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Delayed mutual Information and Transfer Entropy. a, Hierarchical network of Wilson-Cowan
oscillators as in Figs. 1 and 4 of the main manuscript and Supplementary Note 8.1. b-g, Information
sharing and flow networks for the network in a dynamical state determined by the local dynamical
clusters states DX = αX , X ∈ {A,B,C}. b, Delayed mutual information curves dMIiX ,jY . Shown are
theoretical curves (Supplementary Note 4, Theorem 1) for all inter-cluster oscillator pairs. For three
curves (bold) estimates from numerical simulations are shown (dots). c, effective information sharing
network with link strength proportional to δMIij obtained from the dMIi,j curves (Supplementary Note
1, (3)). d, Effective information sharing network with links proportional to δMIX,Y obtained form the
theoretical prediction (Supplementary Note 4, Corollary 3) of the hierarchically reduced system. e-g,
as in (b-d) but for the delayed transfer entropy (Supplementary Note 4, Theorem 2 and Corollary 4).
h-m, as in (b-g) but in a different dynamical state obtained by switching the local dynamical state in
cluster A, DA = βA. Effective information sharing and routing measures represented as bar graphs.
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Supplementary Figure 2
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Delayed mutual information and large noise levels. a, Delayed mutual information for the
Wilson-Cowan two-oscillator network as in Fig. 2 of the main manuscript with noise levels ξe,i = 0.001
and ξi,i = 0.001 (orange dots) and ξe,i = 0.01 and ξi,i = 0.01 (brown dots). Theoretical predictions agree
well for the small noise (orange line) while systematically overestimate the delayed mutual information
in the large noise regime (brown line). Directionality of the information flow determined by the shift of
the peak dMI is still correctly predicted. b, Same as in (a) but for very large noise levels ξe,i = 0.02 and
ξi,i = 0.02. No clear directionality is visible as the system fluctuates around both stable deterministic
states. The actual measured dMI (beige dots) may be approximated as a weighted average (beige line,
1
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Supplementary Figure 3
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Multiple effects underlie the non-local change of information routing patterns in hierar-
chical networks. For the hierarchical Kuramoto phase oscillator network in Fig. 3d-f in the main
manuscript the non-local effects on the information flow patterns due to changes of the weight of the
local link a2,3 arise because of combined changes of a, the collective cluster phase response vector ZA,
the collective oscillation frequency ΩA, effective noise levels ΣA and b, the effective inter-community
couplings ΓA,B (solid) and ΓA,C (dashed). In both panels orange and brown colors denote the dynami-
cal states α and β, respectively. Generally, in phase oscillator networks the combination of these three
effects contribute to the change in the information routing pattern (cf. Supplementary Note 4).
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Supplementary Figure 4
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Phase reduction and multi-stability in Wilson-Cowan neuronal oscillators. a, The Wilson-
Cowan neuronal oscillator [1, 2] is a mean-field description of the neuronal activity of mutually coupled
excitatory (triangle) and inhibitory (square) populations of neurons with average effective membrane
potential v and u, respectively (Supplementary Note 8.1). b, Sample stochastic trajectories of v (t)
(light green) and u (t) (dark green) with oscillatory dynamics. c, Phase plane dynamics and phase field.
Phase portrait shows the stochastic trajectory of (b) (green) together with the deterministic limit cycle
(black). Colored background indicates the phase field φ (v, u) determined using the method described
in Supplementary Section 8.2.2. Starting the deterministic dynamics on an iso-phase line (gray) the
trajectories will converge towards the same phase on the limit cycle. Two examples are shown in blue
and red. d, Phase φ (v(t), u(t)) signal obtained from mapping the stochastic trajectory in (b) onto the
phase field. e, The result is a noisy phase oscillator. f, Left: Sub-network A of two coupled identical
Wilson-Cowan oscillators isolated from the hierarchical network in Fig. 1b in the main manuscript.
Right: anti-symmetric part γ̄ (∆φ2,1) = γ (φ2 − φ1)−γ (φ1 − φ2) of the coupling function obtained via
(23) in the phase reduction process (cf. 3.2). The two zeros with negative slopes give rise to two stable
phase locked states αA (orange dot) and βA (brown dot), i.e. multi-stability. g, Isolated sub-network
B of Fig. 1b in the main manuscript (left) and norm |f | of the reduced vector field f for the phase
differences. Zeros with non-positive eigenvalues of the Jacobian matrix give rise to stable phase-locked
states αB (orange dot) and βB (brown dot). h, same as in (g) for the sub-network C in Fig. 1b in the
main manuscript. Again the network only has two stable phase-locked states αC (orange dot) and βC
(brown dot).
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Supplementary Figure 5
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Time dependent information routing patterns in periodic dynamical states and transients.
a, Deterministic periodic dynamics of the Wilson-Cowan network in Fig. 4 of the main manuscript with
period T0. The combination of local dynamical states is D = [βAαBβC ]. Extracted phases from the full
dynamics are shown. b, Delayed transfer entropies dTEi→j (d, t) between all inter-cluster pairs of nodes
in the network. Dots show a subset of numerically calculated values at different delays, lines are linear
interpolations between all calculated points. Delayed transfer entropies are calculated after a transient
time t = 2T0 starting from initial conditions given by the deterministic periodic orbit at starting times
t0 = 0, 1

3T0,
2
3T0 respectively (left to right). Negative delays are used to indicate the reverse flow, i.e.

dTEi→j (−d, t) = dTEj→i (d, t). c, Information routing patterns for the three different time points
inferred from (b). Arrow width represents the absolute value of δTEi,j, (7), with the arrow pointing
towards the dominant information routing direction. d, Information routing control via transients
(schematic). Different displacements of the dynamical state of a three node network away from a fixed
point (black point) induce different transients (gray arrows) along which different information patterns
arise (network insets).
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Supplementary Figure 6
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Dynamic signal transmission via dynamical reference state switching. a, Effective connec-
tivity networks for the Wilson-Cowan network in Fig. 2 of the main manuscript for dynamical states α
(left) and β (right). An additional input at times 20 ≤ t ≤ 40 is applied to oscillator 1 (black arrow)
that increases its intrinsic oscillation frequency ω1. b, Instantaneous rotation frequencies, φ̇i, shifted
by the collective oscillation frequency Ω for both dynamical states. Black bars indicate stimulus to
oscillator 1. c Probability distribution of φ̇2 − Ω, estimated from 10000 samples at t = 10 ≈ d∗ after
stimulus onset. For state α (light green) it is almost indistinguishable from the input free station-
ary distribution (gray), while around the state β the distributions separate in accordance with the
information routing patterns in a and Fig. 2 of the main manuscript.
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Supplementary Figure 7
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Auto-regulated signal transmission via dynamical reference state switching. Network as
in Fig. 2 of the main manuscript and Supplementary Fig. 6. The inputs (black lines) consists of two
signals into oscillator 1 delivered at times 20 ≤ t ≤ 60 and 280 ≤ t ≤ 320 in addition to a strong pulse
at 160 ≤ t ≤ 170 (purple arrow). Rotation frequencies φ̇i shifted by the collective oscillation frequency
Ω for both dynamical states show state specific responses. While in state α the input is not seen by
oscillator 2 the strong second pulse switched the system and made the third pulse visible at oscillator
2. The system auto-regulates its IRP by responding to specific characteristic input signals (here the
middle strong pulse). Generally, if such strong pulses are not directly part of the input signal they can
be provided by a second network that provides the pulse to trigger a switch in the information routing
pattern whenever necessary for the computation.
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Supplementary Figure 8
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Goodwin model for oscillatory gene regulation. a, A single oscillator consists of a gene (un-
derlined rectangle) that is transcribed into mRNA (rectangle) that has concentration x within the
cell. With a rate ky it is translated into an enzyme (disk) with concentration y that further facilitates
the production of a protein (triangle) with concentration z. The protein suppresses the transcription
of x. In total this results in a negative nonlinear feedback loop that generates oscillatory dynamics
(cf. (Supplementary Note 8).2). b, Phase space showing the deterministic stable limit cycle solution
of the Goodwin oscillator (solid line) as well as the phase field φ (x, y, z) estimated numerically. Dots
show a small subset from the raster of the numerically estimated phases in color code.
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Supplementary Figure 9
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Phase reduction of a synthetic gene oscillator. a, A synthetic gene regulatory network as
described in Supplementary Note 8.2.2. b, The network produces stochastic oscillations. c, Phase
portrait showing the stochastic trajectory of (b) (turquoise) together with the deterministic limit cycle
(black). Colored background indicates the phase field φ. Starting the deterministic dynamics on an
iso-phase line (gray) the trajectories will converge towards the same phase on the limit cycle. Two
examples are shown in blue and red. d, Phase signal obtained from mapping the stochastic trajectory
on the phase field. e, The result is a noisy phase oscillator.
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Supplementary Figure 10
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Flexible information routing in a synthetic gene regulatory network. a, Two fast, robust
genetic oscillators (blue, beige) coupled via mutual repression (gray) as described in Supplementary
Note 8.2.2. b, Stochastic trajectories xi (t) in the absence (top) and presence (bottom) of a protein
that represses translation (purple in (a)). c, phase signal determined using the method described in
Supplementary Note 8.2.2 and Supplementary Fig. 9 for both traces in (b). d, delayed mutual infor-
mation dMI1,2 (d) between the phase signals of the two oscillators. Dots: numerical estimation. Lines:
theoretical prediction as described in the main manuscript and derived in detail in Supplementary Note
4. The peak in the dMI curve switches from left to right indicating an effective reversal of information
flow between the two oscillators. e, Effective information flow networks show the reversal in informa-
tion flow directionality. Arrow thickness corresponds to the area MIi→j (2) under the dMI curve for
positive and negative delays respectively (shaded areas in (d)).
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Supplementary Note 1
Delayed Mutual Information and Transfer Entropy

