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Genetic variants of PTPN2 are 
associated with lung cancer risk: a 
re-analysis of eight GWASs in the 
TRICL-ILCCO consortium
Yun Feng1,2,3, Yanru Wang2,3, Hongliang Liu   2,3, Zhensheng Liu2,3, Coleman Mills2,3, 
Younghun Han4, Rayjean J. Hung5, Yonathan Brhane5, John McLaughlin6, Paul Brennan7, 
Heike Bickeboeller8, Albert Rosenberger8, Richard S. Houlston9, Neil E. Caporaso10, Maria 
Teresa Landi10, Irene Brueske11, Angela Risch12, Yuanqing Ye13, Xifeng Wu13, David C. 
Christiani14, Christopher I. Amos4 & Qingyi Wei2,3

The T-cell protein tyrosine phosphatase (TCPTP) pathway consists of signaling events mediated by 
TCPTP. Mutations and genetic variants of some genes in the TCPTP pathway are associated with 
lung cancer risk and survival. In the present study, we first investigated associations of 5,162 single 
nucleotide polymorphisms (SNPs) in 43 genes of this TCPTP pathway with lung cancer risk by using 
summary data of six published genome-wide association studies (GWAS) of 12,160 cases and 16,838 
controls. We identified 11 independent SNPs in eight genes after correction for multiple comparisons by 
a false discovery rate <0.20. Then, we performed in silico functional analyses for these 11 SNPs by eQTL 
analysis, two of which, PTPN2 SNPs rs2847297 and rs2847282, were chosen as tagSNPs. We further 
included two additional GWAS datasets of Harvard University (984 cases and 970 controls) and deCODE 
(1,319 cases and 26,380 controls), and the overall effects of these two SNPs among all eight GWAS 
studies remained significant (OR = 0.95, 95% CI = 0.92–0.98, and P = 0.004 for rs2847297; OR = 0.95, 
95% CI = 0.92–0.99, and P = 0.009 for rs2847282). In conclusion, the PTPN2 rs2847297 and rs2847282 
may be potential susceptible loci for lung cancer risk.

Lung cancer is one of the most common human malignancies and the leading cause of cancer-related deaths in 
both men and women1. It is estimated that 224,390 new lung cancer cases will be diagnosed in the United States 
in 20162. Lung cancer risk likely results from joint effects and interactions of environmental and genetic factors.

Single nucleotide polymorphisms (SNPs) are the most common genetic variants and have been shown to be 
associated with lung cancer risk3. Genome-wide association studies (GWAS) have identified 30 loci in 13 genomic 
regions to be associated with lung cancer risk4–15. However, most of the SNPs identified to date have not been 
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shown to be functional. Other approaches to GWAS including pathway-based analysis with reduced dimension 
or multiple testing have been emerged to identify possible functional SNPs associated with lung cancer risk.

The T-cell protein tyrosine phosphatase (TCPTP/PTPN2) is an important member of the protein-tyrosine 
phosphatase (PTP) family. Activating and deactivating mutations in PTP genes often result in enzymes that can 
either promote or suppress oncogenesis. The TCPTP pathway consists of signaling events mediated by TCPTP 
through negative regulation of several receptor tyrosine kinases such as epidermal growth factor receptor 
(EGFR)16, vascular endothelial growth factor receptor-2 (VEGFR2)17, platelet-derived growth factor receptor beta 
(PDGFRβ)18, signal transducer and activator of transcription subtypes 1 (STAT1)19, 3 (STAT3)20, and 6 (STAT6)21, 
and the insulin receptor22.

Studies have shown that mutations and genetic variants of some genes in the TCPTP pathway are associ-
ated with lung cancer risk and survival23, 24. However, SNPs in many candidate genes in the pathway have not 
been studied and reported. In the present study, we systematically investigated all potentially functional SNPs 
in TCPTP pathway genes by assessing their associations of lung cancer risk using eight published lung cancer 
GWAS datasets.

