1	An effective molecular approach for assessing cereal aphid-parasitoid-endosymbiont networks
2	
3	
4	Zhengpei Ye ^{1*} , Ines Vollhardt ² , Susanne Girtler ¹ , Corinna Wallinger ¹ , Zeljko Tomanovic ³ & Michael
5	Traugott ¹
6	¹ Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Austria
7	² Agroecology, Department of Crop Sciences, Georg-August-University Göttingen, Germany
8	³ Institute of Zoology, Faculty of Biology, University of Belgrade, Serbia
9	
10	
11	*Corresponding author:
12	Zhengpei Ye
13	Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Technikerstrasse
14	25, 6020 Innsbruck, Austria
15	Phone: +43 (0)512 507-51676, Fax: +43 (0)512 507-51799; E-Mail: Zhengpei.Ye@uibk.ac.at
16	

17 Appendix S1: unexpected PCR products in 16SMP and their interpretation

The Dendrocerus forward primer and the shared reserve primer ParG-A462 produce an additional 18 19 149/150 bp amplicon when DNA of *Dendrocerus* was present. This amplicon is similar in size to the Aphelinus-hyperparasitoid PCR product $(155 \pm 2 \text{ bp})$. This side band, however, does not corrupt the 20 detection of either Aphelinus parasitoids or hyperparasitoids, because the samples, which score 21 Aphelinus-hyperparasitoid- or Dendrocerus-positive, are subjected to the second step HypMP assay 22 23 anyway. Secondly, all Dendrocerus spp. parasitoid samples provide a weak and unexpected side band 24 which is of similar size as the one for S. avenae (259 bp). However, this side band, which is only 25 amplified at the presence of a large amount of *Dendrocerus* DNA, such as in a DNA extract of an 26 adult parasitoid, does not cause problems for correct aphid species identification: if this Dendrocerus 27 side band occurs together with the bands specific for one of the two other aphid species (R. padi and M. dirhodum, respectively), the individual can be identified as the respective aphid species. In case of 28 29 S. avenae, there may just be a thicker band comprising both the S. avenae specific band and the sideband. 30

31

32 Appendix S2: Morphological identification keys

The parasitoids were morphologically identified by specialists using multiple taxonomic keys $^{1-15}$.

34

Appendix S3: General primers and PCR conditions used to generate COI, 16S and 18S sequences

37 The 18S sequences of aphids and parasitoids were amplified and sequenced using the general primers 18SL0001 and 18SR1100¹⁶. The 16S sequences of aphids and parasitoids were amplified and 38 39 sequenced using general primers '5'-CGCCGTTTTATCAAAAACATGT-3'', a modification of the LR-N-13398 primer¹⁷ by Kambhampati, et al. ¹⁸ and LR-J-13017¹⁹ or LR-N13398 version '5'-40 CACCTGTTTATCAAAAACAT-3¹⁷ LR-J12888 **'**5'-41 and version TCGATTTGAACTCARATCATGTA-3"20. The COI fragments of aphids and parasitoids were 42 amplified and sequenced using the general invertebrate primers LCO-1490 and HCO-2198²¹. For PCR, 43 10 μ l reactions contained 1.5 μ l template DNA, 5 μ l of 2 × Multiplex PCR Master Mix (Qiagen, 44

Hilden, Germany), 1 µM of each of the respective primers and PCR-water to adjust the volume. The PCRs were carried out in a Master Cycler Gradient (Eppendorf, Hamburg, Germany) using the following thermocycling conditions: 95 °C for 15 min, 35 cycles of 94 °C for 30 s, 50 °C for 90 s, 72 °C for 60 s, and a final extension of 72 °C for 10 min. PCR products were visualized on 1.5 % agarose gels, purified with ExoSap-IT (Amersham Biosciences, Glattbrugg, Switzerland) following the manufacturer's instructions, and sent to Eurofins MWG Operon (Ebersberg, Germany) for bi-directional sequencing.

52

53 Appendix S4: Multiplex PCR assay sensitivity testing and primer balancing

54 Parasitism experiment: Live S. avenae (host) and L. testaceipes (parasitoid) were obtained from Katz Biotech AG. Aphids were kept on young wheat plants inside fine mesh cages in a climate chamber 55 56 $(\sim 25 \pm 1^{\circ}C, 12:12h L:D)$, separated from a colony of L. testaceipes maintained on S. avenae at similar conditions. Unparasitised S. avenae nymphs were individually placed in 1.5 ml centrifuge tubes with 57 58 one female L. testaceipes. After oviposition was observed, the aphids were transferred onto a fresh 59 young wheat plant inside a mesh cage in the climate chamber. To test how early parasitoid DNA can be detected within the aphids, batches of at least 15 parasitised aphids each were collected from the 60 61 plants at 1 h, 1 d, 2 d, 3 d, 5 d, and 7d post-parasitism, and individually frozen at -80°C. Additionally, 15 un-parasitised aphids and 15 parasitoids were frozen to serve as negative and positive controls in 62 63 the molecular testing, respectively.

