 template and
lost its ability to cluster chromatin. Neutralizing all charges of the
HR in the hHP1b HR (all E, D, K, R to A) mutant not only
recapitulated the lack of DNA binding of the WT protein but also
fully restored its activity in chromatin coprecipitation and
clustering.

On the basis of these results, we concluded that the HR of
hHP1b does not directly contribute to chromatin binding and
clustering but provides a flexible and spacing linker. Increase of
the net negative charge of this region results in repelling of DNA,
whereas increase of the net positive charge causes unspecific
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chromatin binding. In agreement with this interpretation,
deletion of the HR resulted not only in significant reduction of
the chromatin clustering activity of hHP1b but also of the NT,
CD(hHP1b)-GST hybrid protein (Supplementary Fig. 7d and e).
Furthermore, exchange of the hHP1b HR with the corresponding
regions of hHP1a and Swi6, which contain a surplus of positive
charges (Supplementary Fig. 2a and Supplementary Table 2),
caused strong DNA binding concomitant with strong chromatin
clustering of both, H3K9me0 and H3K9me3 oligonucleosomes
(Supplementary Fig. 7f and g).

The NT region of hHP1b is also highly enriched in charged
amino acids (Supplementary Fig. 2a). In agreement with the
manifold contacts with the H3 tail detected in the cross-linking
experiments, deletion of this region (hHP1b DNT) caused loss of
recovery with precipitated H3K9me3 chromatin (Fig. 5d) as well
as failure of chromatin clustering (Fig. 5e). Mutating the
negatively charged residues (hHP1b NT (all E to A)) enhanced
DNA binding and resulted in strong, unspecific chromatin
clustering. Mutating the positively charged residues (hHP1b NT
(all K to A)) had no effect on DNA binding but caused enhanced
chromatin clustering of H3K9me0, while the effect on H3K9me3
oligonucleosomes was similar to hHP1b WT. Together with the
results from the cross-linking, we concluded that the NT of
hHP1b balances unspecific binding to DNA and the H3 tail.
Indeed, opposing double mutation of charged residues in the NT
and HR regions neutralized each other’s chromatin effects
(hHP1b NT (all E to A) HR (all K,R to A), Fig. 5d,e).

CD of hHP1b only functions in mediating H3K9me3 interaction.
In contrast to what has been described for Swi6 (ref. 29), we failed
to detect any multimerization of hHP1b beyond CSD-mediated
dimerization using highly sensitive dynamic light scattering
(Supplementary Fig. 8a), SAXS16, protein cross-linking
(Supplementary Fig. 7a) or nuclear magnetic resonance30.
Furthermore, SPR experiments similar to those done with Swi6
on H3K9me3 peptide and H3K9me3 mononucleosomes coated
surfaces were fully consistent with a bivalent interaction mode of
the hHP1b dimer but did not point to any preformed or induced
higher order multimerization of the protein (Supplementary
Fig. 8 and Supplementary Note 1).

To address this discrepancy, we compared the chromatin
binding and effects of hHP1b and Swi6. hHP1b bound
specifically to H3K9me3 oligonucleosomes irrespective of the
saturation level of the chromatin template with nucleosomes
(Fig. 5f and Supplementary Fig. 9a). In contrast, the specificity of
Swi6 association with H3K9me0 and H3K9me3 oligonucleosomes
increased significantly when the chromatin was more saturated.
This effect is caused by the strong unspecific DNA binding
activity of the HR of Swi6 (Supplementary Fig. 9b). Interestingly,
we found Swi6 recovered to a higher degree in H3K9me3
chromatin coprecipitation compared with hHP1b. Quantification
deduced a stoichiometry of approximately four Swi6 molecules
but only two hHP1b molecules bound per nucleosome under

saturating protein concentrations (Fig. 5f and Supplementary
Fig. 9c).

While it had been suggested before that CD–CD interactions
mediate tetrameric binding of Swi6 on mononucleosomes29, this
region was clearly not sufficient for the observed effect. A hybrid
hHP1b protein where the CD was replaced with that of Swi6
(hHP1b CD(Swi6)) did behave like hHP1b WT, not like Swi6.
It also exhibited a chromatin clustering effect equivalent to
hHP1b WT (Fig. 5d,e). Obviously, the additional effects of Swi6
must reside in regions outside the CD. We deduced that the only
role of the CD in HP1 chromatin binding is indeed in mediating
targeting to H3K9me3. To further sustain this idea, we replaced
the CD of hHP1b with the tandem tudor domain (TTD) of
UHRF1, which has been shown to specifically recognize
H3K9me3 with micromolar affinity (Supplementary Fig. 7c)31.
Indeed, the hybrid hHP1b TTD(UHRF1) protein displayed
chromatin binding and clustering reminiscent of hHP1b WT
(Fig. 5d,e).

mHP1b localizes to genomic regions enriched for H3K9me3.
Having established the basic molecular parameters of hHP1b
chromatin binding and effects in vitro, we wanted to determine
whether these are applicable in a cellular context. Our results
predicted that HP1b binds more stably to chromatin areas where
the local concentration of H3K9me3 is high. In absence of
methods to detect three-dimensional enrichment of H3K9me3 in
defined subnuclear volumes, we looked at the distribution of
HP1b along the genome (that is, localization in one dimension).
We employed genome-wide binding analysis of HP1b in mouse
embryonic stem cells (mESC). The sequences of mouse and
human HP1b proteins are identical and mESC with knock out of
essential H3K9me3 methyltransferases exist32.