Our study aims at identifying mechanisms for flexible information routing in network dynamical sys-
tems. We here first focus on calculating the delayed mutual information (dMI) [3, 4] as a measure of
how information is shared between different oscillators in the network. For a network with stochastic
time dependent activity xi(t) at node i ∈ {1, . . . , N} the dMI is between the signal xi,t := xi (t) at time
t and a signal xj,t+d := xj (t+ d) shifted by a time delay d, is the Kulback-Leibler divergence between
the joint probability distribution p (xi,t, xj,t+d) and the product of the marginals p (xi,t) p (xj,t+d) if
both signals where independent [5]:

dMIi,j (d) =

�
p (xi,t, xj,t+d) log

(
p (xi,t, xj.t+d)

p (xi,t) p (xj,t+d)

)
dxi,tdxj,t+d .

= H (xj,t+d)−H (xj,t+d|xi,t) (1)

where H (xj,t+d) is the entropy of xj,t+d and H (xj,t+d|xi,t) are the conditional entropy of xj,t+d con-
ditioned on xi,t.
Typically only the full shape of the delayed mutual information curve dMIi,j (d) for all delays d is

informative about an effective information flow direction. Indeed, consider a two dimensional system,
where the first sub-systems physically drives the second one but not vice versa. Then due this drive
dMI1,2 (d) will be positive for some positive delays d > 0. However, non-zero values for negative
delays d < 0 are also possible if there are temporal correlations within the first signal. Thus, only
the asymmetry around d = 0 of the full dMI curve is indicative of an information flow direction. To
quantify this asymmetry we define the integrated delayed mutual information

MIi→j =

� ∞
0

dMIi,j (δ) dδ (2)

and use the difference
δMIi,j = MIi→j −MIj→i (3)

as an indicator for the information sharing directionality. If δMIi,j > 0 there is more information shared
from i to j than in the other direction, and vice versa. We represent this differences in graphs by a
directed edge of weight ∆MIi,j = δMIi→j if δMIi,j > 0 and ∆MIi,j = 0 otherwise. The resulting graph
is termed information routing pattern (IRP).
In addition to measuring information sharing via the delayed mutual information we use the transfer

entropy introduced in [6] to quantify information routing. By conditioning transition probabilities on
past signals this measure is able to distinguish between shared information due to a common history
or correlated common input signals from an actual transfer of information due to asymmetric driving
[6].
The delayed transfer entropy (dTE) between signals xi,t and xj,t+d for a time delay d is defined by:

dTEi→j (d) = H (xj,t+d|xj,t)−H (xj,t+d|xj,t, xi,t)

=

�
p (xi,t, xj,t, xj,t+d) log

(
p (xj,t+d|xj,t, xi,t)
p (xj,t+d|xj,t)

)
dxi,tdxj,tdxj,t+d (4)

which we can rewrite as

dTEi→j (d) =

�
p (xi,t, xj,t, xj,t+d) log

(
p (xi,t, xj,t, xj,t+d) p (xj,t)

p (xj,t, xj,t+d) p (xi,t, xj,t)

)
dxi,tdxj,tdxj,t+d (5)

Similarly to equations (2) and (3) we quantify asymmetries in the transfer entropy via

TEi→j =

� ∞
0

dTEi,j (δ) dδ (6)

and use the difference
δTEi,j = TEi→j − TEj→i (7)

as an indicator for the information flow directionality.
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Supplementary Note 2
Flexible Information Routing on Top of Dynamical Reference States

To understand how bits of information from external or locally computed signals can be specifically
distributed through the network or to it’s downstream components on top of an underlying collective
dynamical state we first consider a generic stochastic dynamical system that evolves in time t according
to Equation (1) in the main manuscript, i.e.

d

dt
x = f (x) + ςξ (8)

where x ∈ Rn denotes the variables of the network nodes, f describes the intrinsic dynamics of the
network, ξ =(ξ1, . . . , ξK) is a stochastic process representing the external inputs carrying information
to be routed through the network, and ς is a K×N matrix that couples the inputs to individual node’s
dynamics. We focus on a deterministic reference state

x
(ref)
t = F (ref)(x, t) (9)

solving (8) in the absence of signals (ξ = 0). Here F (ref) (x, t) is the deterministic flow in time s starting
at x. For notational clarity, in the following we denote time dependence of variables in subscripts, i.e.
x (t) = xt.
To calculate the delayed mutual information or transfer entropy according to Equation (2) and (7)

in the main manuscript we first seek to calculate the joint distribution p (xt+d,xt) and rewrite it in
terms of the marginal p (xt) and transition probability p (xt+d|xt) as

p (xt+d,xt) = p (xt+d|xt) p (xt) (10)

Assuming that the stochastic signals ςξ are small enough to keep the system fluctuating around the
reference trajectory we use the small noise approximation to condition our calculations on this specific
reference trajectory. For uncorrelated white noise signal sources ξ, i.e. 〈ξk (t) ξl (s)〉 = δklδ (t− s) we
find [7]

p (xt+d|xt) = N
x
(ref)
t+d ,Σd[x(ref)]

(xt+d) (11)

where Nµ,Σ (x) denotes a multivariate Gaussian distribution with mean µ and covariance matrix Σ

Nµ,Σ (x) =
1√

(2π)N det (Σ)
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
(12)

and

Σd

[
x(ref)

]
=

� d

0
e
� d
s G(x(ref),r)drςςTe

� d
s G

T(x(ref),r)drds (13)

with
G
(
x(ref), r

)
= Df

(
x(ref) (t+ r)

)
. (14)

where Df (x) is the Jacobian matrix of f at x and we denoted the transpose of x by xT. We also
assumed

G
(
x(ref), r

)
G
(
x(ref), s

)
= G

(
x(ref), s

)
G
(
x(ref), r

)
(15)

for an explicit solution to exists. In this way we obtain two information theoretic measures
dMIi,j

(
d, t,x(ref)

)
and dTEi→j

(
d, t,x(ref)

)
that in general depend on the lag time d, the starting

distribution p (xt) at time t, and, most importantly, on the reference trajectory x(ref) through expres-
sion (11). We note that this dependence is still present in case (15) is not satisfied. We precisely
exploit this dependence on the reference trajectory to achieve flexible information routing.
For a network with a single attractor A and a stationary distribution the information theoretic ex-

pressions become t independent but will still strongly depend on the underlying deterministic invariant
dynamics x(ref) in A and the time lag d. For systems with multiple deterministic attractors the white
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noise is capable of inducing transitions between the attractors. For small noise levels in comparison to
the signal strength needed to induce a transition the expected switching time to a different attractor A′
becomes arbitrarily large and the system can exhibit a ’pseudo stationary distribution’ for the fluctua-
tion dynamics around one particular attractor. In this situation the information theoretic expressions
again become independent of t but will still strongly depend on the underlying deterministic dynamics
F in the vicinity of A. Information encoded in the fluctuations around such an attracting dynami-
cal state is thus shared and transferred differently depending on which of the different attractors the
system was prepared or pushed to (cf. also Supplementary Note 4-7 below). The dependence of dMI
and dTE on the starting time in systems with a non-stationary distribution can be further exploited
to obtain time-dependent information routing patterns (cf. Supplementary Note 6).