Generating standardised DNA templates: For determining the sensitivity of the MP-PCR assays and 64 balancing amplification efficiencies between primer pairs, standardised DNA templates of each 65 targeted taxon were generated following the approach described in Sint, et al. ²². 16S templates of 66 67 Aphidius ervi, Lysiphlebus testaceipes, Aphidius rhopalosiphi, Alloxysta victrix, Asaphes suspensus, Asaphes vulgaris and Coruna clavata were amplified using the general primers LR-N13889 '5'-68 CACCTGTTTATCAAAAACAT-3"17 and LR-J12888 '5'-TCGATTTGAACTCARATCATGTA-69 3²⁰. For the facultative endosymbionts *Hamiltonella defensa* and *Regiella insecticola*, 16S templates 70 were amplified using the modified general forward and reverse primers for facultative aphid 71 endosymbionts, 10F '5'-GAGTTTGATCATGGCTCAGATTG-3''23 and 35R²⁴, respectively. 16S 72

templates of the facultative endosymbiont pea aphid X-type symbiont (PAXS) were amplified by the 73 newly designed forward primer PAXS-S494 '5'-GGCACGTAGGCGGTTTC-3'' and the already 74 published reverse primer 35R²⁴. COI templates of cereal aphids (*Sitobion avenae*, *Rhopalosiphum padi* 75 76 and Metopolophium dirhodum) and parasitoids (A. ervi, Aphidius avenae, Aphidius uzbekistanicus, 77 Ephedrus plagiator, Praon gallicum, Praon volucre, Dendrocerus carpenteri and Phaenoglyphis villosa) were amplified using the general invertebrate primers LCO-1490 and HCO-78 2198²¹. For PCR, 20 μ l reactions contained 3 μ l template DNA, 10 μ l of 2 \times Multiplex PCR Master 79 80 Mix (Qiagen, Hilden, Germany), 2 µM of each of the respective primers and PCR-water to adjust the 81 volume. The PCRs were carried out in a Master Cycler Gradient (Eppendorf, Hamburg, Germany) using the following thermocycling conditions: 95 °C for 15 min, 35 cycles of 94 °C for 30 s, 50 °C for 82 90 s, 72 °C for 60 s, and a final extension of 72 °C for 10 min. PCR template concentrations were 83 standardised and serially diluted to 10,000, 5,000, 1,000, 500, 100, 50, 10 and 5 double-stranded DNA 84 85 templates/µl.

To test the sensitivity of the first step MP-PCRs, the aphids from the parasitism experiment were checked for parasitoid DNA to confirm parasitisation success, using a PCR protocol allowing to detect a freshly inserted parasitoid egg already²⁵. All aphid samples which were tested positive in this assay were deemed to contain a parasitoid egg or larva.

90 The two first step MP-PCR assays were tested with the L. testaceipes-positive samples, using 10 91 replicates per time point post parasitism. Afterwards, the sensitivities of the three parasitoid primer 92 pairs employed in the 16SMP were balanced using standardised DNA templates (for the 18SMP this 93 was not done as only one parasitoid primer pair is included). First, the number of L. testaceipes DNA 94 templates that allow the detection of eggs of this parasitoid species by the Aphidiinae primer pair was 95 determined; thereafter, the sensitivities of Aphelinus-hyperparasitoid and Dendrocerus spp. group-96 specific primer pairs were adjusted to the same sensitivity as the Aphidiinae primer pair by adjusting 97 the primers' concentrations using DNA templates of A. suspensus and D. carpenteri, respectively. As L. testaceipes is not a common species in the experimental region, the 16SMP was also tested with 98 known numbers of DNA templates of A. ervi to assure that the Aphidiinae primer pair has similar 99 sensitivity for different Aphidiinae species. For the sensitivity-testing of species-specific parasitoid 100

identification in the second step MP-PCR assays, the minimum number of template DNA per target
species detectable was determined. For the *Aphidius* spp. genus-specific primer pair 16S templates of *A. rhopalosiphi* were used.