Previous genome-wide analysis mainly focused on correlations
between mHP1a and H3K9me3 at repetitive elements33.
Given the general high abundance of H3K9me3 at these
regions34, this does not allow obtaining quantitative estimation
of HP1 dependency on genome-wide H3K9me3 levels. To address
this, we performed genome-wide antibody-based chromatin
immunoprecipitation-sequencing (ChIP-seq) to measure mHP1b
binding and compared the results with H3K9me3 enrichment
previously obtained in the same mESC line35. The mouse genome
was partitioned into 1 kb-sized tiles, and mHP1b and H3K9me3
enrichments above input were calculated for each of these tiles.
mHP1b and H3K9me3 were found highly correlated along the
entire genome (Fig. 6a, Pearson’s R¼ 0.77), and this was also
evident at single loci (Fig. 6b). Importantly, an independent data
set consisting of green fluorescent protein (GFP)-tagged mHP1b
that was generated in a separate mESC line confirmed these
findings (Supplementary Fig. 10a and b). Furthermore, by
measuring genome-wide changes in H3K9me3 after conditional
SETDB1 deletion36, we observed that the strongest loss of
H3K9me3 occurred at sites enriched for mHP1b in WT cells
(Fig. 6c and Supplementary Fig. 10c). This supported our

Figure 5 | Modulation of CD and CSD functions by the HR and NT of hHP1b. (a) Scheme representing EDC cross-links identified within the

hHP1b/H3KC9me3 oligonucleosome complex under conditions of chromatin clustering (13.4 nM H3KC9me3 oligonucleosomal arrays, 15 mM hHP1b,

100 mM NaCl) using mass spectrometry. For detailed listing of the crosslinks see Supplementary Data 1. (b) Schematic representation of hHP1b mutant

proteins. (c) The indicated recombinant proteins were incubated with a DNA fragment of 150 bp at 500: 1 and 1,500: 1 molar ratio. Complexes were

separated by PAGE. DNA was stained with SYBR Gold. (d) Chromatin coprecipitation of the indicated wild-type (WT) and mutant hHP1b proteins with

oligonucleosomes. Precipitated material was run on SDS–PAGE and stained with Coomassie blue. Input, 10%. (e) Chromatin precipitation analysis of

oligonucleosomes with hHP1b WT or mutant proteins under non-saturating conditions. DNA remaining in the supernatant after centrifugation was

incubated with EtBr and measured by fluorescence reading. Data were normalized to DNA levels present in the H3K9me0 chromatin/hHP1b WT sample.

Averages of three independent experiments are plotted; error bars represent s.d.; n¼ 3. (f) Chromatin coprecipitation of the indicated proteins with

oligonucleosomes reconstituted to different saturation (0.8: 1.0, 1.0: 1.0 and 1.0: 1.2 ratio of octamers to positioning sequences). Precipitated material was

run on SDS–PAGE and stained with Coomassie blue. Intensity of bands was quantified in relation to the input. Representative experiment is shown.
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hypothesis that binding of mHP1b is preferentially targeted to
genomic regions with high local concentration of H3K9me3.

hHP1b dimerization maintains compacted chromatin states.
To test whether dimerization is essential for the chromatin
functions of HP1b, we first determined the subnuclear
distribution of WT and mutant proteins in mouse fibroblasts.
GFP-hHP1b largely localized to characteristic areas of
pericentromeric heterochromatin enriched in H3K9me3. As
deduced from our in vitro observations, the W42A, I161A or
isolated CD mutant proteins, in contrast, showed diffuse
distribution. However, heterologous dimerization of the
NT–CD–HR via GST (NT, CD, HR(hHP1b)-GST) was sufficient
to fully restore heterochromatin localization. In agreement with a
contributing role of the HR, the NT, CD(hHP1b)-GST hybrid
protein, did not completely copy the appearance of the WT factor
(Supplementary Fig. 11a and b).

We then adopted a previously described ‘chromatin reporter
system’ that contains repetitive DNA arrays of LacO coupled to a
regulatory transcription cassette (Fig. 7a). Integrated into the
genome of U2OS cells these can be visualized after expression
of mCherry-LacI as singular spot of heterochromatin37,38.

Activation of transcription via doxycycline-induced expression
of the rtTA activator resulted in decondensation of the array
(Fig. 7b, YFP-LacI). Unfolding of the array on such activation was
largely reduced by tethering of LacI-YFP-hHP1b WT but not the
dimerization deficient I161A mutant to the locus (Fig. 7b,c). As
expected, LacI-YFP-hHP1b W42A behaved very similar to the
WT protein, as tethering of the exogenous protein to the locus
was achieved by the LacI domain independently of CD/H3K9me3
interaction. Nevertheless, heterologous dimerization of the
NT–CD–HR region of hHP1b via GST (NT, CD, HR(hHP1b)-
GST) was sufficient to prevent unfolding of the array on
activation. In agreement with contribution of the HR, the
deletion of this domain resulted in an intermediate effect.