Figure 1.  Screening of SNPs in the TCPTP pathway. (A) Manhattan plot of genome-wide association results 
of 5,162 SNPs in 43 TCPTP pathway genes and lung cancer risk in the TRICL-ILCCO Consortium. SNPs are 
plotted on the X-axis according to their positions on each chromosome. The association P values with lung 
cancer risk are shown on the Y-axis (as −log10 (P) values). The horizontal red line represents FDR threshold 
0.20. The horizontal blue line represents P value of 0.05; (B) SNPs in PTPN2 with 500 kb up- and downstream 
of the gene region and (C) LD plots of the SNPs in PTPN2 with FDR <0.20. In B, the left-hand y-axis shows 
the association P value of each SNP, which is plotted as −log10 (P) against chromosomal base pair position; the 
right-hand y-axis shows the recombination rate estimated from the hg19/1000 Genomes European population.
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Results
Analysis of six GWAS datasets.  Overall, 5162 SNPs from 43 TCPTP pathway genes in the six GWAS data-
sets from the Transdisciplinary Research in Cancer of the Lung and The International Lung Cancer Consortium 
(TRICL-ILCCO) Consortium were identified, and their associations with lung cancer risk are shown in the 
Manhattan plot (Fig. 1A). After multiple-testing correction, 112 SNPs in eight genes (ATR, EGFR, MET, PIK3R1, 
PIK3R3, PTPN2, STAT3, and STAT5A) remained significantly associated with lung cancer risk with FDR <0.20. 
The results of associations with lung cancer risk are summarized in Supplementary Table S2. Based on LD analysis 
(r2 > 0.30) and online functional prediction analyses by using SNPinfo, RegulomeDB, and HaploReg, we selected 
to perform additional analyses for 11 SNPs: rs11707731 in ATR; rs845553, rs1140762 and rs17172432 in EGFR; 
rs34280975 in MET; rs706714 in PIK3R1; rs7538978 in PIK3R3; rs2847297 and rs2847282 in PTPN2; rs3744483 
in STAT3; rs1135669 in STAT5A for further study (Supplementary Figure S1 and Supplementary Table S3).

Functional validation by eQTL analysis 21.  We assessed associations between the 11 SNPs and mRNA 
expression levels by using the genotyping and expression data available from the lymphoblastoid cell lines derived 
from 373 individuals of European descent (http://www.1000genomes.org/), and we found that only rs2847297 
and rs2847282 were associated with expression levels of PTPN2 in additive, dominant and recessive models 

SNP Gene Chr. Allelea SNPinfo
Regulome 
DB Score HaploReg

Pb

P (additive 
model)

P (dominant 
model)

P 
(recessive 
model)

rs7538978 PIK3R3 1 A/G — 1 f
Enhancer histone marks: 
9 tissues; DNAse: CRVX; 
Motifs changed: 6 altered 
motifs

0.722 0.249 0.175

rs11707731 ATR 3 G/T — 4

Promoter histone marks: 4 
tissues; Enhancer histone 
marks: 4 tissues; DNAse: 
ESC; Motifs changed: 4 
altered motifs

0.579 0.719 0.420

rs706714 PIK3R1 5 A/C TFBS 5
Enhancer histone 
marks: 7 tissues; DNAse: 
GI; Motifs changed: 
GATA,Nkx2,Nkx3

0.281 0.137 0.714

rs2740762 EGFR 7 C/A TFBS 5

Enhancer histone marks: 
13 tissues; DNAse: 
IPSC,MUS,PANC; Motifs 
changed: Foxo,NF-
AT,Pax-4

0.053 0.008 0.338

rs845553 EGFR 7 G/A — 4

Promoter histone marks: 4 
tissues; Enhancer histone 
marks: 17 tissues; DNAse: 
17 tissues; Proteins bound: 
7; Motifs changed: 5 
altered motifs

0.396 0.683 0.280

rs17172432 EGFR 7 T/C — 4

Promoter histone marks: 7 
tissues; Enhancer histone 
marks: 18 tissues; DNAse: 
6 tissues; Motifs changed: 
4 altered motifs

0.359 0.614 0.280

rs34280975 MET 7 A/G — 2c

Enhancer histone marks: 
SKIN; DNAse: 4 tissues; 
Proteins bound: CEBPB; 
Motifs changed: 7 altered 
motifs

