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Characterizing rare fluctuations in soft particulate
flows

S.H.E. Rahbari'!, A.A. Saberi?34, Hyunggyu Park' & J. Vollmer>©678

Soft particulate media include a wide range of systems involving athermal dissipative
particles both in non-living and biological materials. Characterization of flows of particulate
media is of great practical and theoretical importance. A fascinating feature of these systems
is the existence of a critical rigidity transition in the dense regime dominated by highly
intermittent fluctuations that severely affects the flow properties. Here, we unveil the
underlying mechanisms of rare fluctuations in soft particulate flows. We find that rare
fluctuations have different origins above and below the critical jamming density and become
suppressed near the jamming transition. We then conjecture a time-independent local
fluctuation relation, which we verify numerically, and that gives rise to an effective tem-
perature. We discuss similarities and differences between our proposed effective tempera-
ture with the conventional kinetic temperature in the system by means of a universal scaling
collapse.
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arge fluctuations are a distinguishing feature of soft parti-

culate flows, like flows of granular medial> 2, bubbles and

foams>, and in living matter such as biological tissues® °.
Very dense systems are in a jammed state. They only move in
response to a strong external force. Less packed systems are in a
fluid state. They flow in response to any finite force. The flows are
highly intermittent and involve rare, very large fluctuations® that
can trigger transitions between the jammed and the fluid state’.
Landslides® and avalanches® are transitions from a jammed to a
fluid state. Clogging of hoppers'® and breakdown of silos!!
involve the transition from a fluid to a jammed state. Predicting
the frequency of appearance of such fluctuations is a question of
great practical and theoretical interest.

Fluctuation relations (FRs) compare the probability of the
forward progression of a dynamics and its reverse; akin of
watching a movie played in forward and reverse direction.
They provide an exact symmetry property of the probability
distribution function (PDF) characterizing the likelihood to
encounter a given course of states in an observation of the
dynamics. Close to equilibrium this symmetry entails linear
response. Far from equilibrium FRs have been adopted in
micro-biological systems to determine the free energy of a
folding RNA!? and thermodynamic properties of other
biomolecules!® ', In contrast to the dynamics of the microscopic
biological systems the dynamics of most macroscopic systems do
not move against an exerted force!®. The strongly fluctuating and
intermittent flows of soft particulate matter are a noticeable
exception to this rule.

Here, we analyze the statistics of those very large fluctuations
where the flow is moving against a driving force. We discuss rare
fluctuations in flows of soft particulate matter, where the injected
power, p=dw/dt « o,,-6v takes negative values in a finite
domain that is subjected to a velocity gradient §v and that resists
flow by a shear stress oy, (the shear stress is the force resisting the
flow, see Supplementary Notes 1, 2 and 3). In a steady state the
injected energy balances the energy dissipated by the viscosity of
the fluid. Hence, on average p takes a positive value, and in the
thermodynamic limit it does not fluctuate. When there is a finite
number of particles in the considered domain there is a small
chance to encounter rare fluctuations where p takes a negative
value. This can either be due to the reversal of the shear stress o,
or to the velocity gradient 5v. While one might naively expect that
fluctuations in o, and év would equally contribute to such vio-
lations, our numerical simulations show an unexpected interplay
of these two mechanisms of rare fluctuations. Moreover, we
establish a variation of FR for the statistics of the injected power
driving the flow and use it to define an effective temperature for
far-from-equilibrium soft particulate flows. Our approach can be
easily generalized to study negative power fluctuations and
effective temperatures both in simulations and experiments in a
wide range of problems such as in the sheared foams, vibrated
granular media, particles down an inclined plane, emulsions and
other soft particulate media.

Results

PDF of injected power p. In the Fig. la, we show a typical
example of the PDF, P(p/p), of the local power flux rescaled by
the mean power, ie., p/p. The PDF exhibits several remarkable
features. The power flux can take negative values with a rather
high probability. The distribution is strongly skewed towards
positive events. At the both sides the PDF decays exponentially to
a good approximations. It is very different from a Gaussian dis-
tribution. Still, the negative part of the PDF (the shaded area in
Fig. 1a) decreases rapidly with system size. In the following this
area will be denoted as P(p<0) = [ (10073@) dp. The slopes of the
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exponential decay are roughly proportional to the number of
particles in the considered volume such that P(p <0) decays
exponentially to zero with system size.