Supplementary Note 3
Phase Description of Coupled Stochastic Oscillator Networks

3.1 Phase Reduction of Limit Cycle Oscillators

Oscillatory dynamics are naturally separated into an amplitude and a phase. If the attraction towards
a limit cycle is sufficiently strong, deviations in the amplitudes decay fast and the dynamics may be
reduced to a phase description [8].
Consider a dynamical system

ẋ = f (x) (16)

with x ∈ Rn and f a sufficiently smooth n-dimensional vector field that has a stable limit cycle solution
x	 (t) = x	 (t+ T ) of period T . We may introduce a phase φ ∈ [0, 2π) on the limit cycle solution
such that φ̇ = ω where ω = 2π/T . This phase description can be extended to the basin of attraction
of the limit cycle by assigning to each point x0 a scalar phase φ (x0) such that limt→∞ φ (x (t)) −
(ωt+ φ (x0)) = 0 for the solution x (t) of (16) starting at x (0) = x0. By definition

d

dt
φ (x (t)) = ω (17)

= ∇xφ (x) · ẋ = ∇xφ (x) · f (x)

Introducing a small perturbation r of order ε into the vector field, i.e. substituting f (x) with f (x) +
εr (x, t) one obtains

d

dt
φ = ω + ε∇xφ (x) · r (x, t)

= ω + ε∇xφ (x	 (φ)) · r (x	 (φ) , t) +O
(
ε2
)

(18)

where in the second step the contributions up to first order in ε give a closed form expression for the
phase dynamics. Here

z (φ) = ∇xφ (x	 (φ)) (19)

is the phase response curve (PRC), an n-dimensional vector that determines the oscillators linear
response in it’s phase variable to brief perturbations in the n different coordinates applied at the
oscillator’s phase φ. The system’s time evolution thus has been reduced to a one dimensional phase
model. We note that this reduction process stays valid in the presence of white noise signals if the
attraction towards the limit cycle is strong and the noise sources are idealizations of physical input
signals [9] that have positive correlations on small time scales [10].
We use the adjoint method [8, 11, 12] to numerically determine the phase response curves z. If no

analytical expression for the phase field φ (x) was available, we determined it numerically. Therefore
we integrated the dynamical system from a sufficiently long but fixed time with initial conditions x0

on a equally spaced raster around the limit cycle solution. From the final point we determined the
closest point on the limit cycle and its phase φ to obtain an estimate of the phase φ (x0) on the
grid. For arbitrary points x0 we then used multi-dimensional linear interpolation between the nearest
grid points to obtain φ (x0) (cf. Supplementary Figs. 4, 8 and 9). All simulations where performed
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using a self written dynamical systems software package combining the symbolic strength of Wolfram
Mathematica 9.0 with the numerical speed of c++. For stochastic integration we used a second order
stochastic Runge-Kutta algorithm [13].

3.2 Stochastic Phase Equations for Weakly Coupled Stochastic Oscillators

Consider a network of N ∈ N coupled oscillators evolving according to

ẋi = fi (xi) +
∑
j

gi,j (xi,xj) +
∑
k

hi,k (xi) ζk (20)

with xi ∈ Rni , i ∈ {1, . . . , N}, fi smooth local dynamics, gi,j smooth coupling functions, hi,k ni-
dimensional vectors modeling the impact of random processes ζk with zero mean. We assume that
each node i in the uncoupled deterministic case (gi,j = 0, hi,k = 0) has a strongly attracting limit
cycle solution generated by the local dynamics fi. If in the full system the coupling and noise are
sufficiently weak, the phase reduction method outlined in the previous section can be applied to each
oscillator [12]. This results in a phase description of the full network (20) of the form

φ̇i = ωi +
∑
j

zi (φi) · gi,j (φi, φj) +
∑
k

zi (φi) · hi,k (φi) ζk . (21)

As before, φi is the phase of oscillator i, zi (φ) its ni-dimensional phase response curve and the constant
oscillation frequency is given by ωi = z (φi) · f (xi (φi)).
In the deterministic case (hi,k = 0) it is convenient and common to exploit the weak coupling

assumption further and average these equations [8, 11, 12]. However, we are not aware of a general
stochastic analog that leads to a reduced but still random dynamical system. Here, we therefore assume
that the system has a collective deterministic state in which it rotates with an average frequency Ω = 2π

T .
If we transform to coordinates ϕi = φi − Ωt, the small coupling and noise ensures that the evolution
of ϕi is slow compared to the collective oscillation. Its average change over one period may then be
approximated as

d

dt
ϕi = ωi − Ω +

∑
j

1

T

� T

0
zi (ϕi + Ωt) · gi,j (ϕi + Ωt, ϕj + Ωt) dt

+
∑
k

1

T

� T

0
zi (ϕi + Ωt) · hi,k (ϕi + Ωt) ζkdt (22)

As in the deterministic situation the first coupling terms only depends on the phase differences and
may be written as

∑
j γij (φi − φj) where

γij (ϕi − ϕj) = γij (φi − φj) =
1

2π

� 2π

0
zi (φi − φj + ψ) · gi,j (φi − φj + ψ,ψ) dψ . (23)

The second sum in (22) still consists of a superposition of random processes that depend on ϕi.
We can simplify it further, if we assume that the oscillators receive uncorrelated noise sources, i.e
hi,k (φ) = δikhi (φ) that have correlations in time that are small with respect to the period T . The
integrated noise then becomes a Gaussian process wi with zero mean and phase-independent variances

ς2
i =

1

2π

� 2π

0
zi (ψ)hi (ψ)hT

i (ψ) zT
i (ψ) dψ (24)

We thus arrive at the averaged but still stochastic evolution equations

d

dt
φi = ωi +

∑
j

γij (φi − φj) + ςiξi (25)

with ξi = dwi
dt . These stochastic phase equations [14] will serve as our starting point for the study of

control mechanisms for information flows in complex network dynamical systems. A general method of
stochastic averaging that results in reduced but still stochastic equations and a treatment for correlated
inputs will be discussed in detail elsewhere.
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Supplementary Note 4
Information Routing in Phase Oscillator Networks

Here we study general networks of coupled stochastic phase oscillators and give a detailed derivation
of the theoretical results presented in the main text. In particular, for a network of coupled phase
oscillators we derive expressions for the delayed mutual information (dMI) and transfer entropy (dTE)
between two phase signals as a function of an underlying deterministic dynamical state and the network
topology. We follow the general calculations outlined in Supplementary Note 2.

4.1 Delayed Mutual Information in Phase Oscillator Networks

4.1.1 Calculation of Delayed Mutual Information in Phase Oscillator Networks

Networks of Stochastic Phase Oscillators Consider a network of N phase oscillators i ∈ {1, . . . , N}
with phases φi and intrinsic oscillation frequencies ωi evolving according to the stochastic Kuramoto
differential equations [8, 14] (cf. also Supplementary Note 3.2)

dφi =

ωi +
∑
j

γij (φi − φj)

dt+
∑

ςikdwk (26)

with coupling functions γij (φi − φj) and external inputs that are modeled as independent Wiener
processes wk. We formally write ξk = dwk

dt such that 〈ξk (t) ξl (s)〉 = δklδ (t− s) and the matrix
ς = (ςik) in (26) describes the covariances of the inputs.

Calculation of the Probability Densities To calculate the delayed mutual information MIi,j (d)
between the phase signals φi,t := φi (t) and φj,t := φj (t) we derive the joint probability distribu-
tion p (φi,t, φj,t+d) and then insert it into (1). To this end we first calculate the joint probabil-
ity distribution p (φt,φt+d) for the full phase vectors φt = (φ1,t, . . . , φN,t). We use the identity
p (φt,φt+d) = p (φt) p (φt+d|φt) to split the calculation into the calculation of the transition prob-
ability p (φt+d|φt) and the stationary probability density p (φt).
A general analytical solution for the probability densities is not feasible such that we here focus on

networks with a phase-locked state. Information routing via general dynamical states are considered
in Supplementary Note 6.

Phase-Locked States We assume that the system (26) in the noiseless case (i.e. ςik = 0) exhibits a
stable phase-locked state with constant phase differences ∆φ

(ref)
i,j = φi − φj and a collective oscillation

frequency Ω, i.e. for all i ∈ {1, . . . , N} we have

Ω = ωi +
∑
j

γij

(
∆φ

(0)
i,j

)
(27)

In particular, a solution to the deterministic dynamics is given by

φ
(ref)
i (t) = Ωt+ ∆φ

(ref)
i,1 (28)

where w.l.o.g. we set φ1 (0) = 0 due to the rotational symmetry of (26).

Calculation of the Transition Probability Density To calculate p (φt+d|φt) it is convenient to first
introduce new coordinates

ϕi = φi − φ(ref)
i (29)

such that (26) becomes
dϕ = f (ϕ) dt+ ςdw (30)

where fi (ϕ) := ωi+
∑

j γij

(
ϕi − ϕj + ∆φ

(ref)
i,j

)
−Ω. As before, this system is invariant under uniform

phase rotations as it only depends on the phase differences ϕi − ϕj .
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Assuming that the noise levels ςik are small these phase differences stay small close to the stable
phase-locked state. Due to the nature of the white noise process strong deviations may occur that push
the dynamics towards other stable dynamical states in the phase space of the system. The expected
time for such a switching event becomes arbitrarily large when the noise amplitude is decreased. We
are interested in the impact of a single dynamical state onto the information routing patterns within
the network. We thus assume that the noise is small enough so that no intrinsic switching occurs on
time scales relevant for the system to perform its communication functions. As discussed above, the
small noise expansion [7] conveniently conditions our analysis to this situation. We therefore replace
ςik → εςik, write ϕi = ϕ

(0)
i + εϕ

(1)
i + . . . and expand (30) in ε. When equating terms of zero order,

O
(
ε0
)
, we recover the defining equations for the phase-locked reference state (27) and (28). The first

order approximation is a multivariate Ornstein-Uhlenbeck process

dϕ(1) = Gϕ(1)dt+ ςdw (31)

with coupling matrix

Gij =

−γ
′
ij

(
∆φ

(ref)
i,j

)
for i 6= j∑

j γij

(
∆φ

(ref)
i,j

)
for i = j

. (32)

Its solution is given by [7]

ϕ(1) (t) = exp (Gt)ϕ(1) (0) +

� t

0
exp

(
G
(
t− t′

))
ςdw (t) . (33)