0.421 0.197 0.538

rs3744483 STAT3 17 T/C miRNA 4
bound: 7; DNAse: 11 
tissues; Motifs changed: 
Foxa,p300

0.907 0.856 0.467

rs1135669 STAT5A 17 C/T Splicing 4

Enhancer histone marks: 
BLD, THYM; DNAse: 
OVRY,BRST; Motifs 
changed: BATF, Pbx3, 
STAT

0.062 0.079 0.255

rs2847297 PTPN2 18 A/G — — DNAse: BLD; Motifs 
changed: Nkx2,Pax-5 0.005 0.017 0.005

rs2847282 PTPN2 18 T/G — 5

Promoter histone marks: 
STRM, LIV, BLD; 
Enhancer histone marks: 9 
tissues; DNAse: 4 tissues; 
Motifs changed: 26 altered 
motifs

0.029 0.001 0.029

Table 1.  Summary of the functional prediction and eQTL analysis results of the 11 selected SNPs in the TCPTP 
pathways in silico. aReference allele/effect allele. bP value of eQTL analysis results TFBS = transcription factor 
binding site.

http://S2
http://S1
http://S3
http://www.1000genomes.org/
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(Table 1). Regional association plots for rs2847297 and rs2847282 in 500 kb up- and downstream region were 
shown in Fig. 1B. The SNP rs2847297 was in a low LD with rs2847282 (Fig. 1C). PTPN2 mRNA expression levels 
were significantly decreased with an increased number of the rs2847297 G allele in additive (P = 0.002) (Fig. 2A), 
dominant (P = 0.017) (Fig. 2B) and recessive model (P = 0.005) (Fig. 2C). The eQTL analysis results of rs2847282 
were also significant (Fig. 2D,E,F). In addition, we compared mRNA expression levels of PTPN2 in 109 paired tar-
get tissue samples from The Cancer Genome Atlas (TCGA) and found that PTPN2 mRNA expression levels were 
significantly increased in tumor tissues than normal tissues (P = 3.01E-05) (Supplementary Figure S2). The two 
SNPs rs2847297 and rs2847282 were chosen as tagSNPs, because they were significantly associated with lung can-
cer risk as assessed in the overall association analysis and had potential functions according to the eQTL analysis.

Expanded analysis by including additional two GWAS studies.  We expanded our analysis by 
including two additional independent lung cancer GWAS studies, Harvard Lung Cancer Study and Icelandic 
Lung Cancer Study (deCODE). We performed an overall meta-analysis to evaluate associations between the two 
PTPN2 SNPs and lung cancer risk. We found that the overall effects among all eight GWAS studies remained sig-
nificant (OR = 0.95, 95% CI = 0.92–0.98, Phet = 0.476, and P = 0.004 for rs2847297; OR = 0.95, 95% CI = 0.92–
0.99, Phet = 0.523, and P = 0.009 for rs2847282) (Table 2 and Fig. 3A,B).

In subgroup analysis by histology (Table 2, Fig. 3), we found that the rs2847297 G allele was borderline associ-
ated with lung adenocarcinoma (AD) risk (OR = 0.95, 95% CI = 0.91–1.00, P = 0.052) and significantly associated 
with squamous cell lung carcinoma (SQ) risk (OR = 0.92, 95% CI = 0.87–0.97, P = 0.002, Fig. 3A). We also found 
the rs2847282 G allele was associated with SQ risk (OR = 0.93, 95% CI = 0.88–0.99, P = 0.016), while there was 
no statistical association with AD risk (OR = 0.96, 95% CI = 0.91–1.01, P = 0.114, Fig. 3B). In subgroup anal-
ysis by smoking status, there was a marginal significant decrease in lung cancer risk for the rs2847297 G allele 
among ever smokers (OR = 0.96, 95% CI = 0.91–1.00, P = 0.042), but not among never smokers (OR = 0.95, 95% 
CI = 0.83–1.09, P = 0.465, Fig. 3A). However, there was no association with the PTPN2 rs2847282 G allele and 
lung cancer risk among ever smokers (OR = 0.96, 95% CI = 0.91–1.00, P = 0.066 and never smokers (OR = 1.00, 
95% CI = 0.86–1.16, P = 0.960, Fig. 3B).