Discussion
We postulate that hHP1b exemplifies the fundamental interaction
mode of HP1 proteins with chromatin. In our model (Fig. 8a,b)
dimerization of the chromatin-binding module (that is, NT–CD)
is required for increasing the avidity of the interaction by
enabling longer residence time of HP1 on chromatin. While the
CD is the main chromatin-binding domain, the charged NT
provides additional anchoring via unspecific electrostatic inter-
action with the H3 tail. Flexibility within the HR allows binding
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Figure 6 | Genome-wide enrichment of HP1b correlates with SETDB1-dependent H3K9me3 deposition. (a) Plot of genome-wide correlation of

mHP1b and H3K9me3 (ref. 35) as deduced by ChIP-seq in mouse ESC and using 1 kb-sized windows. Dashed line indicates the data trend computed by

loss regression. (b) Tracks displaying number of library-normalized reads per 100 bp from the indicated ChIP-seq experiments. Data obtained from

antibody-based enrichments of endogenous mHP1b (top) and GFP-tagged mHP1b (middle) and the respective input tracks are shown. H3K9me3 data in

SETDB1f/� and SETDB1� /� experiments are from ref. 36. Gene models and repetitive elements are indicated at the bottom. (c) Analysis as in a but

comparing mHP1b binding to H3K9me3 loss in SETDB1� /� mESC. H3K9me3 loss is shown as the log2-difference between SETDB1f/� and SETDB1� /� .
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of the chromatin-binding module to two H3 tails of the same
nucleosome and different nucleosomes within the same or
distinct chromatin fibres. Since neither the CD within a HP1
dimer nor the H3 tails are in a fixed orientation, the entropic
effect of bivalent interaction onto binding strength is relatively
mild (Table 1). Altogether these parameters result in highly
dynamic and reversible interaction of HP1 with H3K9me3
chromatin that is in agreement with the structural parameters
deduced for hHP1b binding to mononucleosomes30, recent
single-molecule studies on hHP1a (ref. 14), as well as the
highly mobile behaviour of HP1 proteins within heterochromatin
of yeast and mammalian cells39–41.

In our model, modulation of the general chromatin-binding
mode is brought about by varying sequences in the HR and NT
domains as well as possibly their post-translational modification
in other HP1 proteins (different variants, different species). We
think that within these regions the overall charge but not a
particular sequence is mainly dictating the chromatin-binding
properties. Consistent with the requirement of a spacing
and flexible linker (Fig. 8a), these domains are of relative
low-sequence conservation and of varying length in different HP1
proteins (for example, HR(hHP1g), 30 aa; HR(Swi6), 120 aa). In
hHP1a the HR contains a surplus in positively charged residues
(Supplementary Fig. 2a). Consequently, the protein shows limited
discrimination between H3K9me0 and H3K9me3 chromatin due
to CD-independent binding of DNA12. Phosphorylation of the

NT neutralizes the surplus of positive charges and thereby directs
an H3K9me3-specific chromatin-binding mode13. Interestingly,
the NT and HR of hHP1a but not of hHP1b are extensively
post-translationally modified42.

Swi6 contains an even more positively charged HR, which
causes more pronounced binding to unmodified chromatin29,
as well as an unusual long NT (Supplementary Fig. 2a). The
superstoichometric recruitment of Swi6 to H3K9me3 chromatin
observed by others29 and us has been attributed to ordered
oligomerization of the protein via additional, induced CD–CD
interaction43. However, we find that the Swi6(CD) is not
sufficient for this effect (Fig. 5d,e). Contrariwise, our studies on
hHP1b and work on hHP1a (ref. 14) clearly show that these
proteins do not multimerize beyond dimerization in chromatin
binding. Also, recent modelling approaches deduced an
allosterically controlled mode of Swi6 in the absence of CD–CD
interaction44. While the functional differences between Swi6 and
mammalian HP1 proteins need to be further investigated, we note
that this new interpretation of previous data is fully compatible
with our general model.

How does the flexible and dynamic binding mediate the
chromatin clustering effects of hHP1b We think the protein
stabilizes condensed structures rather than inducing these
de novo. It does not work as a locally directed and static
chromatin clamp as suggested on the basis of the alleged binding
mode of Swi6 (refs 45,46). Yet, via a large number of transient
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Figure 7 | hHP1b dimerization is required for maintaining condensed cellular chromatin states. (a) Schematic diagram of the transgene system used to

test chromatin compaction effects of hHP1b. A tandem array of the construct has been integrated into the genome of U2OS mammalian cells. Dox,

doxycycline; rtTA, reverse tetracycline-controlled TET-VP16 transactivator, whose binding to tetracycline responsive elements (RE) is activated by

doxycycline. (b) Together with mCherry-LacI, the indicated fusion proteins were transiently expressed in U2OS cells containing the chromatin reporter

array as described in a. Representative confocal images in the absence or after induction of transcription from the array with doxycycline (Dox) are shown.

DNA was stained with DAPI. Inlets show enlarged chromatin reporter array; scale bar, 10mm. (c) Quantification of the results shown in b together with
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and unordered bridging events HP1 keeps chromatin fibres
associated in a plastic manner (Fig. 8b). First, local high con-
centration of H3K9me3, which is found in compacted chromatin
regions, is required for stable hHP1a (ref. 14) and hHP1b
(our work) chromatin association. Second, the main effect of HP1
dimerization and locally enriched H3K9me3 is in reducing the
off-rate of the protein from chromatin (Fig. 2d, ref. 14). Third,
HP1 is not able to induce chromatin clustering in absence of the
H4 tail, which is important in higher order chromatin folding23.
Bridging of H3 tails is either not possible in a relaxed chromatin
state or is not sufficient for inducing chromatin compaction. We
think that conformational fluctuations in chromatin fibres that
allow transient local folding and unfolding are trapped by HP1
when yielding patches with high concentration of H3K9me3.