Probability of rare fluctuations. In Fig. 1b we show P(p <0) as a
function of packing fraction ¢. The lines in different color indicate
data for different shear rates, y. For shear rates, 7= 0.2 (olive),
this probability is very small, and it grows upon decreasing the
shear rate. There is pronounced growth in the fluid and in the
jammed states. However, close to the jamming point ¢; (marked
by the vertical dashed line) it remains small for all shear rates. The
critical point lies to the right of the minima. However, the
minima converge towards ¢; in the limit y — 0 and system size
L—o0. Hence, the minimum will eventually approach ¢j; the
discrepancy is due to finite-size effects. The emergence of the
global minimum is remarkable because fluctuations are expected
to diverge close to a critical point'®1%, ie., one expects a larger
probability to encounter fluctuations close to the critical point.
The minimum is a distinctive feature of the jamming transition. It
has no counterpart in equilibrium thermodynamics.
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Fig. 1 Probability of rare fluctuations. a A typical PDF of the rescaled
power p/p for ¢ =0.7, y = 0.01, and L =30. The solid straight lines
show the exponential decay of the PDF for large and small arguments.
The area of the shaded region gives the probability, P(p < 0), that

the local power takes a negative value, i.e., to encounter a negative
power injection. b The probability to observe a negative power injection
P(p < 0) as a function of packing fraction ¢ for different shear rates

y = 0.005,0.01,0.02,0.04,0.06,0.08,0.1 and 0.2 from top to bottom,
respectively, and system size [ =30. The vertical dashed line marks the
critical packing fraction, ¢, where the jamming transition occurs in the
static limit. Error bars correspond to square root of variance
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Decomposition of the probability of rare fluctuations. In order
to understand the origins of the negative power injection, we
recall that the power flux has two contributions: The local shear
stress o, and the local velocity gradient 6v. Negative power
injection arises whenever either oy, < 0 and 6v > 0, or 6v <0 and
Gy > 0. The former events will be denoted as (o7,,6v"). In this
case the velocity profile remains monotonic and negative power
injection arises from fluctuations of the shear stress. The latter
events will be denoted as (6v—, o7 ) In this case the negative
power injection is connected to rare fluctuations where the
velocity profile is no longer monotonic (see Supplementary
Fig. 1). The joint probability of these events sum up to the
probability to encounter negative power injection: P(p<0) =
P(oy,,0v") + P(6v~,0)) (In Supplementary Note 5 and
Supplementary Fig. 3 we numerically prove this equality).
Figure 2 presents the numerical results for these two joint
probabilities, ie, P(o,,6v") (left axis, filled symbols) and

P(6v™,0}) (right axis, hollow symbols) as function of packing
fraction for various shear rates. For a given shear rate (a given
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Fig. 2 Mutually exclusive fluctuations. Joint probabilities P(ay, Jovth)

(left axis, filled symbols) and P(6v~, o ) (right axis, hollow symbols) as
functions of packing fraction, ¢, for various shear rates, 7. In the fluid state,
¢ < ¢, the dominant mechanism of negative power injection is the reversal
of the shear stress. In the jammed state, ¢ > ¢, it is due to the reversion of
the velocity gradient. Error bars correspond to square root of variance
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Fig. 3 Verification of the instantaneous FR. Plot of In [P(p)/P(

color), the intersection point of the joint probabilities is very close
to the jamming point. Hence, ¢; splits the probability space into
two disjoint regions. Accordingly, the two types of mechanisms,
shear-stress and velocity-gradient fluctuations, are mutually
exclusive. The reason can be sketched as follows. The positive
shear stress corresponds to head-to-head collisions while the
negative shear stress is associated to backup collisions during
which the local angular momentum is in the same and in the
opposite direction of the global induced angular momentum of
the flow, respectively (see Supplementary Fig. 2 and Supple-
mentary Note 4). For ¢ < ¢, since the average coordination
number is relatively small, the negative contacts can be observed
with high probability although they are suppressed by increasing
the shearing flow. This justifies the decreasing dependence of the
probability of negative stress as function of both shear rate and
packing fraction. For ¢ > ¢}, since the coordination number
jumps to a value >4, the negative contacts can in average be
suppressed by the positive ones since the global symmetries of the
flow favor the positive contacts. This elucidates the behavior seen
in Fig. 2 for the negative shear stress and since the negative power
includes exclusive contributions from the negative shear stress
and negative velocity gradient, our argument naturally explains
the observation of the mutually exclusive fluctuations.