104 For the facultative endosymbiont and aphid specific primers included in the two first step MP-PCR assays, the process of sensitivity testing and primer balancing was conducted using the same 105 106 strategy as described above. To check if facultative endosymbiont DNA is detectable in mummified 107 aphids, 10 aphid mummies each from both a H. defensa-infected and a H. defensa-free population of 108 A. pisum were tested with the two first-step MP-PCR assays. To test if facultative endosymbiont DNA is detectable even after the parasitoid adult emerges, five H. defensa-infected mummified A. pisum 109 samples were kept until the parasitoid adult emerged. Thereafter, the empty mummy and the 110 respective adult parasitoid were DNA-extracted as one sample. These five samples were tested with 111 the two first step MP-PCR assays. After the determination of the minimum number of DNA template 112 113 of *H. defensa* detectable by these assays, the concentrations of *R. insecticola* and PAXS primer pairs were adjusted accordingly to obtain similar detection sensitivity. 114

To ensure high assay sensitivity for the detection of parasitoids and facultative endosymbionts in the first step MP-PCRs, the concentration of the aphid primers was reduced to avoid that these primers dominate the PCR when high concentrations of aphid DNA is present in the sample, i.e. when a freshly parasitised/endosymbiont infected aphid is examined.

119

120 Appendix S5: Multiplex PCR assay specificity testing

The specificity of the MP-PCR assays was tested with the targeted aphid, parasitoid and endosymbiont species. All aphids were checked for the presence of endosymbiont DNA according to Ferrari, et al. ²⁶, with *Serratia symbiotica* as a non-target. Additionally, the first step MP-PCR assays were tested for primer generality with at least two individuals of each family of the non-cereal aphid parasitoids, except with only one specimen for Trichogrammatidae. In the second step MP-PCR assays, the three cereal aphids, 28 less common parasitoids, as well as four facultative endosymbionts were used for non-target testing. Generally, at least three individuals per species were used for specificity testing, for the parasitoids *Aphelinus asychis*, *Aphelinus varipes*, *Aphidius rosae*, *Alloxysta brachyptera* and *Dendrocerus laticeps*. For *Toxares deltiger*, *Alloxysta pedestris* (n = 2), and *Pachyneuron formosum* (n = 1). In addition, two PCR products per target taxon of field-collected samples were sequenced to confirm the species identity. Only one PCR product each was obtained for *Asaphes suspensus* and *Coruna clavata*, respectively, and no pea aphid X-type symbiont (PAXS) at all.

134

	Family	Species	Number of individuals	Number of positive amplicons		
Organism group				General parasitoid (18SMP)	Aphelinus-Hyperparasitoid (16SMP)	Aphidiinae (16SMP)
Parasitoids	Braconidae	Apanteles subandinus	1	1		
		Chorebus sp.	1	1		
		Cotesia glomerata	1	1	1	
		Cotesia rubecula	1	1	1	
		Dolichogenidea gelechiidivoris	1			1
		Microplitis mediator	1	1		1
		Opius dissitus	1			
		Orgilus lepidus	1	1	1	
		Phaedrotoma scabriventris	1	1		
		unidentified	1			
	Ceraphronidae	Aphanogmus sp.	1	1		
		Ceraphronus sp.	1			
	Diapriidae	unidentified	2	2		
	Encyrtidae	Copidosoma koehleri	1	1	1	
		unidentified	1	1	1	
	Eucoilidae	unidentified	2	2		
	Eulophidae	Chrysocharis caribea	1	1		
		Chrysocharis flacilla	1	1	1	
		Diglyphus sp.	1	1	1	
		Diglyphus websteri	1	1	1	
		Pnigalio sp.	1	1	1	
	Eurytomidae	unidentified	2	2	2	
	Ichneumonidae	Aritranis director	1	1		
		Diadegma semiclausum	1	1	1	

Table S1: Number of amplicons generated in non-cereal aphid parasitoids using the first MP-PCR assays (18SMP and 16SMP).

		unidentified	2	1	
	Megaspillidae	Archiphauurus sp.	1	1	
		Conostigmus sp.	1	1	
	Mymaridae	unidentified	2	2	
	Platygastridae	Euxestonotus sp.	1	1	
		Leptacis sp.	1		
	Proctotrupidae	Unidentified	2	1	2
	Pteromalidae	Halticoptera arduine	1	1	1
		unidentified	2	2	2
	Scelionidae	Trissolcus spp.	3	3	
	Trichogrammatidae	Trichogramma sp.	1	1	1
Other	Apidae	Apis mellifera	1	1	
Hymenoptera		Bombus pascuorum	1	1	1
	Symphyta	unidentified	1	1	
	Vespidae	Polistes dominula	1	1	

Table S2: Five parasitoid groups have no between species distances within group on partial 16S sequences, which are generated using the 16S general parasitoid primers in 16SMP. Non-cereal aphid parasitoids are marked with *; parasitoid species which attack cereal aphids on their winter plant host are marked with **.