We define matrices
Mt := exp (Gt) , Lt := exp (Gt) ςςT exp

(
GTt

)
(34)

and

Ht :=

� t

0
Lt′dt

′ . (35)

The transition probability of starting from a phase vector ϕ(1)
0 at time t = 0 and ending in a state ϕ(1)

t

at time t is then given by
p
(
ϕ

(1)
t |ϕ

(1)
0

)
= N

Mtφ
(1)
0 ,Ht

(
ϕ

(1)
t

)
(36)

where Nµ,Σ (x) denotes a multivariate normal distribution (12). Note that up to O
(
ε2
)
this is also

the transition probability p (φt+d|φt). Combining (36) with (28) and (29) we obtain

p (φt+d|φt) = NMtφt,Ht (φt − Ωt) (37)

Stationary Distribution To derive the stationary distribution p (φt) we utilize that the system is
invariant under uniform phase rotations. It is therefore convenient to transform to new coordinates

ϕ̃ = (ϕ̄, δϕ) = Oϕ (38)

where O is an orthogonal matrix (OTO = OOT = 1) with O1j = 1√
N

such that ϕ̄ is an average like
phase and δϕ = (δϕ2, . . . , δϕN ) encodes the phase differences. Note that any phase difference ϕi −ϕj
can be expressed in terms of the δϕ only as

ϕi − ϕj =

N∑
k=2

oijk δϕk (39)

where
oijk = (Oki −Okj) (40)

In the new coordinates the dynamics (26) read

dϕ̃ = f̃ (δϕ) dt+Bdw (41)
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whereB = Oς and f̃ (δϕ) := Of
(
OTϕ̃

)
only depends on δϕ. Hence, the dynamics of the δϕ decouple

from ϕ̄ and the equation for ϕ̄ itself can be solved formally as l

ϕ̄ (t) = ϕ̄ (0) +

� t

0
f̃1 (δϕ) dt+

∑
k

B1kwk (t) (42)

By transforming this solution back to the original coordinates one observes that the collective rotation
of the system is driven by three additive parts: the deterministic rotation Ω of the phase locked state,
a drive due to the deviations of the oscillators from the phase locked state and a noise term being an
average like combination of the input noises to each oscillator.
To proceed we again exploit the small noise assumption which ensures that the phase differences δϕ

stay small. In first order approximation we may thus linearize the δϕ-subsystem in (41) which gives

dδϕ = δG δϕ dt+ δB dw (43)

where the δG is a (N − 1)× (N − 1) matrix defined by the equation

OGOT =

(
0 ḡT

0 δG

)
(44)

and the N − 1×N matrix δB has entries δBi,j = Bi+1,j . Note that in (44) ḡ is a vector encoding the
linear impact of deviations from the phase-locked state onto the evolution of the average phase.
Due to the stability of the phase locked state, δG only has strictly negative eigenvalues, so there is

a stationary solution to the Ornstein-Uhlenbeck process (43) of the form

δϕ (t) =

� t

−∞
exp

(
δG

(
t− t′

))
δBdw

(
t′
)

(45)

and the phase deviations δϕ are Gaussian distributed with zero mean and covariances

Hδ =

� 0

−∞
exp (−δGt) δBδBT exp

(
−δGTt

)
dt (46)

i.e.
pst (δϕ) = N0,Hδ

(δϕ) . (47)

Further, using equation (42) ϕ̄ (t) has a Gaussian distribution with variance proportional to t for each
realization of δϕ (t). In particular, in the limit t → ∞ this distribution on R becomes flat. Thus
regarding ϕ̄ as a phase variable on the circle its distribution becomes uniform which is also a direct
consequence of the rotational phase symmetry of (26).
In summary, we obtain pst (ϕ̃) ∝ pst (δϕ) = N0,Hδ

(δϕ) and in terms of the phases ϕi we have

pst (ϕ) ∝ N0,Hδ

(
(Oϕ)2,...,N

)
(48)

Joint Probability Distribution We now merge our results (36) and (48) form the previous two sections
to obtain the joint distribution as

p (ϕt,ϕt+d) = p (ϕt+d|ϕt) pst (ϕt)

∝ NMdϕt,Hd
(ϕt+d)N0,Hδ

(δϕt) (49)

or more explicitly

ps (ϕt,ϕt+d) ∝ exp

(
−1

2
δϕT

t H
−1
δ δϕt −

1

2
(ϕt+d −Mdϕt)

TH−1
d (ϕt+d −Mdϕt)

)
. (50)

We are interested in the marginal distribution ps (ϕi,t, ϕj,t+d) and thus have to integrate out the
remaining coordinates in the full joint probability distribution (50). The Gaussian integrals over the
ϕk,t+d, k 6= j yield

p (ϕt, ϕj,t+d) ∝ exp

(
−1

2
δϕT

t H
−1
δ δϕt −

1

2

(
ϕj,t+d − (Mdϕt)j

)2
(Hd)

−1
jj

)
(51)
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Now, as we can express any phase ϕj via the phase ϕi plus a linear combination of phase differences
δϕ using (39) we have

ϕj,t+d − (Mdϕt)j = ϕj,t+d − ϕi,t −
(
aj,id

)T
δϕt (52)

where the vector aj,id has components

aj,id,l :=
∑
k

(Md)jk o
k,i
l (53)

and we have used
∑

j (Md)ij = 1 as G has eigenvalue λ0 = 0 with eigenvector (1, . . . , 1).
Inserting (52) into (51) we can now perform the integration over the δϕt which results in

p (ϕi,t, ϕj,t+d) =
1

2π
N0,σ2

i,j,d
(ϕj,t+d − ϕi,t) (54)

where
σ2
i,j,d = (Hd)jj +

(
aj,id

)T
·Hδ · aj,id (55)

This constitutes our first main result. Via the second term this expression still depends on the coordi-
nate transformations O which we can eliminate. Therefore we define [[A]]i,j to be the matrix obtained
from the matrix A by deleting its ith row and jth column. With this notation straightforward algebra
shows

δBδBT =
[[
OςςTOT

]]
1,1

, δGn =
[[
OGnOT

]]
1,1

(56)

and thus
exp (δGt) =

[[
O exp (Gt)OT

]]
1,1

(57)

For any N ×N matrices A and B we further have

[[
OAOT

]]
1,1

[[
OBOT

]]
1,1

=

[[
O

(
AB − 1

N
AJB

)
OT

]]
1,1

(58)

where J is the N ×N matrix of ones, i.e Jij = 1. We have GJ = JGT = 0 and thus for any integers
n,m ≥ 0

δGnδBδBT
(
δGT

)m
=

[[
OGnOT

]]
1,1

[[
OςςTOT

]]
1,1

[[
O
(
GT
)n
OT
]]

1,1

=
[[
OGnςςT

(
GT
)m
OT
]]

1,1
(59)

and it follows that

exp (δGt) δBδBT exp
(
δGTs

)
=
[[
O exp (Gt) ςςT exp

(
GTs

)
OT
]]

1,1
. (60)

Hence

Σδ =

� 0

−∞

[[
O exp (−Gt) ςςT exp

(
−GTt

)
OT
]]

1,1
dt (61)

where it is essential to delete the first row and column before performing the integration to ensure
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convergence of the integral. Using (34) together with (53), (40) and defining oi,k1 = 0 we obtain(
aj,id

)T
·Hδ · aj,id =

� 0

−∞

∑
k,m

∑
l,p 6=1

(Md)jk o
k,i
l

([[
OL−tO

T
]]

1,1

)
lp

(Md)jm o
m,i
p dt

=

� 0

−∞

∑
k,l,m,p

(Md)jk o
k,i
l

(
OL−tO

T
)
lp
om,ip (Md)jm dt

=

� 0

−∞

∑
k,l,m,p,s,r

(Md)jk (Olk −Oli)OlrL−t,rsOps (Opm −Opi) (Md)jm dt

=

� 0

−∞

∑
k,m

(Md)jk (L−t,km − L−t,ki − L−t,im + L−t,ii) (Md)jm dt

=

� 0

−∞

[(
MdL−tM

T
d

)
jj
− 2 (MdL−t)ji +L−t,ii

]
dt (62)

Note here, as before, that the sum has to be performed before the integration to ensure convergence
of the integral. Using (55) we obtain the O independent expression

σ2
i,j,d =

� d

0
(Lt)jj dt+

� ∞
0

[
(Lt+d)jj + (Lt)ii − 2 (MdLt)ji

]
dt . (63)

and in the original coordinates the distribution (54) is given by

p (φi,t, φj,t+d) = N0,σ2
i,j,d

(φj,t+d − φi,t −∆φj,i − Ωd) . (64)

The above results are for the phases considered on the real line. If we identify the phases at all
points modulo 2π the Gaussian distribution (64) becomes a wrapped Gaussian distribution which
in accordance with the small noise approximation for small standard deviations σi,j,d � 2π is well
approximated by a van Mises distribution for circular variables [15]. It is of the form

Mµ,k (φ) =
1

2πI0 (k)
exp (k cos (φ− µ)) (65)

where In (k) denotes the nth modified Bessel function of the first kind [15], µ is the average phase
and k = 1/σ2 a concentration parameter. We thus obtain as the final result for the joint probability
distribution,

p (φi,t, φj,t+d) = M∆φj,i+Ωd,σ−2
d,i,j

(φj,t+d − φi,t) (66)

with σ2
d,i,j given in (63).