Discussion
In the present study, we sought to investigate associations between genetic variants in the TCPTP pathway genes 
and lung cancer risk using eight published GWAS studies of 14,463 cases and 44,188 controls. The principal 
findings included two novel, potentially functional SNPs, rs2847297 and rs2847282 of PTPN2, that were both 
associated with a decreased lung cancer risk and a decreased mRNA expression level of PTPN2, particularly in 
subgroups of ever smokers and squamous cell lung carcinoma. Four articles about pathway-based analysis and 
lung cancer risk (Centrosome, DNA repair, lncRNA and RNA degradation) have been accepted or published in 
our laboratory. We found that the loci of two SNPs in PTPN2 were different from previous studies in our lab and 
GWAS studies.

Figure 2.  The correlations between identified SNPs and PTPN2 mRNA expression. rs2847297 in PTPN2 (A) 
additive model, P = 0.002; (B) dominant model, P = 0.017; (C) recessive model, P = 0.005) and rs2847282 in 
PTPN2 (D), additive model, P = 0.0006; (E) dominant model, P = 0.001; (F) recessive model, P = 0.029).

http://S2
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PTPN2 plays a dual role in development and progression of cancer. Proliferation and cell cycle assays demon-
strated that overexpression of PTPN2 would decrease serum requirement, increase formation of larger colonies 
in soft agar, alter morphology, and rapidly progress through G1 and S phases and the rate of cell division25, 26. 
Another study showed that the proliferation rate would reduce in TCPTP (−/−), compared to TCPTP (+/+), 