A major consequence of our interpretation is that cellular
HP1-localization, -dynamics and -working mode are directed by
the local density of H3K9me3, which might help explain the

diverse biology ascribed to these proteins in hetero- and
euchromatin10,47,48. For example, an intimate relationship exists
between heterochromatin and the nuclear periphery in various
metazoans49. H3K9 methylation appears to be the major driving
force for the localization of genomic regions to the nuclear
periphery and these generally overlap with lamina-associated
domains50. Although a direct involvement in the recruitment to
the nuclear periphery is controversial, the very dense chromatin
areas might be clustered and stabilized by HP1. We think the
dynamic mode of HP1 binding and actions on H3K9me3
chromatin allows flexible clustering and re-clustering of
different regions of chromatin within the same or distinct
chromosomes thereby contributing to the establishment and
maintenance of heterochromatin. Importantly, such working
mechanism is in agreement with an emerging view of high
plasticity of nuclear chromatin in the absence of hierarchical
organization51–53.

Methods
Plasmids. Plasmids containing DNA templates for chromatin reconstitution were
a gift of Dr Daniela Rhodes (MRC Cambridge, UK). Plasmids for expression of
recombinant histones from Xenopus laevis were a gift from Dr. Karolin Luger
(University of Colorado, Boulder). Complementary DNAs (cDNAs) corresponding
to hHP1b (GenBank NM_001127228) were amplified by PCR using a 50 primer
that introduces a His6 affinity tag and cloned into pET11a expression vector.
Alternatively, the hHP1a(GenBank BC006821) and hHP1b cDNAs were cloned
into pCold I (Takara Bio/Clontech, Saint-Germain-en-Laye, France). For point and
deletion mutants, site-directed mutagenesis was carried out using the Stratagene
QuickChange protocol or a Q5 site-directed mutagenesis kit (New England Biolab,
Frankfurt, Germany) according to the manufacturers’ instruction. cDNAs for
other chimeric proteins were synthesized by Genewiz (South Plainfield, USA).
YFP-LacI-NSL C1 and YFP-LacI C1 expression vectors were kind gifts from
Dr Supriya Prasanth (University of Illinois, IL, USA)38. hHP1b WT, mutant and
chimera cDNAs were amplified from the bacterial expression vectors by PCR and
cloned into SalI–BamHI sites of the YFP-LacI C1 vector. A detailed list of the
plasmids used in this study can be found in Supplementary Table 3.

Western blotting. Anti-histone H3 (1/10,000; ab1791, Abcam, Cambridge,
UK), swine anti-rabbit IgG (1/2500; P0399; DAKO, Hamburg, Germany),
anti-His6-peroxidase (1/500; 1965085001; Roche, Mannheim, Germany);
anti-hHP1b (1:2000; MAB3448, Merck Millipore, Schwalbach, Germany).
Uncropped scans of gels and blots are provided in Supplementary Fig. 12.

Expression and purification of recombinant HP1 proteins. For pET11a vectors,
proteins were expressed using ZYM-5052 auto-inducing medium overnight at
30�C. For pColdI vectors, proteins were expressed in the same cells using standard
LB medium overnight at 15�C in the presence of 0.4 mM IPTG. For production of
pBpa-containing hHP1b, His-tagged hHP1b (N57X, Q158X) was expressed in
the presence of pSUP-BPARS54 in E. coli BL21 DE3 in standard LB medium
supplemented with 2 mM pBPA. Protein expression was induced at OD600 nm¼ 1
by the addition of 1 mM IPTG for 4 h. All proteins were purified on Ni-NTA beads
(Qiagen, Hilden, Germany) using standard protocols followed by anion exchange
chromatography (MonoQ, GE Healthcare, Freiburg, Germany). Alternatively,
proteins were purified using His-Pur Cobalt resin (Thermo Scientific,
Braunschweig, Germany) with several rounds of high-salt washes (0.8 M NaCl)
before elution. Purified proteins were dialyzed against PBS, 10% (v/v) glycerol,
2 mM DTT or a buffer containing 10 mM triethanolamine (pH 7.5), 150 mM NaCl,
1 mM DTT 30% (v/v) glycerol. Aliquots of purified protein were stored at � 80 or
� 20�C, respectively.

Expression and purification of recombinant histones. Core histones were
expressed in E. coli BL21 (DE3) RIL cells using ZYM-5052 auto-inducing
medium. Histone proteins were found exclusively in inclusion bodies,
which were solubilized in unfolding buffer (7 M deionized urea, 20 mM Tris-HCl
(pH 7.5), 10 mM DTT). The material was dialyzed against urea chromatography
buffer (7 M deionized urea, 10 mM Tris-HCl (pH 7.5), 1 mM EDTA, 100 mM
NaCl, 2 mM DTT, 0.2 mM PMSF) and loaded onto a Q Sepharose column in front
of a SP Sepharose column (both GE Healthcare, Freiburg Germany). After washing
with five column volumes of urea chromatography buffer, the Q Sepahraose col-
umn with bound DNA and contaminating proteins was removed. Histone proteins
were eluted from the SP Sepharose column using a linear gradient from 0.1 to
0.6 M NaCl. Purified histones were dialyzed extensively against ddH2O, lyophilized
and stored at � 80�C.
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Native chemical ligation. 0.2 mM of H3D1-20, A21C and 1 mM of N-terminal H3
peptide (1–20) with a C-terminal thioester group were ligated for 24 h in 100 mM
potassium phosphate, 3 M guanidine-HCl, 0.5% (v/v) benzyl mercaptan, 0.5% (v/v)
thiophenol, pH 7.9 at 25�C with vigorous mixing. The crude reaction mixture was
dissolved into 25:75:0.1 acetonitrile/water/trifluoroacetic acid, diluted fivefold into
SAU-200 buffer (7 M deionized urea, 20 mM sodium acetate (pH 5.2), 1 mM
EDTA, 1 mM DTT, 200 mM NaCl), applied to a Hi-Trap SP-Sepharose high-
performance cation exchange column (GE Healthcare, Freiburg, Germany), and
eluted with a linear NaCl gradient from 200 to 600 mM. Protein samples were
dialyzed extensively against 2 mM DTT at 4�C, lyophilized and stored at � 80�C.

