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In spring dairy cows are often gradually transitioned from a silage- and
concentrate-based ration (total mixed ration, TMR) to pasture. Rumen microbiota
adaptability is a key feature of ruminant survival strategy. However, only little is known
on the temporal and spatial microbial alterations involved. This study aims to investigate
how the rumen liquid (LAAB), particle (PAAB), and epithelium (EAAB) associated
archaea and bacteria are influenced by this nutritional change. A 10-wk trial was
performed, including 10 rumen-fistulated dairy cows, equally divided into a pasture- and
a confinement- group (PG and CG). The CG stayed on a TMR-based ration, while the
PG was gradually transitioned from TMR to pasture (wk 1: TMR-only, wk 2: 3 h/day on
pasture, wk 3 & 4: 12 h/day on pasture, wk 5-10: pasture-only). In wk 1, wk 5, and wk
10 samples of solid and liquid rumen contents, and papillae biopsies were collected.
The DNA was isolated, and PCR-SSCP and 16S rRNA gene amplicon sequencing
analysis were performed. Cluster analysis revealed a higher similarity between LAAB
and PAAB, compared to the EAAB, characterized by higher species diversity. At all three
locations the microbiota was significantly influenced by the ration change, opposite the
generally acknowledged hypothesis that the EAAB remain more consistent throughout
dietary changes. Even though the animals in the PG were already on a full-grazing ration
for 4-6 days in wk 5, the microbiota at all three locations was significantly different
compared to wk 10, suggesting an adaptation period of several days to weeks. This is
in line with observations made on animal level, showing a required time for adaptation of
2-3 weeks for production and metabolic variables. A large part of the rumen prokaryote
species remained unaltered upon transition to pasture and exhibited a strong host
influence, supporting the hypothesis that the rumen microbiota consists of a core and a
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variable microbiota. For the effect of the location as well as the ration change either
very similar or opposite trends among member species of common taxa were observed,
demonstrating that microbes that are phylogenetically close may still exhibit substantially
different phenotypes and functions.

Keywords: dairy cow nutrition, rumen microbiota, pasture, ration change, PCR-SSCP, amplicon sequencing

INTRODUCTION

In temperate climate zones dairy cows often receive a silage
and concentrate-based ration (total mixed ration, TMR) during
winter time and are then gradually transitioned to a pasture-
based ration in spring. Since the two systems (confinement and
pasture) do not only differ substantially in ration composition,
but also how feed is acquired, considerable metabolic as well
as behavioral adaptations are required upon this nutritional
change (Osuji, 1974; Kolver, 2003). The adaptability of rumen
microbiota is a key feature of ruminant physiology and survival
strategy (Russell and Rychlik, 2001; McCann et al, 2014a;
Zanton, 2015). It has been shown that whenever cows undergo
a ration change rumen microbiota needs between 1 day and
sometimes even longer than 3 weeks to adapt and stabilize,
depending on the group of bacteria, archaea, fungi, or protozoa,
the extent of diet change and the behavioral adaptation required
(Hackmann, 2015). de Menezes et al. (2011) have shown in a
cross-over design, with 2 weeks for diet adaptation, that the
liquid and solid rumen bacterial and archaeal community of TMR
and pasture fed dairy cows differs significantly. Furthermore,
Nakano et al. (2013) showed that rumen microbiota needs 3-4
weeks to adapt to a pasture-based ration when no gradual
adaptation to the new nutritional situation is granted. In
both studies Prevotellaceae were more prevalent on pasture
and a possible key role of this bacterial family in reducing
methane production and in transitioning cows to a pasture-
based ration was suggested (de Menezes et al., 2011; Nakano
et al., 2013; McCann et al., 2014a). However, further data on
time required for adaptation of rumen microbiota during the
gradual transition from a TMR to a pasture-based ration, and the
prokaryotes playing a key role during this nutritional change are
lacking.

Aside the particle- and liquid-associated, a third
rumen bacterial community has been described. The
epithelium-associated or “epimural” microbiota has been
investigated in few studies and it has been suggested that it
is associated with fermentation end-products, volatile fatty
acid (VFA) absorption, maintaining an anaerobe environment,
recycling of endogenous nitrogen, and tissue (Cheng et al., 1979;
Wallace et al., 1979; McCann et al., 2014a). It has been further
speculated whether this microbial community may remain
more consistent through dietary changes compared with the

Abbreviations: TMR, total mixed ration, VFA, volatile fatty acid, PG, pasture
group, CG, confinement group, LAB, liquid associated bacteria, PAB, particle
associated bacteria, EAB, epithelium associated bacteria, LAAB, liquid associated
archaea and bacteria, PAAB, particle associated archaea and bacteria, EAAB,
epithelium associated archaea and bacteria.

particle- and liquid-associated bacterial community (Sadet et al.,
2007; McCann et al., 2014a).