Main Theorem For a joint probability distribution of the from p (φ1, φ2) = 1
2πMµ,k (φ1 − φ2) we

calculate for the mutual information

MIvM (k) :=

�
p (φ1, φ2) log

(
p (φ1, φ2)

p (φ1) p (φ2)

)
dφ1dφ2

=
kI1 (k)

I0 (k)
− log (I0 (k)) (67)

Combining this with the results from the previous derivations we obtain our main result for the
information flow in phase oscillator networks:

Theorem 1. The delayed mutual information dMIi,j (d) between oscillator i and oscillator j in sys-
tem (26) with stochastic dynamics around a deterministic stable phase locked state (27) with phase
differences ∆φ

(ref)
i,j is given by

dMIi,j (d) =

MIvM

(
σ−2
d,i,j

)
for d ≥ 0

MIvM

(
σ−2
−d,j,i

)
for d < 0

(68)

where σ2
d,i,j is given in (63) and MIvM in (67).
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4.2 Transfer Entropy in Networks of Coupled Phase Oscillators

In this section we extend our results on the calculation of the delayed mutual information to the transfer
entropy introduced in [6]. The delayed transfer entropy (dTE) between phase signal φi,t and φj,t+d for
a time delay d is given by (4)To calculate it we use the form (5) for which we have to determine the
joint distribution p (φi,t, φj,t, φj,t+d) and some of its marginals. We therefore use the result (51) and
rewrite

ϕj,t+d − (Mdϕt)j = ϕj,t+d − ϕj,t −
(
ajd

)T
δϕt (69)

where the vector ajd has n− 1 components ajd,l (l = 2, . . . , N)

ajd,l :=
N∑
k=1

(Md)jk (Olk −Olj) . (70)

We thus obtain

p (ϕt,ϕj,t+d) ∝ exp

(
−1

2
δϕTt Σ−1

δ δϕt −
1

2

(
ϕj,t+d − ϕj,t −

(
ajd

)T
δϕ

)2

(Σd)
−1
jj

)

= exp

(
−1

2
(ϕj,t+d − ϕj,t)2 (Σd)

−1
jj

)
× (71)

exp

(
−1

2
δϕTt

(
Σ−1
δ + (Σd)

−1
jj a

j
d

(
ajd

)T)
δϕt + ϕj,t+d (Σd)

−1
jj

(
ajd

)T
δϕ

)
Using that

∆ϕk,j := ϕk − ϕj =
(
eTk − eTj

)
OT

(
ϕ̄
δϕ

)
=
(
eTk − eTj

)
OT

(
0
δϕ

)
(72)

we see that there is an invertible (n− 1)× (n− 1) matrix Kj such that

∆ϕ := (∆ϕk,j)k 6=j = Kjδϕ δϕ = K−1
j ∆ϕ (73)

We write ∆ϕj,t+d,t = ϕj,t+d − ϕj,t and calculate

p (ϕt, ϕj,t+d) = exp

(
−1

2
∆ϕ2

j,t+d,t (Σd)
−1
jj −

1

2
∆ϕTR−1

j,d∆ϕ+ ∆ϕj,t+d,tb
T
j,d∆ϕ

)
(74)

with

R−1
j,d =

(
K−1
j

)T (
Σ−1
δ + (Σd)

−1
jj a

j
d

(
ajd

)T)
K−1
j

bTj.d = (Σd)
−1
jj

(
ajd

)T
K−1
j (75)

We can now perform the Gaussian integrals over all ∆ϕk,j with k 6= i to obtain

p (ϕj,t+d, ϕj,tϕi,t) =
1

2π
N0,C (ϕj,t+d − ϕj,t, ϕi,t − ϕj,t) (76)

where the 2× 2 matrix C is defined by

C−1 =

(
(Σd)

−1
j,j − bTj,dRj,dbj,d + (Rj,d)

−1
i,i (Rj,dbj,d)

2
i − (Rj,d)

−1
i,i (Rj,dbj,d)i

− (Rj,d)
−1
i,i (Rj,dbj,d)i (Rj,d)

−1
i,i

)
(77)

Here we also used the fact that we are considering phase variables and restricted the range of ϕj,t ∈
[0, 2π]. Independence of ϕj,t in this expression again reflects rotational symmetry of the full system.
Calculation of the marginals and insertion in to (5) results in our second main result

22



Theorem 2. The delayed transfer entropy dTEi,j (d) between oscillator i and oscillator j in system
(26) close to a deterministic stable phase locked state (27) with phase differences ∆φ

(ref)
i,j and small

noise fluctuations ς is given by

dTEi→j (d) =
1

2
log

(
C11C22

det (C)

)
= −1

2
log

(
1− C2

12

C11C22

)
(78)

where Cij are entries in the matrix C given by (77).

As for the dMI, this result is not dependent on the orthogonal transformation O. To take into
account the phase character of the two variables ϕj,t+d and ϕi,t one can view the distribution (76)
as a wrapped Gaussian or approximate it with a multivariate van Mises distribution similarly to the
calculations for the dMI above. Due to the small noise all three expressions are all approximately
correct and we stop our derivations here. Indeed, Fig. 2 in the main manuscript and Supplementary
Fig. 1 show that the theoretical prediction for the dTE in this form is in fact in good agreement with
numerical estimates. The figures also show that the dTE more clearly reveals the asymmetry in the
information flows in parallel to the already detected ones with the simpler delayed mutual information
measures.
Note that due to rotational symmetry, the dTE in (78) is actually a mutual information for the phase

difference variables ϕj,t+d − ϕj,t and ϕi,t − ϕj,t. Interestingly, in our approximation and in contrast to
the dMI the above expression for the dTE is independent of the absolute noise level which makes it a
pure function of the underlying network parameters and its dynamical state. Therefore it may serve
as a generic measure to characterize effective interactions in these networks.

4.3 Delayed Mutual Information and Transfer Entropy for Two Coupled Oscillators

Applying theorem 1 to a network of N = 2 oscillators and setting g1 = G1,1, g2 = G2,2 in (32) we
obtain for i 6= j and λ = (g1 + g2)

σ2
i,j,d =

ξ2

λ3

{
dλ
(
g2

1 + g2
2

)
− λ2 − 2g2

j

(
eλd − 1

)
for d ≥ 0

|d|λ
(
g2

1 + g2
2

)
− λ2 − 2g2

i

(
eλ|d| − 1

)
for d ≤ 0

(79)

from which the delayed mutual information follows via (68). Maximizing the mutual information with
respect to d is equivalent to minimizing σ2

i,j,d and gives maximal shared information at

d∗ = (g1 + g2)−1 log

(
1

2

(
1 +

(
g2

g1

)2
))

(80)

if g1 < g2.
Similarly we obtain for the transfer entropy with d > 0 the analytic expression

dTEi→j(d) =− 1

2
log

(
g2
j

(
eλd − 1

)2(
g2

1 + g2
2

)
λd+ 2g1g2 (eλd − 1)

+ 1

)
. (81)

4.4 Limits and Future Extensions

Interestingly, even though we performed several approximation steps (e.g. phase reduction, phase
estimation and a small noise expansion) to arrive at our general theoretical results (Theorem 1), there
is a good agreement to numerical simulations. We here discuss some limitations and future extension
of our theory.
In our derivation we assumed weak coupling. Relaxation of this assumption is possible in systems

of amplitude oscillators that mainly couple via the phase (e.g. as observed in [16]). In general, more
complex dynamics can occur for strong coupling (e.g. [17]) which requires an extension of our results to
amplitude oscillators and more complex dynamical states. In our numerical simulations we find that
even in systems with non-weak coupling displaying phase locked dynamical states our theory gives
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good estimates for the directionality of the information flow. For even stronger coupling and noise
inputs recent generalized phase reduction techniques that use a full manifold of limit cycles generated
by different but constants inputs [18] may be used together with our theory. For future studies it would
be further interesting to extend our theory to amplitude oscillators where the information routing is
controlled by the phase dynamics while the actual information transfer is separated to amplitudes
modes.
We assumed small noise levels in our derivation to enable the small noise approximation. In Supple-

mentary Fig. 2 we show the effect of larger noise levels on the delayed mutual information. We observe
that for larger noise levels the theoretical result is systematically larger than the numerical estimation
but the shape stays qualitatively similar (cf. Supplementary Fig. 2a). The strong noise makes it likely
to push the system further away from the phase locked dynamics such that the linear approximations
made in the small noise expansions no longer remain valid. The transients back to the phase-locked
state blur the mutual information and reduce the overall height in the dMI curves. In systems with
multiple phase-locked attractors very strong noise is capable of pushing the system into different at-
tractor states from time to time and the dMI becomes a superposition of the dMIs in each phase locked
state weighted by factors that depend on the average transition rates. Additional transients between
these states may blur this superposition (cf. Supplementary Fig. 2b). Conditioning the time series on
specific states, a separation into the different dMI curves associated with the different underlying dy-
namical attractors may be achieved (not shown). Analogous reasoning applies to the delayed transfer
entropy measure of information flow.