Site-specific installation of H3KC9me3. H3K9C, C110A was expressed and
purified as WT histones. 5 mM of mutant H3 was reduced for 1 h at 37�C in
alkylation buffer (1 M HEPES, 4 M guanidium-HCl, 10 mM D/L-methionine,
20 mM DTT, pH 7.8). Alkylation reactions were performed at 50�C in the presence
of 400 mM (2-bromoethyl)-trimethylammonium bromide (Sigma-Aldrich,
Steinheim, Germany) in the dark with occasional mixing. After 2.5 h of incubation,
10 mM of fresh DTT was added and the reaction was allowed to proceed for
another 2.5 h at 50�C. The alkylation reaction was quenched with 700 mM
2-mercaptoethanol, and the crude reaction mixture was diluted 50-fold into
SAU-200 buffer. Alkylated histones were purified by anion exchange
chromatography as described above.

Reconstitution of histone octamers. Lyophilized purified WT core histones
H2A, H2B, H4 and WT or modified H3 were dissolved in unfolding buffer and
mixed to equimolar ratios. The histone mixture was extensively dialyzed at 4�C
against RB high buffer (10 mM Tris-HCl, 1 mM EDTA, 2 M NaCl, 1 mM DTT,
pH 7.5) with at least three changes of dialysis buffer. Histone octamers were
concentrated to 10–20 mg ml� 1 using Amicon Ultra centrifugal filter units
(Millipore, Billerica, USA) and purified on a HiLoad 16/60 Superdex 200 prep
grade gel filtration column (GE Healthcare, Freiburg, Germany). Peak fractions
were pooled and concentrated to at least 2 mg ml� 1. Histone octamers were stored
in 50% (v/v) glycerol at � 20�C.

Reconstitution of chromatin templates. Mononucleosomes were reconstituted
on a 187 bp DNA fragment containing the ‘601’ sequence flanked on each site by a
linker of 20 bp55. Oligonucleosomes were reconstituted on a 12� 200 bp� 601
template56. Plasmids carrying the respective inserts were purified using a Giga kit
(Qiagen, Hilden, Germany). Templates for reconstitution were released from
plasmids by restriction digest with BsoBI for mononucleosomes and a mix of DdeI,
BfuCI, HaeII and EcoRI for oligonucleosomes. To separate vector backbone from
DNA used for chromatin assembly stepwise precipitation with polyethylene glycol
(PEG) 6000/0.5 M NaCl was carried out (final PEG concentration 2–9% and 20%
(w/v)). DNA pellets were washed with 70% (v/v) ethanol and dissolved in water.
Double stranded, short, biotinylated DNA linkers were ligated to the DNA
template before
chromatin reconstitution.

Histone octamers were dialyzed for at least 3 h against RB high buffer. DNA
templates were added in a molar ratio of 0.8–1.2 (concentration of nucleosome
positioning sites to histone octamers). The reaction mixtures were dialyzed against
RB high buffer that was continuously replaced by RB low buffer (10 mM Tris-HCl,
1 mM EDTA, 10 mM NaCl, 1 mM DTT, pH 7.5) over a 36 h period using a
peristaltic pump. Quality and nucleosome saturation of reconstitution reactions
were monitored by agarose gel electrophoresis and analytical ultracentrifugation.
Reconstituted chromatin templates were extensively dialyzed against TEAE buffer
(10 mM triethanolamine HCl pH 7.5, 0.1 mM EDTA, pH 7.5) and stored at 4�C.

Electrophoretic mobility shift assay. 50 ng 150 bp DNA amplified from the
backbone of pUC18 was incubated with 0, 3, 9 mM recombinant protein in 10 ml
EMSA buffer (10 mM Tris-HCl (pH 8.0), 100 mM NaCl, 5 mM MgCl2) for 20 min
at room temperature (RT). 2 ml 50% (v/v) glycerol was added and samples were
loaded onto 6% native PAGE gels. After electrophoresis, DNA was visualized by
staining with 1� SYBR Gold/0.25� TBE for 20 min at RT. Images were captured
using a ChemiDoc MP Imaging System (Bio-Rad, München, Germany).

Chromatin coprecipitation. 6.7 nM oligonucleosomes were incubated with 1 mM
recombinant protein in 100ml binding buffer (10 mM triethanolamine (pH 7.5),
150 mM NaCl, 5 mM MgCl2, 0.1 mM EDTA, 0.1% (v/v) Triton-X100) for 1 h on
ice. Precipitated chromatin complexes were recovered by centrifugation at 16,100g
for 30 min at 4�C. Pellets were washed once with 0.5 ml binding buffer and
centrifuged for 15 min at 4 �C. Precipitated material was resuspended in 10 ml
1� SDS loading buffer and boiled for 5 min before running on SDS–PAGE.

Chromatin sedimentation. For saturating conditions, 2.7 nM oligonucleosomes
were incubated with 5 mM hHP1b proteins in 100ml sedimentation buffer (10 mM
triethanolamine (pH 7.5), 150 mM NaCl, 0.1 mM EDTA) for 1 h on ice. For
non-saturating conditions, 3 mM recombinant proteins were used and the NaCl
concentration in the sedimentation buffer was lowered to 100 mM. After

incubation, 40ml per sample was placed into a well of a 96-well plate and kept as
‘input’. The rest was centrifuged at 16,100g for 30 min at 4�C. 40ml supernatant was
carefully removed and placed into a 96-well plate (‘output’). For quantification of
chromatin DNA, the input and output samples were incubated with 40 ml
0.5 mg ml� 1 ethidium bromide and fluorescence was measured on a Plate
CHAMELEON II fluorescence plate reader (Hidex, Turku, Finland) using a 360 nm
(±5 nm) excitation filter and a 612 nm (±5 nm) emission filter. For each sample
the ratio of DNA concentrations after and before centrifugation (output/input) was
calculated.