In previous publications, we described the alterations in
production and rumen variables during a gradual transition
from a TMR- to a pasture-based ration (Schiren et al., 2016a,b).
Primarily a decrease in rumen fermentation activity during
the initial phase of transition was observed, most likely due
to a decreased intake of fermentable organic matter. After
2-3 weeks on a full-grazing ration an increase in rumen
fermentation activity occurred indicated by a decrease in mean
daily pH and acetate/propionate ratio as well as an increase
in daily pH variation and total VFA concentrations. This was
also mirrored in the development of different other rumen
(increase of VFA absorption capacity and rumen papillae
surface area), performance (stabilization of milk yield and
increase in BW) and metabolic (serum non-esterified fatty
acid concentrations) variables. We suggested a behavioral and
metabolic adaptation after 2-3 weeks on a full-grazing ration
leading to an increased intake of fermentable organic matter
and therefore rumen fermentation activity and stabilization
of milk production. Since rumen microbiota plays a key
role in adaptation to a new ration we hypothesized that the
effects of a transition from a TMR- to a pasture-based ration
observed in other performance, rumen and metabolic variables
would also be mirrored in the different rumen archaea and
bacteria communities. To investigate whether the archaea and
bacteria communities are differently affected by this ration
change, polymerase-chain-reaction-single-strand-conformation-
polymorphism (PCR-SSCP)- and amplicon sequencing-analysis
were performed on samples of the liquid and solid fraction, as
well as rumen papillae.

MATERIALS AND METHODS

Experimental work was conducted at the experimental station
of the Institute of Animal Nutrition of the Friedrich-Loeffler-
Institute (FLI) in Brunswick, Germany. The experiment was
carried out in accordance with the German Animal Welfare
Act approved by the LAVES (Lower Saxony State Office for
Consumer Protection and Food Safety, Germany; approval
number: 33.09-42502-04-11/0444).

Experimental Design and Treatments

A 10-wk trial (wk 1-10) was performed from April 21st until
June 27th 2014 including 10 rumen-fistulated German Holstein
cows (182 £ 24 days in milk, 23.5 £+ 3.5kg milk/d; parity: 4.5
=+ 2.2; mean + SD; at the beginning of the trial). The full trial
included 60 dairy cows (166 =+ 23 days in milk and 23.5 &+ 3.7 kg
milk/day; parity: 1.9 & 1.6; mean £ SD; at the beginning of
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the trial); the experimental design, treatments, rations, climate
data, animal performance, urine variables, clinical chemistry, and
total blood counts have been reported previously (Schiren et al.,
2016a). The rumen fermentation, VFA absorption characteristics
and morphology variables assessed in the fistulated animals, as
well as their performance data have been separately described
(Schiren et al.,, 2016b). The experimental work and data of the
present paper have been exclusively conducted and collected in
these 10 fistulated animals. At the beginning of the trial the
animals were randomly assigned to either a pasture group (PG,
n = 5) or a confinement group (CG, n = 5). The CG stayed
in a confinement system and received a TMR throughout the
whole trial (35% corn silage, 35% grass silage, 30% concentrate;
DM basis), whereas the PG was transitioned from a TMR- to a
pasture-based ration (wk 1: TMR-only, wk 2: TMR and 3 h/d
on pasture, wk 3 and 4: TMR and 12 h/d on pasture, wk 5-10:
pasture and 1.75kg DM concentrate/d offered in 2 equal meals
in troughs after morning and evening milking). A continuous
grazing system was implemented on ryegrass dominated pasture.
The cows were milked two times per day at 05:30 and 15:00 h and
the TMR was fed daily at ~11:00 h. Individual TMR and water
intake was continuously recorded in the confinement system
using electronic weighing throughs (Insentec, B.V., Markenesse,
The Netherlands). Dry matter intake (DMI) on pasture was
estimated using the n-alkane method in wk 7 and wk 9 (described
in detail in Schiren et al., 2016a).

Sample Collection

Sample collection took place at three points in time: at the
beginning of the trial (TMR-only, wk1), during the transitional
period (PG being 4-6 days on a full-grazing ration, wk 5) and
at the end of the trial (PG being 6 weeks on a full-grazing
ration, wk 10). All animals were sampled within 3 days of the
particular week, between 07:30 and 14:30 h. Firstly, a sample
of approximately 200 g rumen solid content was collected at
the height of the rumen fistula aperture (pool sample of grab-
samples collected from cranial to caudal in the upper half of the
rumen fiber mat). Thereafter a 250 mL rumen fluid sample was
collected from the ventral site of the rumen (saccus ventralis)
using a manual pump. Both samples were stored at —20°C within
30 min. Subsequently the total rumen content was evacuated,
transferred into insulated barrels and the rumen was washed
twice (2 x 10 L water, 39°C). The rumen papillae were then
collected at the most ventral site of the ventral rumen sac
(saccus ventralis; ~5 cm adjacent to the pila coronaria ventralis)
using a biopsy forceps (Lloyd-Davis biopsy forceps 35 cm, Zepf
Instruments, Tuttlingen, Germany). Papillae were immediately
washed with a 0.9% NaCl solution, stored in 2 mL cryo tubes
(Cryo-Pure Tubes, Sarstedt AG & Co, Niirmbrecht, Germany)
and shock frozen using liquid nitrogen. Papillae samples were
stored at —80°C until analysis. After the papillae collection a
VFA absorption test was performed and the rumen content was
reintroduced (detailed protocol in Schiren et al., 2016b).