Study population

Sample size Imp. 
Quality

PTPN2 rs2847297 A > G Imp. 
Quality

PTPN2 rs2847282 T > G

Cases Controls OR (95% CI) P OR (95% CI) P

ICR1 1952 5200 1.00 0.97 (0.89–1.04) 0.379 0.88 0.94 (0.87–1.03) 0.180

AD 465 5200 1.00 0.95(0.82–1.09) 0.459 0.87 0.92(0.79–1.07) 0.281

SQ 611 5200 1.00 0.95 (0.84–1.08) 0.425 0.87 0.96 (0.83–1.10) 0.521

MDACC2 1150 1134 1.00 0.85 (0.75–0.97) 0.014 0.81 0.85 (0.74–0.99) 0.030

AD 619 1134 1.00 0.87 (0.75–1.01) 0.070 0.81 0.86 (0.72–1.01) 0.073

SQ 306 1134 1.00 0.73 (0.60–0.89) 0.002 0.81 0.88 (0.71–1.09) 0.246

Ever smoking 1150 1134 1.00 0.85 (0.75–0.97) 0.014 0.81 0.85 (0.74–0.99) 0.030

IARC3 2533 3791 1.00 0.97 (0.90–1.05) 0.475 0.77 0.94 (0.86–1.03) 0.188

AD 517 2824 1.00 1.03 (0.90–1.19) 0.641 0.77 1.00 (0.85–1.17) 0.961

SQ 911 2968 1.00 0.91 (0.81–1.02) 0.104 0.77 0.89 (0.78–1.02) 0.084

Ever smoking 2367 2508 1.00 0.97 (0.89–1.05) 0.446 0.77 0.95 (0.86–1.04) 0.273

Never smoking 159 1253 1.00 1.06 (0.83–1.36) 0.623 0.77 0.95 (0.71–1.27) 0.735

NCI4 5713 5736 1.00 0.94 (0.88–0.99) 0.022 0.87 0.95 (0.89–1.01) 0.116

AD 1841 5736 1.00 0.95 (0.87–1.03) 0.225 0.87 0.95 (0.87–1.04) 0.257

SQ 1447 5736 1.00 0.92 (0.84–1.00) 0.060 0.88 0.95 (0.86–1.04) 0.258

Ever smoking 5342 4336 1.00 0.97(0.91–1.03) 0.297 0.88 0.98 (0.92–1.06) 0.649

Never smoking 350 1379 1.00 0.91(0.74–1.12) 0.376 0.88 0.94 (0.75–1.19) 0.622

Toronto5 331 499 1.00 0.86 (0.68–1.07) 0.182 0.85 0.84 (0.65–1.09) 0.180

AD 90 499 1.00 0.84 (0.59–1.19) 0.326 0.85 0.89 (0.60–1.32) 0.566

SQ 50 499 1.00 0.96 (0.61–1.52) 0.870 0.85 0.96 (0.57–1.62) 0.871

Ever smoking 236 272 1.00 0.95(0.71–1.27) 0.735 0.87 0.82 (0.59–1.14) 0.231

Never smoking 95 217 1.00 0.69(0.47–1.03) 0.065 0.87 0.89 (0.57–1.40) 0.611

GLC6 481 478 1.00 1.01 (0.83–1.24) 0.881 0.80 1.06 (0.85–1.33) 0.584

AD 186 478 1.00 0.88 (0.67–1.16) 0.368 0.80 0.92 (0.68–1.25) 0.609

SQ 97 478 1.00 1.20 (0.85–1.70) 0.299 0.80 1.17 (0.80–1.70) 0.426

Ever smoking 433 258 1.00 1.01 (0.78–1.32) 0.920 0.80 1.06 (0.79–1.41) 0.701

Never smoking 35 220 1.00 0.99 (0.54–1.82) 0.978 0.80 0.90 (0.47–1.70) 0.736

Discovery combined 12160 16838 0.94 (0.91–0.98) 0.002 0.94 (0.90–0.98) 0.003

Harvard7 984 970 1.00 1.01 (0.88–1.17) 0.857 0.83 1.02 (0.89–1.17) 0.791

AD 597 970 1.00 1.00 (0.86–1.18) 0.952 0.83 1.04 (0.88–1.21) 0.673

SQ 216 970 1.00 1.03 (0.82–1.31) 0.781 0.83 1.00 (0.79–1.27) 0.967

Ever smoking 892 809 1.00 1.00 (0.86–1.16) 0.962 0.83 0.97 (0.84–1.13) 0.687

Never smoking 92 161 1.00 1.15 (0.76–1.76) 0.502 0.83 1.51 (0.99–2.29) 0.053

deCOD8 1319 26380 1.00 0.98 (0.91–1.07) 0.689 0.89 0.99 (0.91–1.09) 0.911

AD 547 26380 1.00 0.96 (0.85–1.09) 0.524 0.89 1.02 (0.88–1.17) 0.834

SQ 259 26380 1.00 0.92 (0.77–1.10) 0.373 0.89 0.84 (0.69–1.03) 0.095

Replication combined 2303 27350 0.99 (0.92–1.06) 0.803 1.00 (0.93–1.08) 0.960

Overall 14463 44188 0.95 (0.92–0.98) 0.004 0.95 (0.92–0.99) 0.009

Overall AD combined 4862 43221 0.95 (0.91–1.00) 0.053 0.96 (0.91–1.01) 0.114

Overall SQ combined 3897 43365 0.92 (0.87–0.97) 0.002 0.93 (0.88–0.99) 0.016

Overall ever smoking 
combined 10420 9317 0.96 (0.91–1.00) 0.043 0.96 (0.91–1.00) 0.064

Overall never smoking 
combined 731 3230 0.95 (0.83–1.09) 0.467 1.00 (0.86–1.16) 0.959