Fluctuation relation. At this point we identified qualitatively
different physics underlying the fluctuations of fluid and jammed
systems. In order to gain more insight into the parameter
dependence of the strength of fluctuations we establish now a FR
for the flows. It will characterize the width of the PDFs P(p) by
an effective temperature T,. We conjecture that the relation
In[P(p)/P(—p)] = Pp holds where f=1/T, has inverse dimen-
sion of power. Here, the constant 7 is the relevant elastic time
scale which represents the typical time scale of a single collision.
It is approximately independent of ¢ and 7 (see Supplementary
Note 6).

Figure 3 presents the numerical verification of our conjecture
for two packing fractions ¢ = 0.7 and 0.9 that lie below and above
the critical point, ¢;=0.84, respectively. There is a linear
dependence between In[P(p)/P(—p)] and p whose slope is a
decreasing function of the shear rate y. This implies that T, is an
increasing function of the shear rate, in accordance with the
shear-rate dependence of the average kinetic temperature of
particles in the flow. Surprisingly, the correspondence is not only
qualitative. It even holds quantitatively. All data shown in Fig. 3a
collapse to a straight line when In [P(p)/P(—p)] is multiplied by

b

In [P(p)/P(=p)]

ok
0 02 04 06 0.8 1 12 14
p

—p)] vs. p for two packing fractions a ¢ =0.7 and, b ¢p = 0.9. The solid lines are linear fits of

slope ff. = /T, of the data for different shear rates. The slope decreases by increasing the shear rate y, implying that the effective temperature T, increases
by 7. The slope has a weak dependence on 7 in the jammed state. For n* and n™ representing number of positive (+p) and negative (-p) cases, the

corresponding error bar of P(p)/P(~p) is equal to (1/n"+1/n")"?2

18:1

|DOI: 10.1038/541467-017-00022-8 | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

a T T T T TT llI T T T TT llI T T T TT llI T
3 L .
07 F yotaa o
g=1.50 i ]
102 | e E
| Super-crt. -~ ~
B : L=10 i |
e 20 1t ]
= ]
- 30 4
> =
=S 50 =
(%=}
o 80 101 |
10—3 " ool " PR | L MR | L ]
107" 10° 10" 102
W — pl
b 0.5 T T T T
0.4 - { ﬁ
§ . $=07
[\
3 03fF T3 -
T
£ o2t 5 —
l\—‘m
= ki3
~ o01f -
0 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5
p

Fig. 4 Scaling of effective and kinetic temperatures. a When rescaled with
the critical exponents g =1.5(1) and y =1.44(15) the effective and granular
temperatures collapse onto a scaling function. However, to achieve a data
collapse we had to adopt slightly different critical densities, ¢.=0.83 and
¢c=¢,;=0.84for T, and T, respectively. In the fluid state and in the critical
state the temperatures match. For the fluid state they exhibit Bagnoldian
scaling with exponent 2. In the critical state they still share same non-trivial
scaling for }'//545”‘7210. In the jammed state the temperatures segregate
into two different branches; T, approaches a constant and T, follows a
power-law behavior with exponent 1.5(1). Different system sizes are given
by different symbols in which filled and hollow symbols refer to T, and T,
respectively. The color code corresponds to different shear rates y = 0.02
(purple), 0.04 (magenta), 0.06 (blue), 0.08 (golden), and 0.1 (yellow). b The
collapse of all data presented in Fig. 4a when the vertical axis is multiplied
by a factor of Ty/z with z=0.28. In these data, we cover a large range of
packing fractions around jamming, 0.7 < ¢ < 0.9. Error bars correspond to
square root of variance

the granular temperature, T, (Fig. 3b). The resulting straight line
has a slope 1 with 7=0.28. (In Supplementary Note 8 and
Supplementary Fig. 8, we numerically prove that our proposed
FR is also satisfied for highly damped systems corresponding to
non-Brownian suspensions.)