DNA Extraction

Rumen Liquid Content

The separation of the liquid-associated microbes from feed
particles and the subsequent DNA extraction have been described

by Meibaum et al. (2012) and Schéren et al. (2017) (exact
protocol). Briefly, several centrifugation steps were performed
(once 5min at 600 g (4°C) to remove feed particles and
debris, and four times during 20 min at 27,000 g (4°C);
between each centrifugation step the pellet was re-suspended
in 40 mL 0.9% NaCl) and the concentrated samples were
liquid shock frozen under the form of droplets for storage
at —80°C. After a centrifugation step (13,000 g, 5 min,
4°C) the supernatant was discarded and the sample was
re-suspended in 1 x tris(hydroxymethyl)-aminomethane-HCI,
EDTA (both 10 mM, pH 8.0), and NaCl (150 mM), and a
DNA extraction was performed including a mechanical lysis of
the cells by bead beating method (Fast Prep, MP Biomedicals,
Eschwege, Germany; in two sequences of acceleration, 6.0
and 4.5 m/s, 40s each). This was followed by different
incubation steps including lysozyme and RNaseA (30 min
at 37°C), sodiumdodecylsulphate and proteinase K (1h at
37°C), and 4 M NaCl and cetyltrimethylammoniumbromide
(65°C during 10 min). To purify the mixture from proteins
phenol-chloroform-isoamylalcohol was added, the mixture was
centrifuged (7 min, 13,000 g, 4°C), the supernatants were
discarded, chloroform-isoamylalcohol was added, centrifuged
again (10 min, 13,000 g 4°C) and the supernatant was then
kept for further processing. As a final step the samples were
further purified using the peqGold Tissue-Kit (peqlab, Erlangen,
Germany) according to manufacturer’s guidelines. The genomic
DNA (gDNA) samples were then stored at 4°C until further
processing.

Rumen Solid Content

To remove all liquid-associated bacteria from the sample several
washing steps were performed per sample (10g sample, 4-5
washing steps with each 1 L 0.9% NaCl, using a 4 mm sieve,
until washing solution was clear). Thereafter the fiber particles
were transferred into a 50 mL vessel, immersed in sterile 0.9%
NaCl solution and sonicated in an ultrasonic-bath during 30
min to detach the particle associated bacteria. Thereafter the
sample was sieved (4 mm sieve), centrifuged at 27,000 g during
20 min (4°C), the supernatant discarded and the pellet was
resuspended in 1,000 pl 0.9% NaCl. For DNA extraction and
purification 200 pl of the microbe-pellet and the peqGold
Tissue-Kit was used (according to manufacturer’s guidelines; 1.
Incubation: 150 pL TE-Puffer, 50 LL lysozyme, 30 min at 30°C
on thermoshaker; 2. Incubation: 400 WL DNA lysis puffer, 20 pL
proteinase K, 15 WL RNaseA, 60 min at 50°C on thermoshaker).
The gDNA samples were then stored at 4°C until further
processing.

Rumen Papillae

Rumen papillae samples were thawed on ice and 120mg
of each sample were washed twice with 1,000 pL sterile
0.9% NaCl. Thereafter DNA extraction (400 wL DNA lysis
buffer, 20 pnL proteinase K, 15 pL RNaseA, 50 min at
60°C on thermoshaker) and purification was performed
using the pegGold Tissue-Kit according to manufacturer’s
guidelines and samples were then stored at 4°C until further
processing.
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PCR-SSCP Analysis

After DNA extraction a two-step amplification (initial and
nested PCR) of the bacteria specific 16S rRNA gene regions
and a single-strand digestion step were performed (protocol
and primers described in detail in Meibaum et al., 2012).
To compare the bacterial populations at the three different
locations in the rumen, as well as the change over time in both
groups, 12 different SSCP-gels were created: 6 gels comparing
the liquid- (LAB), particle- (PAB), and epithelium- (EAB)
associated bacteria at one particular point in time in the PG
or CG, 6 gels comparing the LAB, PAB or EAB at the three
points in time (wk 1, wk 5, and wk 10) in the PG or CG.
Gel-electrophoresis was carried out at 300 V during 22.5h at
20°C (described in detail in Dohrmann et al., 2004). The gels
were digitalized and analyzed using ScanMaker (1800, Mikrotek,
Willich, Germany) and GelComparll (Applied Maths, Sint-
Martens-Latem, Belgium) as described in Meibaum et al. (2012).
For graphical illustration two dimensional principal co-ordinates
analysis (PCO) plots based on dissimilarities were created with
the cmdscale() command in the R Guide 3.0.2 software package
(R-Core-Team, 2013).

Prokaryotic 16S rRNA Gene Ampilification,
lllumina MiSeq Sequencing and

Bioinformatics

For sequencing gDNA samples were sent to Microsynth
AG (Balgach, Switzerland). A primer pair with 97.7/98.4%
(forward primer) and 96.9/96.5% (reverse primer) coverage
(one mismatch) for archaea and bacteria, respectively, was
chosen for 16S sequencing library preparation: A519F (S-D-
Arch-0519-a-§-15): CAGCMGCCGCGGTAA and 802R (S-D-
Bact-0785-b-A-18): TACNVGGGTATCTAATCC (Klindworth
et al., 2013). Due to the additional inclusion of the archaea
in this approach (in comparison to the PCR-SSCP analysis),
samples will be referred to as liquid- (LAAB), particle- (PAAB),
and epithelium- (EAAB) associated bacteria and archaea. For
16S rDNA amplification the HiFi HotStart PCR Kit (Kapa
Biosystems, Wilmington, MA, USA) was used with following
PCR conditions: initial denaturation (95°C, 180 s), denaturation
(98°C, 20 s), annealing (50.8°C, 30 s) and elongation (72°C,
30 s) with 30 cycles, and a final elongation step (72°C, 5 min).
Further, the Illumina Nextera Libraries were prepared according
to the manufacturers instruction (Illumina, San Diego, USA).
Sequencing was performed on the Illumina MiSeq Sequencing
System using the Illumina MiSeq reagent Kit v2 (2 x 250
bp). Sequence data were demultiplexed and trimmed using the
Mlumina MiSeq v2.5.1.3. reporter and cutadapt v1.8.1 software
package (Martin, 2011). Read stitching was performed using
FLASH v1.2.11 (Mago¢ and Salzberg, 2011) and only stitched
reads with an average quality score (whole read) of 25 or
higher were used for downstream analysis. Further, de novo
Chimera detection, identification and removal was done using
the Uchime v4.2 (Edgar et al, 2011) and Usearch v8.1.1861
(Edgar, 2010) software package. The taxonomic assignment
and the OTU clustering (based on 97% sequence similarity)
were performed using Uclust (Edgar, 2010) and QIIME v1.9.1