Trophic level	Family/Subfamily	Species-group
Primary Parasitoid	Aphelinidae	Aphelinus chaonia & Aphelinus varipes
	Aphidiinae	Aphidius ervi, Aphidius microlophii*, Aphidius rhopalosiphi, Aphidius urticae* & Aphidius uzbekistanicus
		Aphidius matricariae & A. urticae*
		Praon abjectum, Praon bicolor* & Praon volucre
Hyperparasiotid	Pteromalidae	Pachyneuron muscarum & Pachyneuron solitarium

143

Organism group	Family	Species/Genus	Taxonomic authority
Aphid	Aphididae	Acyrthosiphon pisum	Harris 1776
	Aphididae	Aphis fabae	Scopoli 1763
	Aphididae	Metopolophium dirhodum	Walker 1849
	Aphididae	Rhopalosiphum padi	L. 1758
	Aphididae	Sitobion avenae	Fabricius 1775
Aphid primary parasitoid	Aphelinidae	Aphelinus abdominalis	Dalman 1820
	Aphelinidae	Aphelinus asychis	Walker 1839
	Aphelinidae	Aphelinus chaonia	Walker 1839
	Aphelinidae	Aphelinus mali	Haldeman 1851
	Aphelinidae	Aphelinus varipes	Förster 1841
	Braconidae	Adialytus ambiguus	Haliday 1834
	Braconidae	Aphidius avenae	Haliday 1834
	Braconidae	Aphidius colemani	Viereck 1912
	Braconidae	Aphidius ervi	Haliday 1834
	Braconidae	Aphidius matricariae	Haliday 1834
	Braconidae	Aphidius microlophii	Pennacchio & Tremblay 1987
	Braconidae	Aphidius rhopalosiphi	Stefani-Perez 1902
	Braconidae	Aphidius rosae	Haliday 1834
	Braconidae	Aphidius urticae	Haliday 1834
	Braconidae	Aphidius uzbekistanicus	Luzhetzki 1960
	Braconidae	Binodoxys angelicae	Haliday 1833
	Braconidae	Diaeretiella rapae	M'Intosh 1855
	Braconidae	Ephedrus persicae	Froggatt 1904
	Braconidae	Ephedrus plagiator	Nees 1811
	Braconidae	Lipolexis gracilis	Förster 1862
	Braconidae	Lysiphlebus fabarum	Marshall 1896
	Braconidae	Lysiphlebus testaceipes	Cresson 1880
	Braconidae	Monoctonus crepidis	Haliday 1834
	Braconidae	Praon abjectum	Haliday 1833
	Braconidae	Praon bicolor	Mackauer 1959
	Braconidae	Praon gallicum	Starý 1971
	Braconidae	Praon longicorne	Starý 1971
	Braconidae	Praon necans	Mackauer 1959
	Braconidae	Praon volucre	Haliday 1833
	Braconidae	Toxares deltiger	Haliday 1833
	Braconidae	Trioxys auctus	Haliday 1833
Hyperparasiotid	Encyrtidae	Syrphophagus aphidivorus	Mayr 1876
	Figitidae	Alloxysta brachyptera	Hartig 1840
	Figitidae	Alloxysta brevis	Thomson 1862
	Figitidae	Alloxysta fulviceps	Curtis 1838
	Figitidae	Alloxysta pedestris	Curtis 1838
	Figitidae	Alloxysta victrix	Westwood 1833
	Figitidae	Phaenoglyphis villosa	Hartig 1841
	Megaspillidae	Dendrocerus carpenteri	Curtis 1829

Table S3: Taxonomic authorities of the organisms used in this study.