Table 2.  Summary of the association results of two SNPs in the eight lung cancer GWAS studies. AD: 
adenocarcinoma, SQ: squamous cell carcinoma. The combined OR and P value were estimated using a fixed-
effects model. 1ICR: the Institute of Cancer Research Genome-wide Association Study, UK. 2MDACC: the MD 
Anderson Cancer Center Genome-wide Association Study, US. 3IARC: the International Agency for Research 
on Cancer Genome-wide Association Study, France. 4NCI: the National Cancer Institute Genome-wide 
Association Study, US. 5Toronto: the Samuel Lunenfeld Research Institute Genome-wide Association Study, 
Toronto, Canada. 6GLC: German Lung Cancer Study, Germany. 7Harvard: Harvard Lung Cancer Study, USA. 
8deCODE: Icelandic Lung Cancer Study, Iceland.
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lymphocytes27. We found that PTPN2 mRNA expression levels in matched lung cancer tissues were increased 
compared to adjacent normal tissues from the TCGA database, some other studies also demonstrated that PTPN2 
expression levels were higher in lung AD28, 29 and SQ30, 31 than in normal lung tissues. These findings provided 
oncogenic evidence of PTPN2 and were consistent with our results that the two susceptibility loci of PTPN2 were 
associated with a decreased lung cancer risk as a result of a decreased mRNA expression level of the gene. In addi-
tion, we found that the eQTL analysis result of rs2847297 in lung tissue was also significant in the GTEx analysis 
(P = 4.0E10–7) (http://www.gtexportal.org/home/eqtls/bySnp?snpId=rs2847297&tissueName=All). This result 
is also consistent with the eQTL analysis from the lymphoblastoid cell lines in the present study. However, it has 
been reported that overexpression of PTPN2 induces apoptosis in the p53 + A549 and MCF-7 cells but not in 
p53- HeLa cells, also consistent with features of a tumor suppressor32. Another study demonstrated that PTPN2 
was absent in a large proportion of “triple-negative” primary human breast cancers and PTPN2 overexpression 
would suppress tumor growth33.

In subgroup analysis we found that the two SNPs were more likely to be associated with SQ risk, and the risk 
associated with rs2847297 G allele was more likely to be among ever smoking. Cigarette smoke is the major risk 
factor for lung cancer, especially for SQ. Study showed that smoking led to an increased expression of Nkx234, 
which is the transcription factor (TF) of PTPN2. Therefore, it is likely that the locus has the possibility of influenc-
ing lung cancer risk of ever smokers through changing the expression of PTPN2.

Our study has some limitations. First, genes in the TCPTP pathway were identified mainly from the Molecular 
Signatures Database and Genecards. Although we did search some relative articles to complete the list of genes 
in the pathway, some newly discovered genes in the pathway might have been missed. Second, although we 

Figure 3.  Forest plots of effect size and direction for tagSNPs from TRICL-ILCCO consortium. PTPN2 
rs2847297 Pcombined = 0.004 in all individuals; Pcombined = 0.052 in overall adenocarcinoma individuals; 
Pcombined = 0.002 in overall squamous cell carcinoma individuals; Pcombined = 0.042 in overall ever smoking 
individuals; Pcombined = 0.465 in overall never smoking individuals (A); PTPN2 rs2847282Pcombined = 0.009 in all 
individuals; Pcombined = 0.114 in overall adenocarcinoma individuals; Pcombined = 0.016 in overall squamous cell 
carcinoma individuals; Pcombined = 0.066 in overall ever smoking individuals; Pcombined = 0.960 in overall never 
smoking individuals (B); Each box and horizontal line represent the OR point estimate and 95% CI derived 
from the additive model. The area of each box is proportional to the statistical weight of the study. Diamonds 
represent the ORs obtained from the combined analysis with 95% confidence intervals indicated by their 
widths. The meta-analysis includes eight GWAS studies [the Institute of Cancer Research (ICR) GWAS, the MD 
Anderson Cancer Center (MDACC) GWAS, the International Agency for Research on Cancer (IARC) GWAS, 
the National Cancer Institute (NCI) GWAS, the Lunenfeld-Tanenbaum Research Institute (Toronto) GWAS, 
German Lung Cancer Study (GLC) GWAS, Harvard Lung Cancer Study (Harvard) GWAS, Icelandic Lung 
Cancer Study (deCODE) GWAS]. NCI GWAS includes four sub-studies: the Alpha-Tocopherol, Beta-Carotene 
Cancer Prevention Study (ATBC), the Cancer Prevention Study II Nutrition Cohort (CPS-II), the Environment 
and Genetics in Lung Cancer Etiology (EAGLE), and the Prostate, Lung, Colon, Ovary Screening Trial (PLCO).

http://www.gtexportal.org/home/eqtls/bySnp


www.nature.com/scientificreports/

7Scientific Reports | 7: 825  | DOI:10.1038/s41598-017-00850-0

demonstrated the association of thetwo novel potentially functional loci in PTPN2 with lung cancer risk with 
functional evidence from eQTL analyses, the exact biochemical and molecular mechanisms are still unclear. 
Third, our eQTL analyses were limited to publicly available data from lymphoblastoid cell lines but target tissues, 
which could provide more direct correlation results between the two SNPs and PTPN2 expression.