Pull-down experiments. 4 mg C-terminally biotinylated histone H3 peptides
(aa 1–20) or 1 mg of biotinylated nucleosomes or oligonucleosomal arrays were
incubated with 40ml Streptavidin MagnaSphere Paramagmetic beads (Promega,
Mannheim, Germany) in 350 ml binding buffer (10 mM triethanolamine (pH 7.5),
150 mM NaCl, 0.1 mM EDTA, 0.1% (v/v) Triton-X100) supplemented with
1 mg ml� 1 BSA for 2.5 h at RT. Unbound material was removed by three washes
with 0.5 ml binding buffer. Charged beads were then incubated with 100 pmol
recombinant protein in 350 ml binding buffer for 1 h at 4�C on a rotator. Beads
were washed three times with 0.5 ml binding buffer for 3 min per wash at 4�C.
Bound proteins were eluted in 20 ml 1� SDS loading buffer and by boiling for
5 min.

Fluorescence correlation spectroscopy. All fluorescence measurements
were performed with a pulsed custom-built mode-locked Ti:Sa-Laser and a
confocal two-photon fluorescence microscope setup. Detailed description of the
experimental setup and the measurement procedure are available on request. In all
cases 10 nM of the acceptor labelled species, ATTO 610-labelled nucleosomal array,
was incubated with 20–200 mM of recombinant hHP1b in 10 ml of 10 mM
triethanolamine HCl (pH 7.5), 0.1 mM EDTA, 150 mM NaCl at 4�C. For each
sample the fluorescence correlation curve, fluorescence intensity and anisotropy
values were determined at 22�C. Every data point was averaged over a minimum
of 15 single measurements of 10 s each. Excitation was by two-photon mode.

The fluorescence data were analysed using the correlation function
GðtÞ ¼ IðtÞ�Iðtþ tÞ

IðtÞ2 � 1, and the equation for free diffusion of particles

GðtÞ ¼ N � 1 � ð1þ t
tD
Þ� 1 � ð1þ r2

0
t
tD
Þ� 0:5, where I(t) is the fluorescence intensity

measured at time t, N the particle number, tD the diffusion time, and r0¼ 0.25 the
axis ratio of the focal region, considering the dimensions of a Gaussian beam waist.

Fluorescence polarization measurements. Experiments were performed in
10 mM triethanolamine HCl (pH 7.4), 150 mM NaCl, 0.1 mM EDTA, 2 mM DTT.
Titration series of 10ml volume in 384-well plates were read multiple times on a
Plate CHAMELEON II plate reader (HIDEX Oy, Turku, Finland). Multiple
readings and independent titration series were averaged after data normalization57.

Isothermal calorimetry. ITC measurements were performed on a iTC200
calorimeter (Microcal, Malvern, UK) at 25�C in binding buffer (10 mM
triethanolamine (pH 7.5), 20 or 150 mM NaCl, 0.1 mM EDTA). Reaction heats
were recorded by sequences of 37 injections of 1.8 mM hHP1b, spaced at 120 s
intervals, into 250ml of 60 mM H3 peptides, nucleosomes or oligonucleosomal
arrays under constant stirring at 1,000 r.p.m. (injection #1–10: 0.5 ml each; injection
#11–32: 1 ml each; injection #33–37: 2 ml each). Heats of dilution, obtained by the
titration of hHP1b into buffer, were substracted from raw data before analysis.
Raw data were integrated, normalized and the apparent heat change (Dq) of the
reaction was plotted against the molecular ratio using the Origin software. For
the determination of apparent enthalpy changes (DHapp), the molar association
constant (KA), and the stoichiometry (n) of the interaction, non-linear least-square
fitting of the Dq values was performed by the Origin software using a binding
model of one set of identical binding sites.

Surface plasmon resonance. SPR measurements were performed on a Biacore
2000 instrument (GE Healthcare, Buckinghamshire, UK) at 298 K in 10 mM
triethanolamine (pH 7.5), 150 mM NaCl, 0.1 mM EDTA, 1 mM DTT, 0.005% (v/v)
Tween-20. Biotinylated ligands were immobilized on streptavidin-coated sensor
chips SA (GE Healthcare, Buckinghamshire, UK). Before immobilization, sensor
chips were conditioned as described by the manufacturer. To obtain low surface
densities (5–24 RU), 5 nM biotinylated H3 peptide was injected at a low rate of
10 ml min� 1 using varying contact times. High surface densities (4700 RU) were
prepared by injecting 3.5 mM peptide (10 ml min� 1) until the SA surface was
saturated. Peptide-containing chips were regenerated by applying three short
pulses of 0.05% (w/v) SDS followed by an injection of 1.5 M NaCl for baseline
stabilization. For binding assays, hHP1b proteins were injected at 24–50 mM
(serial twofold dilutions) for 2 min (30ml/min). Dissociation was recorded for up to
5 min. A streptavidin surface without ligands served as reference. In addition, blank
runs were performed for double referencing. Data evaluation was performed by
steady-state analysis assuming a Langmuir 1:1 binding model using BIAevaluation
4.1 and Prism 5.04 (GraphPad, CA, USA) software. Binding to the unmodified
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peptides was analysed with maximum binding (RUmax) set to the corresponding
values obtained with the modified peptides.