4.5 Numerical Estimation of Delayed Mutual Information and Transfer Entropy

Throughout this work the delayed mutual information and transfer entropy was determined by esti-
mating the probability distributions appearing in (1) from simulated time series. Stochastic integration
of the time series was performed using a second order stochastic Runge-Kutta algorithm [13] with fixed
time step ∆t. For non-phase reduced systems the phases where estimated from the stochastic time
series of the full system as described in Supplementary Note 3.1. For each time delay joint probability
densities were estimated by binning the data using a uniform spacing in phase space. All integrals
were then performed numerically on this grid. Sample sizes and bin counts where chosen large so that
the result of this implementation of the maximum likelihood or naive estimator [19, 20] was within
the error of the best upper bound estimator [20]. Symbol sizes in all plots are larger then this error.
To check validity of the curves we also doubled sample sizes and used a finer binning restricted to five
standard deviations of the phase data.

Supplementary Note 5
Information Routing in Hierarchical Networks of Phase Oscillators

Here we derive expressions for the information flow between sub-groups of phase oscillators in hierar-
chical (modular) networks. We first reduce each individual cluster to a meta-oscillator described by a
collective phase and response function following refs. [21, 22] but additionally account for the stochastic
dynamics. We show that the reduced stochastic phase oscillator model has the same functional form
as the original model. We can therefore apply our general results, Theorem 1 and 2, to obtain the
non-local delayed mutual information and transfer entropies between the clusters as a function of the
local cluster properties and their local dynamical states.

5.1 Hierarchical Networks of Phase Oscillators

Throughout this section we consider networks of N phase oscillators as described in Supplementary
Note 4.1.1 with hierarchical network structure. We assume that the oscillators are clustered into M
different groups or clusters X ∈ {1, . . . ,M} that consists of NX oscillators so that

∑
X NX = N . We

denote the ith-oscillator in cluster X by iX . In this notation, the evolution equation (26) becomes
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dφiX (t) =

ωiX +
∑
jX

γiX ,jX (φiX − φjX ) +
∑
Y

∑
jY

γiX ,jY (φiX − φjY )

 dt+
∑
k

ςiX ,kdwk (82)

where the first sum on the right hand side represents the stronger intra-cluster couplings whereas the
second the weaker inter-cluster connections.
For each individual cluster X we assume the existence of a phase-locked state in the noiseless

dynamics (ςix,k = 0) with phase differences ∆φiX ,jX = ∆φiX −∆φjX that obey

ωiX +
∑
jX

γiX ,jX (∆φiX ,jX ) = ΩX = const. (83)

where ΩX is the collective cluster frequency. The dynamics of the individual oscillators may then be
described by φiX ,0 (t) = ΦX (t) + ∆φiX ,1 where ΦX is the collective cluster phase.
We further assume that the differences in the cluster oscillation frequencies ΩX are of the order of

the inter-cluster coupling strength so that in the full deterministic model the clusters themselves show
a stable phase-locked pattern with phase differences ∆ΦX,Y and a global collective rotation frequency
Ω obeying

Ω = ΩX +
∑
Y

ΓX,Y (∆ΦX,Y ) = const. (84)

Finally, we assume that the noise strengths ςix,k are small in comparison to the strength of attraction
towards this phase-locked dynamical state.

5.2 Collective Phase Reduction

In this section we make use of the hierarchical network structure by first neglecting the inter-cluster
couplings and consider each cluster separately. Using the assumption that in the noiseless system each
cluster has a stable phase locked state (83) we may regard each group as a single meta-oscillator, for
each of which we can perform a standard phase reduction step [8]. A cluster X is then described by
its collective phase ΦX and its collective phase response curve ZX [21, 22]. The phase response vector
satisfies the adjoint equation

d

dt
ZX = −GT

XZX (85)

where GX is the NX ×NX matrix

(GX)iX ,jY =

{
−γ′iXjX (∆φiX ,jX ) for iX 6= jX∑

kX
γ′iXkX (φiX ,kX ) for iX = jX

(86)

As GX is time independent and a Laplacian matrix we can solve (85) by choosing ZX to be the
normalized left eigenvector of GX with eigenvalue λX,0 = 0 which is constant and independent of the
phase ΦX . It is given by

ZX,iX =
det
(

[[GX ]]iX ,iX

)
∑

iX
det
(

[[GX ]]iX ,iX

) . (87)

So far we performed the phase reduction analysis for the deterministic situation ςix,k = 0. As the noise
sources wi in our model represent physical input signals they will have small non-zero correlations in
time [10]. Moreover, we assumed sufficient stability of the limit cycle against amplitude perturbations.
Given these two facts the above reduction results stay valid in the stochastic situation [9].
The full stochastic system (82) in the phase reduced form then becomes

dΦX = ΩX +
∑
Y

ZT
XGX,Y (ΦX ,ΦY ) +

∑
iX ,k

ZX,iX ςiX ,kdwk (88)
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where
GX,Y (ΦX ,ΦY )iX =

∑
iY

γiXjY (ΦX − ΦY −∆φiX ,jY ) . (89)

Now note that in equation (88) the ZX are constant vectors and GX,Y only depends on the cluster
phase differences. We therefore can write (88) in the form

d

dt
ΦX = ΩX +

∑
Y

ΓX,Y (ΦX − ΦY ) +
∑
K

ΣX,KΞK (90)

with inter-cluster coupling function

ΓX,Y (ΦX − ΦY ) =
∑
iX ,jY

ZX,iXγiXjY (ΦX + φiX ,0 − ΦY − φjY ,0) , (91)

and M independent Gaussian white noise processes ΞK and a M ×M - covariance matrix Σ = (ΣX,K)
that satisfies (

ΣΣT
)
X,Y

=
∑

iX ,jY ,k

ZX,iX ςiXkςjY ,kZY,jY . (92)

Note that the reduction process starting from equation (26) and leading to (90) leaves the form of
the dynamical equations invariant. Hence, this reduction step may be iterated in multi-scale networks
to obtain a phase description of the stochastic dynamics on every scale.

5.3 Delayed Mutual Information and Transfer Entropy between Collective Cluster
Phases

The equation (90) is now formally completely analogous to (25) and we may therefore directly apply
theorem 1 to obtain an expression for the delayed mutual information between the collective phase
signals of the clusters:

Corollary 3. The delayed mutual information dMIX,Y (d) between the time series of the collective
phases ΦX and ΦY of cluster X and cluster Y in system (82) close to a phase locked state with phase
differences ∆ΦX,Y and small noise amplitudes ςixk is given by (68) when substituting φi with ΦX , ∆φi,j
by ∆ΦX,Y , ωi with ΩX , γi,j by ΓX,Y , and ςi,k by ΣX,K .

Similarly we can use theorem 2 to obtain:

Corollary 4. The delayed transfer entropy dTEX,Y (d) between the time series of the collective phases
ΦX and ΦY of cluster X and cluster Y in system (82) close to a phase locked state with phase differences
∆ΦX,Y and small noise amplitudes ςix,k is given by (78) with the substitutions as in corollary (3).

We remark that these results together with the invariance of the dynamical equations under the
stochastic phase reduction process can be used to resolve the information flow on every scale in a
hierarchical network of coupled oscillators close to a phase-locked state. In Supplementary Fig. 1 the
dMI and dTE measures calculated here and in the previous section are shown for the hierarchical
Wilson-Cowan network of Figs. 1 and 2 of the main manuscript. Supplementary Fig. 3 shows that local
changes within a cluster affect multiple cluster properties such as its collective phase response and also
the effective cluster inter-actions. Together these changes all determine the new global dynamical state
and the global information routing pattern.

Supplementary Note 6
Time Dependent Information Routing Patterns

Our analysis in Supplementary Note 4 can be extended to non-phase locked collective states. Using the
expressions for the delayed mutual information (1) and transfer entropy (5) we obtain two information
theoretic measures dMIi,j (d, t) and dTEi→j (d, t) that in general now not only depend on d but also on
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the initial state xt as visible from the general approach presented in Supplementary Note 2. As analytic
solutions to these expressions are not feasible in this situation we refer to numerical evaluation.
A example for a information routing pattern generated by a non-phase-locked dynamical state is

shown in Supplementary Fig. 5a-c. Here the neuronal network from Fig. 4 in the main manuscript
was used with the local dynamical states of the three clusters in the configuration D = [βAαBβC ]
that led to a stable limit cycle solution in the deterministic case (Supplementary Fig. 5a). We observe
dynamical changes in the information routing patterns as determined by the delayed transfer entropy
dTEi→j (d, t) along the limit cycle solution (Supplementary Fig. 5b,c). Using phase reduction on the
local dynamical states result in the effective three node networks in Fig. 4c of the main manuscript. In
the simulations we used 1.2 × 106 sample trajectories with time step ∆t = 0.1 and 50 equally spaced
bins in each phase coordinate to estimate of the joint probabilities entering the dTE.
We note that our theory can also be extended using an instant time information flow measure [23, 24].