(Caporaso et al., 2010), respectively. Only matches with a
minimum sequence similarity of >90% and a score 0.67 or 1.00
in the greengenes database were used. Singeltons were removed
from the dataset to reduce bias introduced by sequencing errors.
As a reference database for the taxonomic assignment the
SILVA rRNA database v111 was chosen (Quast et al., 2013).
For downstream analysis only OTUs with a relative abundance
of at least 0.1% were considered. Alpha diversity analysis was
performed and PCO plots were created using QIIME. Robustness
of clusters displayed in PCO plots was ensured by jackknife
resampling (10-fold).

Statistical Analysis

All statistical analyses were performed using the R 3.0.2 software
package. In case of the SSCP-gels a PERMANOVA was performed
using the adonis() function in the R software package vegan
(Oksanen et al., 2015). To evaluate the alterations in similarity of
samples on the SSCP gels over the course of the trial [comparing
each sample in wk 5 and wk 10 to its reference sample of wk 1
(within the same cow)] a repeated measures ANOVA using the
aov() function was performed. Alpha diversity variables (chaol
index, observed species, and Shannon index) were analyzed
via a PERMANOVA using the aovp() function of the ImPerm
software package (Wheeler, 2010). Beta-diversity was evaluated
based on the weighted UniFrac distances via a PERMANOVA
using the adonis() function in the software package vegan. For
species level comparison a PERMANOVA model using the aovp()
function in the software package ImPerm was performed. The
model included Group, Time and Location and their interactions
as well as the Cow and a Cow x Time interaction as fixed
factor and the Cow as random factor. Results were considered
significant at P < 0.05 and a trend declared at 0.05 < P <
0.10.

RESULTS

SSCP Analysis

Cluster analysis displayed a clustering of LAB, PAB, and EAB
in both ration types and all three points in time, with a higher
similarity among LAB and PAB, compared to EAB samples
(Figure 1). LAB and PAB had an average similarity of 82 =+
8% and differ strongly from the EAB with a similarity of 39 &+
11% EAB compared to LAB, and 37 £ 10% EAB compared to
PAB (mean =+ SD). For illustrational purposes the dendrogram
and SSCP-gel of the comparison of the samples collected in
wk 5 in the CG are depicted in Figure 2. Within the different
bacteria communities, a significant influence of time was only
observed for the LAB in the PG and the EAB in CG (Figure 3).
However, when comparing the samples of the different bacteria
populations in wk 5 and wk 10 to their reference sample in wk 1,
a significant greater decrease in similarity over time in all three
bacteria populations was observed for the PG compared to the
CG (Figure 4).

16S rRNA Gene Amplicon Analysis
For the LAAB, PAAB and EAAB a total number of 2,151
+ 312, 2,615 + 338, and 662 + 161 different OTUs were
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FIGURE 1 | Two dimensional PCO-plots from SSCP-gels of rumen
liquid (LAB, orange dot), particle (PAB, blue square) and epithelium
(EAB, red triangle) associated bacteria of the confinement group (CG)
and pasture group (PG) in wk 1, wk 5, and wk 10 (explained variance
indicated in % on x- and y-axis, n = 5). The CG stayed on a TMR based
ration during the entire trial while the PG was slowly introduced to a
pasture-based ration: wk 1: TMR, wk 2: TMR and 3 h pasture/d, wk 3 and 4:
TMR and 12 h pasture/d, wk 5-10: pasture and 1.75 kg DM concentrate/d.
Significance: (A) P = 0.001, (B) P = 0.001, (C) P = 0.001, (D) P = 0.001, (E)
P =0.001, (F) P = 0.002.

detected, respectively. Filtering (exclusion of OTUs with a relative
abundance < 0.1%) resulted in a total number of 177 different
OTUs with an average of 167 & 5 (LAAB), 162 £+ 4 (PAAB),
and 74 £ 8 (EAAB) different OTUs per sample (mean + SD,
Table 1), with an average of 12,882 & 3,389, 11,853 & 3,433,
and 2,129 =+ 815 reads per sample (after filtering, mean + SD),
respectively. Four samples from the EAAB were excluded due to
an extremely low reads count (wkl CG, 2x wk 1 PG and wk 5
PG with 942, 590, 859, and 801 reads per sample). Most OTUs
could be taxonomically classified to the family level, while their
genus or species level affiliation were “uncultured bacterium or
archaeon” in many cases (Table 1). One OTU was assigned to an
archaeal and 176 OTUs to bacterial taxa.

Alpha Diversity
Alpha diversity analysis revealed a lower chaol and Shannon
index as well as lower observed species count in the EAAB

r PAB

286

- EAB
.