	Megaspillidae	Dendrocerus laticeps	Hedicke 1929
	Pteromalidae	Asaphes suspensus	Nees 1834
	Pteromalidae	Asaphes vulgaris	Walker 1834
	Pteromalidae	Coruna clavata	Walker 1833
	Pteromalidae	Pachyneuron aphidis	Bouché 1834
	Pteromalidae	Pachyneuron formosum	Walker 1833
	Pteromalidae	Pachyneuron muscarum	L. 1758
	Pteromalidae	Pachyneuron solitarium	Hartig 1838
non-aphid parasitoid	Braconidae	Apanteles subandinus	Blanchard 1947
	Braconidae	Chorebus sp	Haliday 1833
	Braconidae	Cotesia glomerata	L. 1758
	Braconidae	Cotesia rubecula	Marshall 1885
	Braconidae	Dolichogenidea gelechiidivoris	Marsh 1979
	Braconidae	Microplitis mediator	Haliday 1834
	Braconidae	Opius dissitus	Muesebeck 1963
	Braconidae	Orgilus lepidus	Muesebeck 1967
	Braconidae	Phaedrotoma scabriventris	
	Ceraphronidae	Aphanogmus sp	Thomson 1858
	Ceraphronidae	Ceraphronus sp	Jurine 1807
	Encyrtidae	Copidosoma koehleri	Blanchard 1940
	Eulophidae	Chrysocharis caribea	Boucek 1977
	Eulophidae	Chrysocharis flacilla	Walker 1842
	Eulophidae	Diglyphus sp	Walker 1844
	Eulophidae	Diglyphus websteri	Crawford 1912
	Eulophidae	Pnigalio sp	Schrank 1802
	Ichneumonidae	Aritranis director	Thunberg 1824
	Ichneumonidae	Diadegma semiclausum	Hellén 1949
	Megaspillidae	Archiphanurus sp	
	Megaspillidae	Conostigmus sp	Dahlbom 1858
	Platygastridae	Euxestonotus sp	Fouts 1925
	Platygastridae	Leptacis sp	Foerster 1856
	Pteromalidae	Halticoptera arduine	Walker 1843
	Scelionidae	Trissolcus sp	Ashmead 1893
	Trichogrammatidae	Trichogramma sp	Westwood 1833
other Hymenoptera	Apidae	Apis mellifera	L. 1758
	Apidae	Bombus pascuorum	Scopoli 1763
	Vespidae	Polistes dominulus	Christ 1791

- 147 **Table S4:** Aphid parasitoid and endosymbiont DNA sequences retrived from GenBank for this study.
- 148 Non-cereal aphid parasitoids are marked with *; parasitoid species which attack cereal aphids on their

149 winter plant host are marked with **.

Gene	Organism group	Family/Subfamily	Species	GenBank accession number
COI	Aphid	Aphididae	Metopolophium dirhodum	DQ499039, DQ499040,FN868599, KT204426
			Rhopalosiphum padi	DQ499056, EU701894, FJ009050, GU457795
			Rhopalosiphum padi	HQ979401, KT204427
			Sitobion avenae	EU701907, FN868603, GU138697, GU978931, JF806536, KT204428
	Primary Parasitoid	Aphelinidae	Aphelinus abdominalis	FM210123, JX507444
			Aphelinus varipes	HQ599571, JX507449, KJ086033, KJ088823
		Aphidiinae	Adialytus ambiguus	KJ719605, KJ719606, KJ719607, KJ719608, KJ719609, KJ719610, KJ719611, KJ719612, KJ719613
			Aphidius avenae	EU819392, EU819393, JN164785, JN620545, JN620545, JN620547, JQ723406, JQ723408
			Aphidius colemani	FM210125, FM210126, JN620548, JN620549, KJ615362, KJ615370-KJ615373
			Aphidius ervi	FM210130, FM210131, FM210132, FM210134, JX507435, KC211025, KC211026, KT706472
			Aphidius matricariae	JN620562
			Aphidius microlophii*	JN620566, JN620568, JX507434,
			Aphidius rhopalosiphi	EU819401, EU819402, EU819403-EU819406, JN164753, JN164754, JN164763, JN164777, JN164778, JN620570-JN620572, JX507437, KF597710, KJ088590, KJ615376
			Aphidius rosae*	JN620580, JN620582
			Aphidius urticae*	JN620590, JX507433, JX507436
			Aphidius uzbekistanicus	JN164735, JN164746, JN620594, KF597706
			Binodoxys angelicae	JF730315, JN620603
			Diaeretiella rapae**	JF730316
			Diaeretiella rapae**	JN620613, JN620615, KF802814
			Ephedrus plagiator	JN620623, JN620625, JN620627, JX507443
			Lipolexis gracilis	JN620635, JN620636
			Lysiphlebus fabarum	JF730314, JN620645, JN620647, JN620652, JQ723415, JX507442, KC237766-KC237768, KF597685, KF597686, KF597688-KF597690, KF597681, KF597692, KM408522, KP663444, KP663448-KP663450, KP663455-KP663457, KP663459
			Lysiphlebus testaceipes	FM210176, HQ599569, JN620653, JN620655, JX470530, JX470531, JX470533, KC237764, KC237765, KJ087120, KJ090001
			Monoctonus caricis**	JN620657, JN620658
			Monoctonus cerasi	JX507448
			Monoctonus crepidis*	JN620660, JN620661, JN620662
			Praon abjectum	KC128669- KC128671
			Praon bicolor*	JN620672
			Praon gallicum	EU574906, EU819398-EU819400, JN620679
			Praon volucre	EU819394-EU819397, JN620687-JN620689, JN620681, KI698487, KI698496, KI698504