Scanning force microscopy. Nucleosomal arrays and recombinant hHP1b were
dialyzed against SFM buffer (5 mM triethanolamine (pH7.5), 50 mM NaCl, 0.1 mM
EDTA). The recombinant proteins at different concentrations (between 0 and
5 mM) were preincubated with oligonucleosomes at a DNA concentration of
50 ng ml� 1 in SFM buffer for 1 h at 4�C, and the samples were fixed with 0.05% (v/
v) fresh glutaraldehyde (Electron Microscopy Sciences, PA, USA) at 4�C overnight.
Fixed samples were extensively dialyzed against TEAE buffer (5 mM triethanola-
mine (pH 7.5), 0.1 mM EDTA). 10 ml of dialyzed sample was deposited on ca. 1 cm2

of freshly cleaved mica (Plano). After 5 min incubation at RT, the mica was washed
with 200 ml of water (high-performance liquid chromatography grade) and air-
dried. Images were recorded in air on a Nanoscope V Multi Mode scanning force
microscope (Veeco, NY, USA) using an ‘E’-scanner with maximum scan size of
15� 15mm and silicon-etched probe tips with a typical spring constant of
40 N m� 1 and a typical resonance frequency of 325 kHz (NSC15, MikroMasch)
in tapping mode.

Chemical cross-linking and mass spectrometry. 13.4 nM H3KC9me3
oligonucleosomes were mixed with 2 mM hHP1b in 1 ml cross-linking buffer
(20 mM sodium phosphate (pH 6.4), 100 mM NaCl, 0.1% (v/v) Triton-X100) and
incubated for 30 min at RT. Freshly prepared EDC (Sigma-Aldrich, Steinheim,
Germany) was added to 15 mM and incubated for 30 min at RT. In the case of a
higher chromatin: hHP1b ratio, 15mM of hHP1b and 35 mM EDC were used.
MgCl2 was then added to 5 mM and chromatin and crosslinked/bound hHP1b
were recovered by centrifugation at 16,100g for 30 min at 4�C. The pellet was
washed once with the EDC buffer containing 5 mM MgCl2 and dissolved in 20 mM
Tris-HCl (pH 8.0), 0.8% (w/v) SDS. The sample was denatured for 15 min at 70�C,
then treated with 20 mM DTT (Merck, Mannheim, Germany) for 30 min at 56�C,
which was followed by treatment with 20 mM iodoacetamide for 20 min at RT
(Sigma-Aldrich, Steinheim, Germany). The SDS concentration of the sample was
adjusted to r0.1% (w/v) and 3 mg trypsin (Promega, Mannheim, Germany)
was added for 16 h at 37�C. Tryptic peptides were purified using Sep-Pak SPE
C18 cartages (Waters, Dublin, Ireland) and separated using size-exclusion
chromatography58,59. Each peptide-containing fraction was analysed on an
LTQ-Orbitrap Velos mass spectrometer (Thermo Fisher Scientific, Bremen,
Germany)60. Data analysis was performed using pLink61. All cross-link-containing
peptide fragment spectra were manually evaluated62. Crosslinks were visualized
with xiNET (http://crosslinkviewer.org).

Ultraviolet-mediated protein–protein cross-linking. 54 nM oligonucleosomal
arrays were incubated with 8 mM standard or photo crosslinkable hHP1b in 100 ml
binding buffer (10 mM triethanolamine (pH 7.5), 150 mM NaCl, 0.1 mM EDTA,
0.1% (v/v) Triton-X100) for 30 min on ice. The mixtures were placed into wells of a
custom-made metal sample holder on ice and irradiated with ultraviolet light
(365 nm, 8 W lamps (Vilber Lourmat, Eberhardzell, Germany); the distance
between the light source and sample was set B5 cm) for 3� 10 min with inter-
mittent mixing. After irradiation, the samples were collected into 1.5 ml low-
binding tubes (Eppendorf, Hamburg, Germany). MgCl2 was added to 5 mM and
chromatin and bound proteins were recovered by centrifugation at 16,100g for
30 min at 4�C. Pellets were washed once with 0.5 ml binding buffer and resus-
pended in 10ml 1� SDS loading buffer and boiled for 5 min.

Generation of HP1b–EGFP mESCs. The mouse HP1b coding sequence was cloned
into the pCAGGS–EGFP–IRES–Puro plasmid containing a chicken beta-actin
promoter. Stable mHP1b-GFP ESC lines were generated by transfecting 6 mg PvuI-
linearized vector into mouse WT ESCs.