FIGURE 2 | Example of SSCP-Gel and dendrogram of rumen liquid
(LAB), particle (PAB), and epithelium (EAB) associated bacteria at one
point in time during the trial (wk 5, confinement group, n = 5). Numbers
indicate similarity (in %) between samples/clusters.

compared to the LAAB and PAAB with an average of 73 [30;
median (IQR)] compared to 169 (6) and 162 (4) observed
species (P < 0.001), a chaol index of 108 (33) compared to
173 (5) and 168 (7) (P < 0.001), and a Shannon index of
3.0 (0.2) compared to 4.3 (0.2) and 4.6 (0.2) (P < 0.001),
respectively (Figure5). The LAAB further exhibited a higher
observed species count (P < 0.001) as well as chaol index (P
= 0.004) compared to the PAAB, whereas the PAAB had a
higher Shannon index (P < 0.001). In the PG a significantly
lower observed species count in the EAAB compared to the
CG was observed (P = 0.035). Further, no significant treatment
effects were observed. In two diversity variables (observed
species and Shannon index) a significant Cow effect was
observed.

Beta Diversity

Beta diversity analysis revealed a significant Location (P <
0.001), Group (P < 0.001), Time (P = 0.035) and Cow (P
< 0.001) effect, as well as a significant Location x Group
(P = 0.011) and Group x Time (P = 0.036) interaction.
PCO plots show a clustering of the LAAB, PAAB, and
EAAB, with a higher similarity between LAAB and PAAB,
compared to the EAAB samples (Figure6). Taxonomic
classification at family level showed broad differences in
community composition between the LAAB, PAAB, and
EAAB (Figure 7). In the LAAB members of the Prevotellaceae
(25%), Lachnospiraceae (18%), Ruminococcaeceae (16%),
Christensenellaceae (12%), Veillonellaceae (6%), Rikenellaceae
(4%), Erysipelotrichaceae (4%), Coriobacteriaceae (3%), and
the uncultured BS11 gut group (Bacteroidales, 2%) contributed
to 90% of the relative abundance of 16S rRNA genes. In
the PAAB a similar pattern was observed with members
of the Ruminococcaceae (28%), Lachnospiraceae (23%),
Prevotellaceae (18%), Veillonellaceae (8%), Christensenellaceae
(4%), Rikenellaceae (3%), Spirochaetaceae (2%), uncultured
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FIGURE 4 | Change in bacterial communities of the liquid- (LAB),
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FIGURE 3 | Two dimensional PCO-plots from SSCP-gels of rumen
liquid (LAB), particle (PAB), and epithelium (EAB) associated bacteria
illustrating changes over the course of the trial (wk 1 = red triangle, wk
5 = orange dot, wk 10 = blue square) in the confinement group (CG)
and pasture group (PG; n = 5; explained variance indicated in % on x-
and y-axis). The CG stayed on a TMR based ration during the entire trial while
the PG was slowly introduced to a pasture-based ration: wk 1: TMR, wk 2:
TMR and 3 h pasture/d, wk 3 and 4: TMR and 12 h pasture/d, wk 5-10:
pasture and 1.75 kg DM concentrate/d. Significance: (A) P = 0.141, (B) P =
0.001, (C) P = 0.080, (D) P = 0.328, (E) P = 0.013, (F) P = 0.115.

BS11 gut group (2%), Erysipelotrichaceae (2%), and
Succinivibrionaceae  (2%) accounting for 90% of the
relative abundance, whereas in the group of the EAAB
members of the families Lachnospiraceae (26%), Family
XIII Incertae Sedis (Clostridiales, 18%), Desulfobulbaceae
(15%), Cardiobacteriaceae (5%), Comamonadaceae (11%),
Campylobacteraceae  (5%), Ruminococcaceae (5%), and
Rikenellaceae (4%) were the dominant community members.
Statistical analysis on OTU level showed a significant
location effect (i.e., LAAB, PAAB, and EAAB) for all 177
OTUs, except for two members of Prevotella genus and one
member of Succinivibrionaceae family (Table 1 and Data Sheet
1). OTUs within particular families either exhibited a similar
distribution pattern (Bifidobacteriaceae, Coriobacteriaceae,
Desulfobulbaceae, Succinivibrionaceae, and Spirochaetaceae),
a generally similar distribution pattern with few exceptions

particle- (PAB), and epithelium-associated bacteria (EAB) over time
expressed in average similarity (in %) of samples compared to their
reference sample in wk 1. CG, confinement group, PG, pasture group
(n = 5). A significant greater decrease in similarity over time in all three
bacteria populations was observed for the PG compared to the CG (Peag =
0.002, P ag = 0.008; Ppag = 0.003; SDgag = 11%; SD A = 8%, SDpag =
16%). The CG stayed on a TMR based ration during the entire trial while the
PG was slowly introduced to a pasture-based ration: wk 1: TMR, wk 2: TMR
and 3 h pasture/d, wk 3 and 4: TMR and 12 h pasture/d, wk 5-10: pasture
and 1.75kg DM concentrate/d.