				KJ698507
			Toxares deltiger	EU819391, KP663464
	Hyperparasiotid	Encyrtidae	Syrphophagus aphidivorus	KF597765, KF597768, KF597770
		Figitidae	Alloxysta brachyptera	JX507466
			Alloxysta circumscripta	JX507461
			Alloxysta fulviceps	JX507464, JX507469, JX507470
			Alloxysta macrophadna	JX507467
			Alloxysta pedestris	JX507472
			Alloxysta victrix	EU819388, JX507475
			Phaenoglyphis villosa	JX507458
		Megaspillidae	Dendrocerus carpenteri	EU819389, JF906505, JX507452
		Pteromalidae	Asaphes suspensus	JX507454
			Asaphes vulgaris	EU819407, EU819408, JX507453, KF802812, KF802813, KM556888, KM557440, KM561413, KM565300
			Coruna clavata	JX507456
			Pachyneuron aphidis	JF906503, JX507457, KF597737, KF597738, KF597739, KF597740, KF597741
16S	Aphid	Aphididae	Rhopalosiphum padi	AY745781, U36743
			Sitobion avenae	AY745779, HM117805
	Primary Parasitoid	Aphelinidae	Aphelinus asychis	AF289137, AF289138
			Aphelinus varipes	AF289135, AF289136
			Aphidius avenae	JQ240491, KP983098
			Aphidius colemani	AF289145, JQ240494, KP983101
			Aphidius ervi	AF174310, AF176067, AF289147, GU237126, JQ240499
			Aphidius matricariae	AF289148, GU237127, JQ240509
			Aphidius microlophii*	JQ240513, KP983113
			Aphidius rhopalosiphi	JQ240517, KP982944
			Aphidius rosae*	AF003478, JQ240529, KP983125
			Aphidius urticae*	JQ240539, KP982956
			Aphidius uzbekistanicus	JQ240541, KP983140
			Binodoxys angelicae	AF174334, JQ240549
			Diaeretiella rapae**	AF174315, AF289143, AY194244, AY194245, AY194248, AY194251, AY194252, JQ240559, KP982970
			Ephedrus persicae**	AF174348
			Ephedrus plagiator	AF176068, JQ240571, KP982994
			Lipolexis gracilis	AF174338, AF176063, JQ240581
			Lysiphlebus fabarum	AF174321, AJ005426, AY207558, JQ240592, JQ240594, JQ240596, KJ848488, KP983024, KP983043
			Lysiphlebus testaceipes	AF174323, AF289142, AY207560, AY498557, AY745773, AY745774
			Monoctonus crepidis*	AF174339, JQ240604
			Praon bicolor*	JQ240614, KP983155
			Praon gallicum	EU574898, JQ240620
			Praon necans	AF174353
			Praon volucre	AF174352, JQ240624, JQ240626, JQ240630, KJ848490, KP983046, KP983063, KP983070, KP983074, KP983076