Taken together, the present study revealed two novel, potentially functional susceptibility loci in PTPN2 asso-
ciated with lung cancer risk in European populations, particularly among ever smokers and squamous carcinoma. 
Further validation and functional evaluation of these genetic variants are warranted to verify our findings.

Materials and Methods
Study populations.  The present study first used genotyping data from the TRICL-ILCCO consortium, 
which included 12,160 lung cancer cases and 16,838 controls (all Europeans) of six previously published GWAS 
studies: The University of Texas MD Anderson Cancer Center (MDACC), Institute of Cancer Research (ICR), 
National Cancer Institute (NCI), International Agency for Research on Cancer (IARC), Toronto study from 
Samuel Lunenfeld Research Institute study (Toronto), and German Lung Cancer Study (GLC). The expanded 
analysis included additional two GWAS studies of European ancestry from the Harvard Lung Cancer Study (984 
cases and 970 controls)35 and the Icelandic Lung Cancer Study (deCODE) (1,319 cases and 26,380 controls)36 of 
the ILCCO. Details of the study populations are presented in the supplementary file. A written informed consent 
was obtained by all participating GWAS studies. All methods were performed in accordance with the relevant 
guidelines and regulations for each of the participating institutions, and the present study followed the study 
protocols approved by Duke University Health System Institutional Review Board.

Selection of Genes and SNPs from TCPTP pathway.  Genotyping in these GWAS studies was per-
formed by one of Illumina HumanHap 317, 317 + 240 S, 370Duo, 550, 610 or 1 M arrays. IMPUTE2 v2.1.1 or 
MaCH v1.0 software was used for imputation. Genes in the TCPTP pathway were identified from the Molecular 
Signatures Database (http://www.broadinstitute.org/gsea/index.jsp)37 and Genecards (http://www.genecards.
org/). Overall, 43 genes located on autosomal chromosomes were selected (detailed in Supplementary Table S1). 
The final meta-analysis contained 5,162 SNPs with the following inclusion criteria: genotyping rate >95%, minor 
allele frequency (MAF) ≥ 5%, and Hardy-Weinberg Equilibrium (HWE) exact P value ≥ 10−5. The detailed work-
flow is shown in Fig. 4.

In silico functional prediction and validation.  We use three in silico tools, SNPinfo (http://snpinfo.
niehs.nih.gov/snpinfo/snpfunc.htm)38, RegulomeDB (http://regulomedb.org/)39, and HaploReg (http://www.

Figure 4.  Flowchart of SNP selection among the TCPTP pathway genes.

http://S1
http://regulomedb.org/
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broadinstitute.org/mammals/haploreg/haploreg.php)40 to predict potential functions. The expression quantitative 
trait loci (eQTL) analysis was performed in the 1000 Genomes Project41. The mRNA expression of lung cancer 
tissue samples was performed in TCGA42.

Statistical analysis.  Odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated using Stata 
(v10, State College, Texas, USA) and PLINK (v1.06) software. A meta-analysis with the inverse variance method 
was employed on the 5,162 SNPs. We used Cochran’s Q statistic to test for heterogeneity and I2 statistic for the 
proportion of the total variation43. The fixed-effects model was used when there was no heterogeneity among 
GWAS studies (Q-test P > 0.100 and I2 < 25%); otherwise, the random-effects model was used. The false discov-
ery rate (FDR) was performed to control for multiple testing with a threshold <0.2044. The genes mRNA expres-
sion levels in lung cancer and adjacent tissues from TCGA database were performed by paired t-test. Regional 
association plots were performed by LocusZoom45. Haploview v4.2 was used to generate the Manhattan plot and 
LD plots46. All other analyses were conducted with SAS (Version 9.3; SAS Institute, Cary, NC, USA).
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