[Prevotella, Fibrobacteraceae, and members of the order
RF9 (Mollicutes)] or a very diverse distribution pattern
among the three locations [uncultured BS11 gut group
(Bacteroidales), uncultured RC9 gut group (Rikenellaceae),
uncultured S24-7 (Bacteroidales), members of the Candidate
division TM7 phylum, Christensenellaceae, Family XIII Incertae
Sedis  (Clostridiales), Lachnospiraceae, Ruminococcaceae,
Veillonellaceae, and Erysipelotrichales]. Analysis on OTU
level also revealed that the predominant role of the family
Lachnospiraceae in the EAAB can be attributed to mainly four
OTUs (two of the genus Butyrivibrio and two further unclassified
OTUs).

Similar to the location, also for the effect of the ration
change from TMR to pasture in the PG variable trends within
taxonomic groups were observed (Table 1). In some taxa either
a decrease [Bifidobacteriaceae, uncultured RC9 gut group
(Rikenellaceae), uncultured S24-7 (Bacteroidales), uncultured
SHA-109 (Cyanobacteria), Christensenellaceae, Acetitomaculum
(Lachnospiraceae), Succiniclasticum (Veillonellaceae), further
unclassified members of the Erysipelotrichaceae, Suttonella
(Cardiobacteriaceae), and uncultured RF9 (Mollicutes)], an
increase of at least one member species [Atopobium, Incertae
Sedis (Lachnospiraceae), Oribacterium, Pseudobutyrivibrio,
Shuttleworthia, Incertae Sedis (Ruminococcaceae), Anaerovibrio,
Selenomonas, Catenibacterium, Comamonas, and Desulfobulbus],
or no alterations [Methanobrevibacter, uncultured BS11
gut group (Bacteroidales), uncultured Candidate division
SR1, and TM7, Fibrobacter, uncultured Family XIII
Incertae Sedis (Clostridiales), Saccharofermentans, Sharpea,
Campylobacter, Succinivibrionaceae, and Treponema] in
proportional abundances were observed, whereas others
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FIGURE 5 | Boxplots of diversity variables of rumen liquid (LAAB), particle (PAAB) and epithelium (EAAB) associated archaea and bacteria in wk 1, wk
5, and wk 10 of the pasture (PG) and confinement (CG, n = 5) group. The CG stayed on a TMR based ration during the entire trial while the PG was slowly
introduced to a pasture-based ration: wk 1: TMR, wk 2: TMR and 3 h pasture/d, wk 3 and 4: TMR and 12 h pasture/d, wk 5-10: pasture and 1.75 kg DM
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concentrate/d.

slowly introduced to a pasture-based ration: wk 1: TMR, wk 2: TMR and 3 h pasture/d, wk 3 and 4: TMR and 12 h pasture/d, wk 5-10: pasture and 1.75kg DM

demonstrating that microbes that are phylogenetically close may
still exhibit substantially different phenotypes and functions
(Morgavi et al, 2013). This discrepancy between taxonomic
classification (or genomic commonality) and phenotype has

been reported and criticized earlier and can most likely
be attributed to differences in gene expression as a result
of environmental influences (Achenbach and Coates, 2000;
Kampfer and Glaeser, 2012). Weimer (2015) notes that the
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genetic capability of different degradative functions may reside
within a single bacterial strain, but that it is dependent
on the presence of potential competitors and symbionts if
a particular degradative capability is carried out. Kampfer
and Glaeser (2012) therefore suggest revising the polyphasic
approach (integration of genotype and phenotype) in prokaryotic
taxonomy. Regarding rumen microbiota research, different
authors have noted that future studies should focus on the
characterization of the functional properties of the rumen
microbial ecosystem, aside the different microbial species
(Morgavi et al., 2013).

When comparing our results with different studies comparing
the LAAB and PAAB, we observed similar as well as different
results concerning the abundance of different taxa (Cho et al.,
2006; Brulc et al., 2009; Kong et al., 2010; Pei et al., 2010; Pitta
etal., 2010; de Menezes et al., 2011; Kim and Yu, 2012; Singh et al.,
2015). Further, similar to our results de Menezes et al. (2011)
have shown a higher species diversity in the LAAB compared
to the PAAB, whereas the results of Kong et al. (2010), Pitta
et al. (2010), and Sadet et al. (2007) show the opposite. We
suggest that these observed differences among studies can be
ascribed to differences in ration composition (Henderson et al.,
2015), time the animals received the ration prior to sampling
(Hackmann, 2015), number of animals sampled (Weimer, 2015),
sample collection (Li et al., 2009), microorganism and DNA
isolation (Henderson et al., 2013), microbiota analysis method

(DNA fingerprinting vs. amplicon sequencing, Sadet et al., 2007),
sequencing platform and depth (Klindworth et al., 2013, also
discussed in Schiren et al., 2017).