HP1b ChIP-seq. For crosslink MNase ChIP of HP1b, 107 TT2 WT mouse ES cells
were collected. Cells were crosslinked with 1% (v/v) formaldehyde in 10 ml of
PBS for 10 min at RT, then quenched with 0.125 M glycine for 5 min. Cells were
washed 1� with PBS, and resuspended in 1 ml of EZ Nuclei Isolation Buffer
(Sigma-Aldrich, Steinheim, Germany). The cytoplasmic supernatant was discarded
and the pellet was flash frozen with liquid N2. Nuclei were washed 1� with MNase
wash buffer (50 mM Tris-HCl (pH 8.0), 1.5 mM DTT, 1 mM PMSF, 1� Protease
Inhibitor Cocktail (Roche, Indianapolis, USA)) and resuspended in MNase
Digestion Buffer (10 mM Tris-HCl (pH 7.5), 4 mM MgCl2, 1 mM CaCl2, 1 mM
PMSF, 1� Protease Inhibitor Cocktail). Chromatin was digested to mono-, di- and
tri-nucleosomes with the addition of micrococcal nuclease (NEB, Ipswich, USA)
and incubated at 37�C for 7 min. Digestion was quenched with the addition of
EDTA to a final concentration of 10 mM. Cells were then lysed with 1 ml of IP
Buffer (0.5% (v/v) NP-40, 0.1% (v/v) Sodiumdeoxycholate, 0.1% (v/v) SDS,
150 mM NaCl, 10 mM EDTA, 1 mM PMSF, 1� protease inhibitor cocktail) at 4�C
on a rotator for 1 h. Cell debris was then pelleted, and the soluble chromatin
fraction was precleared with Protein A/G Dynabeads (Life Technologies, Carlsbad,
USA) at 4�C, rotating for 2 h. During preclearing, antibody–bead complexes were
prepared using antibodies specific for HP1b (clone D2F2, NEB #8676) and Protein

A/G Dynabeads each, in IP buffer at 4�C, rotating for 2 h. 106 cell equivalent of
chromatin was added to each antibody–bead complex, rotating overnight. Beads
were washed and eluted in the presence of RNase A. To reverse cross-linking,
eluted DNA was incubated with Proteinase K and high salt O/N at 65�C. DNA was
then purified with phenol:choloroform.

A third of ChIP and input DNA (10–20 ng total) underwent end repair with T4
and Klenow, A-tailing and adaptor ligation. Following ligation, libraries were
amplified using primers to the adaptors with eight PCR cycles. Resulting PCR was
then purified on 2% EX Gel (Life Technologies, Carlsbad, USA) at the 200–700 bp
range, and quantified on Qubit and Agilent Tapestation.

For ChIP from GFP-HP1b mESC fixation was done using double cross-linking
with Di(N-succinimidyl)-glutarate (2 mM final concentration) and 1% (v/v)
formaldehyde63. An a-EGFP antibody (Invitrogen, A11122, 5 mg per IP) was used
for IP. 10 ng DNA from ChIP sample was used for library preparation. Briefly, end
repair, dA tailing and adapter ligation were performed following the NEBNext
ChIP-seq Sample Prep Master Mix (New England Biolabs, Ipswich, USA)
guidelines and enriched by PCR amplification (18 cycles) before sequencing. 100 bp
paired-end sequencing was performed on Illumina Hi-Seq 2000.

Data sets and read processing. Following published data sets were downloaded
from NCBI/GEO for this study: SPR899601/ H3K9me3 SETDB1f/� and
SPR899602/H3K9me3 SETDB1� /� both done with anti-H3K9me3 antibody
(ab8898)36. Reads were processed and aligned to the mouse reference genome
(mm9) using QuasR in R. Genomic alignment was performed twice using
BOWTIE with the following parameters: --strata, --best and -m 1 or -m 99 to
account for reads that map uniquely or up to 99 times in the mouse genome,
respectively64. For genome-wide comparisons, only uniquely mapping reads were
used. Reads mapping up to 99 times were used for ERV analysis and genome
browser visualization.

Genome-wide analysis. The mouse genome was partitioned in 1 kb-sized
windows, overlapping by 500 bp. The number of mapped reads was counted
for each window. Log2-fold enrichments were calculated as following log2

(N_reads_IPþ psc) – log2 (N_reads_inputþ psc). psc is a pseudocount constant of
8 to remove low-coverage noise. To exclude potential biases due to annotation
issues, the following genomic windows were discarded from this analysis: windows
overlapping with satellite repeats and windows not sufficiently covered in input
samples. Finally, 3.46� 106 1 kb-sized windows were used.

ERV-type repeat regions were obtained from www.repeatmasker.org.
Cumulative read counts overlapping with ERV elements were calculated per repeat
instance. Readcounts were normalized to instance length. Log2-fold enrichments
were calculated as above. Only instances that contained more than one read in all
experiments were used.

Transfection of cells and fluorescence microscopy. U2OS 2-6-3 CLTon cells38

were kindly provided by Dr Supriya Prasanth (University of Illinois, IL, USA) and
maintained in DMEM (high glucoseþGlutaMax) (GIBCO/Invitrogen, Darmstadt,
Germany) supplemented with 10% (v/v) TET system approved fetal bovine serum
(Clontech, Saint-Germain-en-Laye, France), 50 mg ml� 1 hygromycin (Carl Roth,
Karlsruhe, Germany) and 200 mg ml� 1 G418 (Clontech, Saint-Germain-en-Laye,
France). For fluorescence microscopy, cells were grown on coverslips in a six-well
plate without antibiotics. 500 ng plasmid DNA was transfected using Lipofectamine
LTX and Plus reagent (Invitrogen, Darmstadt, Germany). 20 h post transfection,
cells were treated with 1 mg ml� 1 doxycycline for 24 h for induction of rtTA
expression. Cells were washed twice with PBS and fixed with 3.7% (v/v)
formaldehyde/PBS for 10 min at RT. Cells were permeabilized with 0.5% (v/v)
Triton-X100 (PBS) for 5 min at RT and incubated with 200 ng ml� 1 DAPI (PBS)
for 5–10 min. Cells were mounted in Vectashield (Vectorlabs, CA, USA). Images
were acquired using a Leica SP5 confocal microscope with a 63� oil immersion
lens (Leica Mikrosysteme, Wetzlar, Germany). P values (according to Student’s
t-test) were calculated using GraphPad QuickCals (GraphPad, CA, USA).
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