It is derived from basic principles to measure information flow in dynamical systems and resolves the
instantaneous time dependence. However, unlike dMI or dTE it does not provide any relevant time
scales for the information flow itself. Details and discussion on the time dependence and time resolve
measures of information routing will be presented elsewhere.

Supplementary Note 7
Dynamical State Dependent Communication

The results of the previous sections are concerned with abstract dynamic information routing measures
that provide insight into the routability of information in complex networks. Here we provide a concrete
example how a signal can be en- an decoded to achieve dynamical state dependent signal transmission.
In general, the concrete realization of the en- and decoding schemes will differ and will be problem as
well as system dependent.
For the network from Fig. 2 in the main manuscript the speed of the phase variable φ̇i is suitable to

encode the transmitted signals between the two nodes. Both, neuronal units as well as gene regulatory
circuits have been shown to be able to detect the speed of change in a signal, and, in particular, to
effectively apply a threshold to it [25, 26, 27]. In Supplementary Fig. 6 the network is prepared in either
of the dynamical states α (left) or β (right). While in state α a signal delivered to oscillator 1 is not
propagated in a detectable way to oscillator 2, the signal is detected in oscillator 2 when the network
is in the state β. Both findings are in accordance with the predicted information routing patterns.
Finally, in Supplementary Fig. 7 the two oscillator network from Fig. 2 of the main manuscript is

prepared in the dynamical state α (left). While in state α a signal delivered to oscillator 1 is not
propagated in a detectable way to oscillator 2, a stronger pulse in the input that signals the need to
change the IRP switches the network into state β and now signals delivered to oscillator 1 are detected
by oscillator 2. The switching signal could be either part of the input to the network or provided by
a second network that detects the need to switch the IRP. Pulse or burst like stimuli are common in
neuronal networks [27] and, interestingly, in gene regulatory circuits as well [28].

Supplementary Note 8
Model Descriptions

In the previous sections we developed a theory for the delayed mutual information in phase oscillator
networks. Here we give details on the example networks we use in the main manuscript to illustrate
the broad applicability of our theory and to investigate control mechanisms for information routing.

8.1 Wilson-Cowan Equations For Networks of Neuronal Populations

Collective neuronal oscillations are frequently observed in many parts of the nervous system, ranging
from primary sensory circuits, through local cortical networks to larger inter-areal formations [29, 30,
31]. On a population level the dynamics of these networks may be described in terms of mean field
equations for the firing rates of neuronal sub-populations [1, 32]. To induce external signals as additive
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noise we here focus on a variant by Grannan et al. [2] where the equations are rephrased in terms of
average membrane-potential like variables.
We consider networks of N neuronal groups i ∈ {1, . . . , N}, each described by the average membrane

potential variables vi and ui for the excitatory and inhibitory sub-population respectively, evolving
according to

τ
d

dt
vi = −vi + geeg (vi)− gieg (ui) + ie,i +

∑
j

gi,jg (vj) + ρe,iζe,i

τ
d

dt
ui = −ui + geig (vi)− giig (ui) + ii,i + ρi,iζi,i . (93)

Here τ is the membrane time scale. Within each group the excitatory synaptic connections to the
inhibitory and to the excitatory sub-group are denoted by gei and gee, while gii and gie denote the
inhibitory projections. The different groups are coupled via long range excitatory connections with
strength gi,j . The firing rate of group i is obtained from the potential vi via

g (vi) =
1

1 + exp (−4β (vi − v0))
(94)

External signals are modeled as independent white noise processes ζe,i and ζi,i with strengths ρe,i and
ρi,i.
For the simulations that lead to Figs. 1, 2 and 4 in the main manuscript and Supplementary Figs. 1

and 4 we used parameters as in [2]. In particular, gee = 15, gei = 15, gii = 5, gie = 12, β = 1.1, v0 = 1,
ii,i = 0, ie,i = 0.75 that give rise to a stable limit cycle solution (cf. Supplementary Fig. 4b,c). For
present links (indicated as arrows between the triangles in each network graph) the coupling strength
within each cluster was gi,j = 0.1 while between clusters gi,j = 0.015. A stochastic integration time
step of ∆t = 0.01 with noise levels ρe,i = 0.001 and ρi,i = 0.001 were used.
The scalar phase field φi (vi, ui) was determined on a grid of 200× 200 points in the relevant phase

space region (vi, ui) ∈ [−2.1,−2] × [−0.3, 2.5] with trajectories of duration t = 10000. The result is
shown in Supplementary Fig. 4.
Stable phase-locked states where determined numerically using (27). In particular, by concentrating

on the phase differences ∆φi,1 we obtain from (26) in the noiseless case

d

dt
∆φi,1 = ωi − ω1 +

∑
j

γi,j (∆φi,1 −∆φj,1)−
∑
j

γ1,j (−∆φj,1) (95)

For two identical oscillators we obtain

d

dt
∆φ1,2 = γ (∆φ1,2)− γ (−∆φ1,2) = γ̄ (∆φ1,2) (96)

which shows that zeros of the anti-symmetric part of the coupling function γ̄ with negative slope give
rise to stable phase locked states. Interestingly, for two coupled Wilson-Cowan oscillators we find two
such solutions giving rise to intrinsic multi-stable dynamics in these neuronal networks (cf. Supple-
mentary Fig. 4f). In general we determined the phase-locked states by numerically finding zeros of the
norm of the vector field on the right hand side of (95), i.e.

∥∥∥∥ ddt∆φ
∥∥∥∥2

=
∑
i

ωi − ω1 +
∑
j

γi,j (∆φi,1 −∆φj,1)−
∑
j

γ1,j (−∆φj,1)

2

(97)

with negative eigenvalues of the Jacobian to ensure stability. For the two sub-networks with three
oscillators of the full modular network used in Fig. 1 and 4 in the main manuscript we find two multi-
stable states each (cf. Supplementary Fig. 4g and h). Phase-locking in the full network was determined
by using the second phase-reduction step on the clusters (cf. (5.2)) and repeating the above procedure
for every combination of local phase-locked states in each cluster. Phase-locking was validated by
direct simulation of the phase reduced and full equations.

28



Besides the two three-oscillator networks used in the main article, we also investigated phase-locking
dynamics in the three remaining strongly connected network motives [33] of three oscillators: The ring
network only exhibits a single phase-locked state, the fully connected network shows a large variety
of multi-stable phase-locked and periodic states, while three stable states are found for the remaining
network, showing that multi-stability is a generic phenomena in these networks of neuronal oscillators.
For the numerical calculations of the delayed mutual information we used time series of duration

t = 4×106 and 4000×4000 bins for estimation the joint portability distributions. The transfer entropy
was estimated by estimating the joint probability density p (φj,t+d, φj,t, φi,t) with the same methods as
for the dMI but using 500×500×500 bins. Switching between the different stable dynamical states can
be induced for example by a stimulus to one of the oscillators in a single clusters using input current
pulses of strengths 2 and duration ∆t = 0.5.

8.2 Coupled Biochemical Oscillator Networks

Rhythmic activity of protein expressions in cells is a widely observed phenomenon [34, 35, 36], including
circadian rhythms [37, 38, 39], the cell cycle [40], regulatory mechanisms during development and
growth [41, 42], and in synthetic gene networks [43, 44, 45, 46, 47, 48]. The phase of these oscillations
directly encodes the expression levels of the proteins involved in the oscillation and thus information
about the current state of the cell. To illustrate the mechanisms for the control of information routing
in these networks we consider a network of coupled generic biochemical Goodwin oscillators as well as
a model of a synthetic gene regulatory network of fast and tunable oscillators [44, 47].

8.2.1 Network of Coupled Goodwin Oscillators

The model network consists of mutually coupled bio-chemical Goodwin oscillators [49, 50, 34, 36] that
were introduced to study enzyme kinetics and successfully describe aspects of circadian oscillations such
as in Neurospora [51]. Oscillations arise due to a nonlinear and inhibitory feedback mechanism: A
gene is transcribed into mRNA that is translated into an enzyme, which then catalyzes the formation
of a protein that represses the initial translation process (cf. Supplementary Fig. 8). Denoting the
concentrations of mRNA, enzyme and protein of the i-th oscillator as xi, yi and zi respectively, the
system evolves in time t according to [36]

d

dt
xi = kx,i

1

1 + zpi
− dx,ixi +

∑
j

ci,j (t) + ρx,iζx,i

d

dt
yi = ky,ixi − dy,i

yi
Km,i + yi

+ ρy,iζy,i (98)

d

dt
zi = kz,iyi − dz,i

zi
Kn,i + zi

+ ρz,iζz,i

Here kx,i,ky,i and kz,i are the rates for translation, transcription and catalysis, and dx,i is the degra-
dation rate of xi. Enzymes and proteins are assumed to be degraded by Michaelis-Menten kinetics
[50] with constants Km,i and Kn,i. Repression of translation is modeled via a Hill-function [52] with
cooperativity parameter p for the auto repression. Other oscillators j couple to oscillator i via their
proteins zj that also repress translation of xi with cooperativity parameter li, Hill-constant Kc,i and
coupling strength ai,j [53], i.e.

ci,j (t) =
ai,j

Kc,i + zlj (t)
. (99)