In the EAAB we observed a much less diverse microbiota, with
very different species compared to the PAAB and LAAB, which
is in line with other studies (Cho et al., 2006; Sadet et al., 2007).
Our results are fairly similar to the observations made by Petri
et al. (2013) with the Lachnospiraceae, uncultured Family XIIT
Incertae Sedis (Clostridiales), Ruminococcaceae, Prevotellaceae,
Desulfobulbaceae,  Erysipelotrichaceae, and Rikenellaceae
constituting the core microbiota of the EAAB in their trial.
These findings illustrate a mixture of Gram-positive and Gram-
negative bacteria, which is in contrast to the findings of older
culture- (Wallace et al., 1979) and electron-microscopy-based
studies (McCowan et al., 1978; Cheng et al., 1979), describing
a mainly Gram-positive community. Earlier studies described
the EAAB as being possibly associated with fermentation
end-products, VFA absorption, oxygen consumption, urea
digestion and initiated breakdown of dead epithelial tissue
(Cheng et al., 1979; Wallace et al., 1979; McCann et al.,, 2014a).
The hypothesis of an oxygen scavenging function of the EAAB
is supported by the finding that some of the OTUs, that
were detected in our trial as being mainly or only present
in the EAAB, have been assigned to taxa that were earlier
described as being aerobic (Erysipelotrichaceae, Comamonas,
and Suttonella) or microaerophilic (Campylobacter) (Garrity
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et al., 2006; Vos et al., 2009). Further, a part of the OTUs
have been assigned to taxa that have been described as being
asaccharolytic (Campylobacter and Mogibacterium), nitrate
reducing (Comamonas and Campylobacter), complex organic
compound degrading (Comamonas), putrescine fermenting
(Anaerovorax), and sulfur compounds reducing (Desulfobulbus)
(Garrity et al., 2006; Vos et al., 2009). Further research involving
cultivation-independent techniques is needed to elucidate the
relevance of these functional properties in the rumen and the
interrelations between the different microbial species and their
host.

Effects of the Ration Change from TMR to

Pasture

The DNA fingerprinting as well as the beta-diversity analysis
of the amplicon sequencing approach showed that at all three
locations the microbiota was significantly influenced by the
ration change. However, the hypothesis that the EAAB remain
more consistent throughout dietary changes (Sadet et al., 2007;
McCann et al., 2014a) was not confirmed. This result is opposite
to the findings of Sadet-Bourgeteau et al. (2010) illustrating
only minor alterations in the EAAB using a DNA-fingerprinting
(PCR-DGGE) method in a trial involving wethers that were
consecutively fed forage and different mixed concentrate forage
diets. The authors however admitted that this method may not
be sensitive enough to detect subtler changes in the community
(the PCR-DGGE technique has an relative abundance limit of
1%, it is therefore likely that alterations in less abundant taxa
are underestimated Sadet et al., 2007). Contrary to this study,
applying a more severe dietary influence, Petri et al. (2013)
observed significant alterations in various taxa of the EAAB in
a trial involving the transition from a forage to a high grain
diet, an acidosis-challenge, and a recovery period, which is in
line with our results. Additionally, an earlier study by McCowan
et al. (1980) has shown that the distribution pattern of the
epithelium adherent bacterial population is diet dependent. This
aspect should be included in future studies.

Both analysis techniques (DNA fingerprinting and amplicon
sequencing) showed that even though the animals in the PG
were already on a full-grazing ration for 4-6 days in wk 5,
the microbiota at all three locations was significantly different
from that in wk 10. During this trial we also analyzed the
ruminal protozoal counts on a weekly basis and observed a
gradual increase in holotrich protozoa concentrations from
wk 5 on Kiinzel et al. (2016). After wk 7 a plateau was
observed, suggesting also an adaptation in this period. These
findings further agree with the observations made on animal
level. We observed alterations in different production, metabolic
and rumen variables, all pointing toward a decreased rumen
fermentation activity in the first weeks on a full-grazing
ration due to a decreased DMI. Thereafter, most likely due
to a behavioral and metabolic adaptation, DMI and rumen
fermentation activity increased again, causing a decrease in
energy deficit and stabilization of various variables in wk 8-10
of the trial (Schiren et al., 2016a,b). Taken together this data
illustrates that the adaption of the cow’s rumen microbiota and

metabolism to a pasture-based ration most likely required 2-
3 weeks in our trial. This is in line with a study of Nakano
et al. (2013) showing a stabilization of the rumen microbiota of
steers 28 days after being switched onto a full-grazing ration.
However, in future trials weekly or even daily sampling should
be involved to monitor microbial changes in the rumen upon
a ration change more closely and to investigate the delay with
which metabolic and production variables follow alterations in
the rumen microbiota.

Similar to de Menezes et al. (2011) and Nakano et al. (2013) we
observed an increase in most OTUs assigned to Prevotella when
cows were transitioned to a pasture-based ration. It has been
suggested that members of Prevotella grow rapidly whenever
readily fermentable carbohydrates are available (Tajima et al.,
2001; Bekele et al., 2010; Pitta et al,, 2010). Since fresh grass
contains high amounts of water-soluble carbohydrates this could
explain their increase in relative abundance. Further, de Menezes
et al. (2011) hypothesized whether the increased propionate
production on the pasture-based diet was related to the increased
abundance of Prevotellaceae and Veillonellaceae. Also in our trial
we observed a lower acetate proportion in wk 9 and 10 as well
as lower acetate/propionate ratio in wk 9 in the PG (Schiren
etal., 2016b), along with an increase of these two taxa, supporting
this hypothesis. However, we did not observe several alterations
described by these other two studies, such as a higher relative
abundance of the Fibrobacteraceae on a TMR-based ration, an
increase in the abundance of the Erysipelotrichaceae in the LAAB
and the Lachnospiraceae in the PAAB, no alterations in the
rumen protozoal community (de Menezes et al., 2011) or an
increase in OTUs assigned to the Butyrivibrio species (Nakano
et al,, 2013). Similar to the location effect we suggest that the
differences between studies can be attributed to the different
rations fed and the time the animals received the rations prior
to sampling (14 and 28 d in study of de Menezes et al., 2011 and
Nakano et al., 2013) as well as methodological aspects. Further,
most studies so far summarized the effects on a higher taxonomic
level than the species, possibly mingling effects in some cases. Our
results have shown that the location as well as treatment effect
can either be very similar throughout member species of a taxa,
or exhibit opposite trends. This is in line with a study of Bekele
et al. (2010) suggesting the existence of diet-specific members of
Prevotella. Future studies should include this aspect by further
characterizing the different member species and differentiating
functional and taxonomic interrelations.