	Endosymbiont		Buchnera aphidicola	AY518294, AY849937, FJ357459-FJ357466
			Hamiltonella defensa	AF293616, AY136141, AY296733, FJ357491, FJ357493, FJ655537, FJ655538
			pea aphid X-type symbiont	FJ821502, FJ821502
			Regiella insecticola	AY296734, AY462102, AY907547, DQ010008, FJ357495, FJ357497, FJ357498
			Serratia symbiotica	AB522706, FJ655518, FJ655519, FJ655521, FJ655523-FJ655525, FJ655530, FJ655531
18S	Aphid	Aphididae	Metopolophium dirhodum	KT204362
			Rhopalosiphum padi	KT204363, U27825
			Sitobion avenae	KT204364
	Primary Parasitoid	Aphelinidae	Aphelinus asychis	JN623060
		Aphidiinae	Adialytus ambiguus	AJ009317
			Aphidius colemani	AJ009318
			Aphidius ervi	AJ009321
			Aphidius matricariae	AJ009324
			Aphidius rhopalosiphi	KT204373
			Aphidius rosae*	AJ009325
			Binodoxys angelicae	AJ009349
			Diaeretiella rapae**	AJ009323
			Ephedrus persicae**	AJ009329
			Lipolexis gracilis	AJ009334
			Lysiphlebus fabarum	AJ009332
			Lysiphlebus testaceipes	AJ009335, AY216698
			Praon volucre	AJ009347
	Hyperparasiotid	Megaspillidae	Dendrocerus carpenteri	AY918978
		Pteromalidae	Asaphes suspensus	JN623355
			Coruna clavata	JN623453
			Pachyneuron formosum	JN623464

153 Figure S1: Qiaxcel gel view of amplicons generated by the diagnostic multiplex PCR assays from the 154 field sample tests. The leftmost and rightmost numbers shows the amplicon lengths in base pairs. a)

Amplicons generated by 18SMP using aphid samples: *Metopolophium dirhodum* (1-2), *Rhopalosiphum padi* (3-4) and *Sitobion avenae* (5-7). b) Amplicons generated by 16SMP using aphid

157 samples: *Metopolophium dirhodum* (8-9), *Sitobion avenae* (10-12) and *Rhopalosiphum padi* (13-14). c)

158 Amplicons generated by PriMP using the aphid samples scored positive of Aphidiinae in 16SMP.

159 Samples tested positive with Ephedrus plagiator (15), Aphidius spp. (16), Aphidius uzbekistanicus

160 (17), Aphidius ervi (18), Praon volucre (19), Praon gallicum (20) and Aphidius avenae (21). d)

161 Amplicons generated by HypMP using the aphid samples scored positive of either Aphelinus-

162 hyperparasitoid or *Dendrocerus* in 16SMP. Samples tested positive *Alloxysta victrix* (22), *Asaphes*

- 163 suspensus (23), Asaphes vulgaris (24), Dendrocerus carpenteri (25), Coruna clavata (26),
- 164 *Phaenoglyphis villosa* (27) and *Aphelinus abdominalis* (28).
- 165

166 **References**

167 1 Fergusson, N. D. M. in Handbooks for the Identification of British Insects Vol. Vol. 8, Part 1c (eds P. C. Barnard & R. R. Askew) 1-55 (Royal Entomological Society of London, 1986). 168 2 Fergusson, N. D. M. A revision of the British species of Dendrocerus Ratzeburg 169 (Hymenoptera: Ceraphronoidea) with a review of their biology as aphid hyperparasites. 170 Bulletin of the British Museum of Natural History (Entomology) 41, 255-314 (1980). 171 Gibson, G. A. P. The Australian species of *Pachyneuron* Walker (Hymenoptera: Chalcidoidea: 172 3 Pteromalidae). Journal of Hymenoptera Research 10, 29-54 (2001). 173 Gibson, G. A. P. & Vikberg, V. The species of Asaphes Walker from America north of 174 4 175 Mexico, with remarks on extralimital distributions and taxa (Hymenoptera: Chalcidoidea, Pteromalidae). Journal of Hymenoptera Research 7, 209-256 (1998). 176 Kamijo, K. & Takada, H. Aphid hyperparasites of the Pteromalidae occurring in Japan 177 5 178 (Hymenoptera). in Studies on aphid hyperparasites of Japan, New Series 2. Insecta 179 Matsumurana, 39-76 (1973). Kavallieratos, N. G. et al. Praon Haliday (Hymenoptera : Braconidae : Aphidiinae) of 180 6 southeastern Europe: key, host range and phylogenetic relationships. Zoologischer Anzeiger 181 243, 181-209, doi:10.1016/j.jcz.2004.11.001 (2005). 182 183 7 Pennacchio, F. The Italian species of the genus Aphidius Nees (Hymenoptera, Braconidae, Aphidiinae). Bollettino del Laboratorio di Entomologia Agraria Filippo Silvestri 46, 75-106 184 (1990). 185 8 Starý, P. Biosystematic synopsis of parasitoids on cereal aphids in the Western Palaearctic 186 (Hymenoptera, Aphidiidae, Homoptera, Aphidoidea). Acta Entomologica Bohemoslovaca 78, 187 188 382-396 (1981). 189 9 Starý, P. Aphid parasites of Czechoslovakia. A review of the Czechoslovak Aphidiidae 190 (Hymenoptera). (Dr. W. Junk, 1966). Graham, M. W. R. d. V. The Pteromalidae of north-western Europe (Hymenoptera: 191 10 Chalcidoidea). Bulletin of the British Museum of Natural History (Entomology) Suppl. 16 192 193 (1969). Medvedev, G. S. (ed G. S. Medvedev) i-xii, 1-1341 (E.J. Brill, 1988). 194 11 12 Powell, W. The identification of hymenopterous parasitoids attacking cereal aphids in britain. 195 196 Systematic Entomology 7, 465-473, doi:10.1111/j.1365-3113.1982.tb00457.x (1982). 197 Tomanovic, Z. et al. Aphidius Nees aphid parasitoids (Hymenoptera, Braconidae, Aphidiinae) 13 in Serbia and Montenegro: tritrophic associations and key. Acta Entomologica Serbica 8, 15-198 199 39 (2003). Takada, H. Parasitoids (Hymenoptera : Braconidae, Aphidiinae; Aphelinidae) of four principal 200 14 pest aphids (Homoptera : Aphididae) on greenhouse vegetable crops in Japan. Applied 201 Entomology and Zoology 37, 237-249 (2002). 202 203 15 Japoshvili, G. & Abrantes, I. Aphelinus species (Hymenoptera : Aphelinidae) from the Iberian 204 Peninsula, with the description of one new species from Portugal. Journal of Natural History 205 40, 855-862, doi:10.1080/00222930600790737 (2006).