All concentrations receive external signals modeled as uncorrelated white noise processes ζx,i, ζy,i and
ζz,i with 〈ζa,i (t) , ζb,j (s)〉 = δa,bδi,jδ (t− s) and noise levels ρx,i,ρy,i and ρz,i. For the example in Fig. 1
of the main manuscript we choose two oscillators i ∈ {1, 2} with constants adapted from [36]. In
particular, p = 4, kx,i = 0.2 + (i − 1)0.1, dx,i = 0.1, ky,1 = 0.2, dy,i = 0.1, Km,i = 0.01, kz,i = 0.05,
dz,i = 1, Kn,i = 20. Coupling constants where a1,2 = a2,1 = 0.015, a1,1 = a2,2 = 0, Kc,i = 1 and li = 4.
The collective dynamics was changed and subsequently the effective directionality in information

routing was reversed by using dx,2 = 0.12 instead of dx,2 = 0.1 in the second row of Fig. 1a-d in the

29



main manuscript. Thus local changes to one oscillator are capable of controlling the information to
and from another oscillatory components of the gene network.
For numerical integrations we used a time step ∆t = 0.1. The phase field φi (xi, yi) was estimated as

described in Supplementary Section 3.1 using a grid of 1003 initial conditions in the phase space region
(xi, yi, zi) ∈ [0, 1.8] × [0, 4.6] × [0.2, 4.4] and deterministic trajectories of duration t = 4000 (cf. Sup-
plementary Fig. 8b). The delayed mutual information was estimated using stochastic trajectories of
duration t = 107 and noise strengths ρx,i = ρy,i = ρz,i = 0.001. The theoretical predictions were
obtained by semi-analytically determining the phase response curves, rotation frequencies, coupling
functions and effective noise levels as described in Supplementary Note 3.2 together with numerically
solving for a stable phase locked state using (27) and then using the theoretical results in Supplementary
Note 4.

8.2.2 Network of Synthetic Gene Oscillators

We here consider a network of synthetic gene regulatory oscillators, in which similarly to the previous
example information routing between oscillators may be steered by acting only locally on one of them.
In the simplest example, we consider two mutually coupled genetic oscillators where the dynamics of
each individual oscillator is based on an artificially engineered robust and tunable genetic oscillator
proposed in [44] and experimentally realized in [47].
Each individual oscillator i ∈ {1, 2} is described by (rescaled) concentrations of two proteins, xi and

yi. While protein xi facilitates the synthesis of itself and yi, yi is repressing its own translation and
that of xi (cf. Supplementary Fig. 9a). In the uncoupled case we consider the dynamical equations as
proposed in [44], table I and equation (1). We additionally assume that oscillator i is coupled to j via
a diffusive term (cf. Supplementary Fig. 10)

ci,j (t) = ai,j (xj (t)− xi (t)) (100)

Such a coupling may be realized by an additional reaction x1 
 x2 with reaction rates a1,2 and a2,1.
The reduced dynamics of this network then reads

ẋi =
1 + x2

i + αiβix
4
i(

1 + x2
i + βix4

i

) (
1 + y4

i

) − γx,ixi + ci,j (t) + ρx,iζx,i

τy,iẏi =
1 + x2

i + αiσix
4
i(

1 + x2
i + βix4

i

) (
1 + y4

i

) − γy,iyi + ρx,iζx,i (101)

where αi is the increase in transcription rate due to binding of xi to one of the operator sites of the
promoter and βi the affinity for an xi dimer to bind to one of the operator sites relative to the other,
τy,i is the time scale of the dynamics of protein yi. The parameters γx,i and γy,i describe the effective
decay of the proteins. The parameter γy,i can be influenced by changing the concentration of proteins
that degrade or permanently bind to yi [44, 47] (cf. Supplementary Fig. 10a). All concentrations receive
white noise processes ζx,i and ζy,i with 〈ζa,i (t) , ζb,j (s)〉 = δa,bδi,jδ (t− s) and noise levels ρx,i and ρy,i.
For the examples in Supplementary Figs. 9 and 10 we choose parameter as in [44], in particular

αi = 11, σi = 2, τy,i = 5, γx,i = 0.105 and γy,2 = 0.027. We regard γy,1 as a parameter that may
be controlled externally and that locally influences the oscillation properties of oscillator i = 1. For
the examples we choose γy,1 = 0.026 or γy,1 = 0.029. Noise levels were ρx,i = ρy,i = 0.002. As visible
from Supplementary Fig. 10 this change is capable of reversing the information routing between the
two oscillators.
We used a time step ∆t = 0.1 for numerical integration. Deterministic trajectories of duration

t = 10000 on a grid of 1202 points equally spaced in relevant phase space region (xi, yi) ∈ [−0.25, 2.1]×
[2.25, 3.1] was used to estimate the phase field numerically as described in Supplementary Note 3.1.
The delayed mutual information was calculated using a time series of duration t = 107 and a histogram
of 104 × 104 equidistant bins in each phase coordinate. The theoretical predictions were obtained by
semi-analytically determining the phase response curves, rotation frequencies, coupling functions and
effective noise levels as described in Supplementary Note 3.2 together with numerically solving for a
stable phase locked state using (27).
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8.3 Networks of Stuart-Landau Oscillators

A very generic mechanism to generate oscillations is via a Hopf bifucation. In this section we consider
a generic network of coupled Stuart-Landau oscillators. Using center manifold reduction and normal
form theory any system of deterministic weakly coupled oscillators each close to Hopf bifurcation may
be transformed into this form [12]. Here we present a stochastic extension of this result.
The network consists of N stochastic Stuart-Landau oscillators each described by a two dimensional

state (xi, yi) that evolve according to

dxi =

aρi xi − aιiyi − (bρi xi − b
ı
iyi)

(
x2
i + y2

i

)
+
∑
j

cρijxj − c
ı
ijyj

 dt+ ρx,idwx,i

dyi =

aıixi + aρi yi − (bıixi + bρi yi)
(
x2
i + y2

i

)
+
∑
j

cıijxj + cρijyj

 dt+ ρy,idwy,i (102)

where aρi , a
ι
i, b

ρ
i and b

ι
i are real parameters capturing the properties of the oscillatory dynamics of node

i and and cρij and c
ι
ij are real coupling constants. As before wα,i are independent unit variance Wiener

processes and ρx,i and ρy,i the standard deviations of the noise. To keep calculations simple we here
focus on uncorrelated inputs to the individual oscillators and assume ρx,i = ρy,i = ρi.
For this model a full analytic stochastic phase reduction is possible. The scalar phase field as

introduced in Supplementary Note 3.1 is given by the analytical expression

φi = arctan (xi, yi)− bi log
√
x2
i + y2

i (103)

which gives rise to phase equations of the form

dφi =

ωi +
n∑
j 6=i

crij
r0,j

r0,i

[
sin
(
φj − φi + cϕij

)
− bi cos

(
φj − φi + cϕij

)] dt+ ςφ,idwφ,i (104)

with r2
i,0 =

aρi
bρi

and ωi = aıi − a
ρ
i bi, bi =

bıi
bρi

and σ2
φ,i = ρ2

i

(
1 + b2i

)
/r2

0,i. Full details of this derivation
and the more generic case of correlated input noises will be published elsewhere.
In the example in Fig. 3a-c of the main manuscript we used parameters aρi = 1,aιi = 3, bρi = 2, bιi = 0.5,

cϕi,j = 2, cρi,j = 0.02 for intra-cluster links and cϕi,j = 0.004 for inter-cluster links. The noise level was
ρi = 0.001. For the lower panels in Fig. 3b,c in the main manuscript we changed aι1 to aι1 = 3.008
for the oscillator indicated by an arrow in panel a. Phase-locked states where determined numerically
using equation (27). To estimate the delayed mutual information numerically we used integration steps
∆t = 0.1, sample trajectories in the stationary state of length t = 106 and 3000× 3000 bins in phase
space. Panels a,b in Fig. 3 in the main manuscript highlighting the transition in information routing
directionality were calculated using parameter values from aι1 = 2.9965 to aι1 = 3.01 in steps of 0.0005.
Arrows in the effective networks represent the quantified information routing as in (2).

8.4 Networks of Kuramoto Phase-Oscillators

For the Kuramoto network shown in the lower part of Fig. 3 in the main manuscript we use equation
(26) with γi,j (φ) = ai,j

(
0.6− sin

(
φ− 0.8 sin (φ)4 + 1

))
and ωi = 1.075 for oscillators in the first

cluster and ωi = 1.0 otherwise. For present links in the graph the coupling strength between clusters
was ai,j = 0.1 or ai,j = 0.2 with equal probability and ai,j = 1 or ai,j = 2 within the clusters. By
changing a local link indicated by an arrow in Fig. 3f in the main manuscript from 0.3 to 1.7 the
non-local information sharing pattern is changed. Thus local link changes are capable of controlling
information routing in the full network.
Density plots in the lower panels in Fig. 3 in the main manuscript illustrate the discrete switching

like change in the directionality of information routing between the clusters due to changes in a single
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local link. The plots were constructed using steps of 0.05 in the coupling weight. After determining the
phase-locked states numerically for each weight we used Corollary 3 to determine the delayed mutual
information. Weights of the effective information routing networks were determined using (2).
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