In the current study a filtering step was applied, in which all
OTUs with a relative abundance of <0.1% were excluded. This
was done to guarantee a solid differentiation between artifact and
true organism. This however also implies that alterations in low
abundant species (members of the so called “rare biosphere”)
were not captured. It is generally acknowledged that the more
dominant species most likely contribute to the key functions
in rumen fermentation (Henderson et al., 2015). However,
only little is known on the function and relevance of the low
abundance members and future studies should involve their
identification and functional characterization (Morgavi et al.,
2013). Further, due to the different physical properties of the
samples three different DNA extraction methods were used
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Henderson et al. (2013) have shown that depending on the
method applied, the abundance of different taxa varies. The
authors for example describe an increase in the abundance of
the Bacteroidetes phylum and a concurrent decrease in the
Firmicutes phylum, when a non-mechanical lysis procedure
is used. It was suggested that this can be attributed to
their cell wall constitution (Gram-negative vs. Gram-positive).
In our data, however, no apparent divergence toward the
phylum Bacteroidetes was observed in the samples treated
with a non-mechanical procedure (PAAB and EAAB samples).
Henderson et al. (2013) also describe an increase in the
Fibrobacteres in non-mechanical DNA extraction methods. In
our study, we observed a higher abundance of Fibrobacteres
in the PAAB, compared to the LAAB, indicating a possible
influence of the DNA extraction method in this context.
However, as described above, these findings are also in line
with the literature, describing the Fibrobacteres as fiber digesting
bacteria. We therefore conclude that the possibility of a certain
bias due to the different DNA extraction methods applied
cannot fully be excluded, and that future studies should
involve more uniform DNA extraction methods whenever
possible, but its implications might be neglectable in this
case. Further, the main focus of this manuscripts lies on
the alterations in the three different communities over time.
Since the comparisons are performed within sample types,
these results are not affected by the different DNA extraction
protocols.

The Effect of the Individual Cow

Different studies have shown that the cow itself as an individual
has a significant influence on its rumen microbiota, most
likely through behavioral and physiological processes, such
as rumination, salivation, absorption, and passage of VFA
in the rumen, thereby controlling the ruminal chemistry
(Sadet-Bourgeteau et al., 2010; de Menezes et al.,, 2011; Petri
et al., 2013; Weimer, 2015). Several of these effects were
also confirmed in our trial. The alterations over time in the
PG compared to the CG would only emerge properly in
the SSCP gels, when samples were compared to their own
reference sample collected in wk 1 from the same cow. In
the alpha-diversity analysis of the amplicon sequencing data,
a significant Cow effect was observed, illustrating that certain
cows seem to possess a more diverse rumen microbiota than
others. Further, the beta-diversity analysis revealed a significant
Cow or Cow x Time effect in 16% of OTUs. Several recent
studies illustrate that the rumen microbiota of dairy cows
and steers can be linked to different phenotypic characteristics
such as milk production and composition (Jami et al., 2014;
Lima et al, 2015), feed efficiency (Guan et al, 2008; Zhou
et al, 2009, 2010; Hernandez-Sanabria et al., 2010, 2012;
Carberry et al., 2012; Rius et al., 2012; McCann et al., 2014b;
Myer et al.,, 2015), and breed (Guan et al., 2008). These and
our results suggest that acquired animal behavior through
environmental conditions as well as genetics may play a
role in the rumen microbiota composition (Henderson et al.,
2015).

The significant Cow effect, as well as the finding that
a large part of the detected OTUs at all three locations
remained unaltered in their abundance upon the ration
change, are in line with the generally acknowledged
assumption that the rumen microbiota consists of a
core and a variable microbiota, but that individual taxa
abundances may vary greatly across diets and animals
(Jami and Mizrahi, 2012; Wu et al., 2012; Henderson et al.,
2015).

In summary, our data illustrated that the LAAB, PAAB,
and EAAB are three distinct prokaryote communities, differing
in species diversity and composition. The LAAB and PAAB
exhibit a higher species diversity and similarity, compared to
the EAAB. Where the latter can most likely be attributed
to the constant interchange between the two communities
due to the ongoing fiber colonization and degradation. Many
bacteria species found in the EAAB have earlier been described
as possessing functional properties in culture, of which their
relevance in rumen fermentation and metabolism is yet to
be elucidated. The ration change from TMR to pasture
influenced the microbial composition in all three locations
significantly, contrary to the earlier stated hypothesis that the
EAAB remain more consistent throughout dietary changes.
Our data further illustrates that the time for adaptation from
TMR to pasture most likely requires several days to weeks.
However, future studies should include more frequent sampling.
Further, the hypothesis that the rumen microbiota consists
of a core and a variable microbiota, exhibiting a strong host
influence was confirmed, but future studies should include
the description of rare prokaryote species as well. For the
effect of location as well as the ration change either very
similar or opposite trends among member species of common
taxa were observed. This finding highlights the importance of
functional aside genomic characterization, and supports earlier
studies suggesting that the genotype as well as phenotype
should be included in taxonomic classification (polyphasic
approach).
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