206 16 Luan, Y. X. et al. Ribosomal DNA gene and phylogenetic relationships of Diplura and lower 207 Hexapods. Science in China Series C-Life Sciences 46, 67-76, doi:10.1360/03yc9008 (2003). 17 Simon, C. et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene-208 209 sequences and a compilation of conserved polymerase chain-reaction primers. Annals of the 210 Entomological Society of America 87, 651-701 (1994). 18 Kambhampati, S., Volkl, W. & Mackauer, M. Phylogenetic relationships among genera of 211 Aphidiinae (Hymenoptera : Braconidae) based on DNA sequence of the mitochondrial 16S 212 213 rRNA gene. Systematic Entomology 25, 437-445, doi:10.1046/j.1365-3113.2000.00129.x (2000).214 Kambhampati, S. & Smith, P. T. PCR primers for the amplification of four insect 215 19 mitochondrial gene fragments. Insect Molecular Biology 4, 233-236, doi:10.1111/j.1365-216 2583.1995.tb00028.x (1995). 217 218 20 Simon, C., Buckley, T. R., Frati, F., Stewart, J. B. & Beckenbach, A. T. Incorporating 219 molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annual Review of Ecology 220 221 Evolution and Systematics 37, 545-579, doi:10.1146/annurev.ecolsys.37.091305.110018 222 (2006).223 21 Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular 224 225 Marine Biology and Biotechnology 3, 294-299 (1994). 22 Sint, D., Raso, L. & Traugott, M. Advances in multiplex PCR: balancing primer efficiencies 226 227 and improving detection success. Methods in Ecology and Evolution 3, 898-905, doi:10.1111/j.2041-210X.2012.00215.x (2012). 228 229 23 Sandström, J. P., Russell, J. A., White, J. P. & Moran, N. A. Independent origins and horizontal transfer of bacterial symbionts of aphids. *Molecular Ecology* **10**, 217-228, 230 231 doi:10.1046/j.1365-294X.2001.01189.x (2001). 24 Russell, J. A. & Moran, N. A. Horizontal transfer of bacterial symbionts: Heritability and 232 fitness effects in a novel aphid host. Applied and Environmental Microbiology 71, 7987-7994, 233 234 doi:10.1128/aem.71.12.7987-7994.2005 (2005). 235 25 Traugott, M. & Symondson, W. O. C. Molecular analysis of predation on parasitized hosts. Bulletin of Entomological Research 98, 223-231, doi:10.1017/s0007485308005968 (2008). 236 237 Ferrari, J., West, J. A., Via, S. & Godfray, H. C. J. Population genetic structure and secondary 26 symbionts in host-associated populations of the pea aphid complex. Evolution 66, 375-390, 238 239 doi:10.1111/j.1558-5646.2011.01436.x (2012).