Scaling collapse of effective and kinetic temperatures. In the
jammed state the effective temperature, T,, and the granular
temperature, Ty, differ: T, is always larger than T,. We explore the
parameter dependence of the two temperatures by exploring their
scaling properties'®. In Fig. 4a we demonstrate that the full 7 and
¢ dependence of the temperatures for different system sizes can
be represented in terms of a master plot where T/I6¢V is plotted
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as function of j/|5¢"/? with appropriate choice of the exponents
¥, q and 6¢p = ¢p—¢p.. For the fluid state we thus find the well-
known Bagnoldian scaling with exponent 2. In the jammed state,
we find that T, and T, still collapse uniformly in the critical
region, 7/|5¢"/% 2 10. For jammed flows, however, they segregate
into two different branches in accord with our earlier statement.
In this limit T, approaches a constant—yield stress emerges. In
contrast, T, shows a power-law behavior with exponent ~ 1.5(1).
We have checked consistency of all our exponents, i.e., exponents
of granular temperature and components of stress tensor, in
Supplementary Note 7 and Supplementary Figs 4-7. We also
show in Supplementary Note 8 that these exponents are universal
in a sense that the same scaling collapse is achieved with the same
critical exponents for highly dissipative regime, in connection
with the non-Brownian suspensions (See Supplementary Fig. 9).

Heussinger et al?® 2! have studied fluctuations of some
observables in the flow of an assembly of frictionless, soft discs at
zero temperature, in the vicinity of and slightly above ¢;. They
have found that the contact-number fluctuations and relative
fluctuations of the shear stress diverge upon approaching ¢; from
above. They also report on strong finite-size effects when using ¢
as control parameter. However, the effective temperature T, in
our study, is the product of thermodynamically forbidden
fluctuations (negative stress below ¢; and negative velocity
gradient above ¢;) which are specific to small-size systems and
vanish in the vicinity of ¢;. Our observation indicates that the
scaling behavior of T, is not significantly altered by the finite-size
effects below and above ¢; for L > 10 (see Fig. 4a). We find that to
a very good extent, T, is independent of the system size. We only
see small deviations for L = 10. These deviations vanish as y — 0.

Discussion

The flow of particulate matter is similar to classical fluids in so far
as it involves the motion of many particles that interact by short-
range forces. As function of packing fraction the flows undergo a
phase transition from a fluid into a jammed state. Close to the
critical point the materials obey scaling relations®* 3, reminiscent
of critical phenomena. The data collapse of the granular tem-
perature, i.e., the kinetic energy per degree of freedom, is shown
here in Fig. 4a. In the fluid state and in the critical region this
temperature agrees with an effective temperature that char-
acterizes the probability to encounter different power injections.

The proposed effective temperature is sensitive to the inherent
properties of the systems, and it potentially qualifies as the
effective temperature that has been searched for recently with
great urgency’® 2°. The effective temperatures proposed in the
past?® are based on fluctuation-dissipation relations, ie., they
assume linear response. Our study goes beyond linear response by
introducing a FR in order to define a shear-rate-dependent
effective temperature. This effective temperature is valid for
packing fractions far from the jamming point, in contrast to the
previous ones that are meaningful measure only near the tran-
sition pointZG.

Various types of fluctuation theorems have been extensively
studied over the last two decades'>27~2°. Motivated by molecular
dynamics simulations, Evans et al.>° proposed an empirical FR
for entropy production rate in a two-dimensional sheared
Lennard-Jones fluid. Later, this emgirical relation was rigorously
proved by Gallavotti and Cohen®" 32, This is now known
as steady-state fluctuation theorem (SSFT). In a SSFT, the entropy
production rate is time averaged over a single, randomly sampled
interval of duration 7. In contrast, the transient fluctuation
theorem (TFT) of Evans and Searles®® applies to a system that
evolves from an initial equilibrium state to a nonequilibrium
steady state. TFTs are different from SSFT's from a practical point
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of view. Whereas TFRs rely on ensemble averaging all starting
from the same initial macro-state, SSFRs may be verified from
steady-state evolution of a system over a sufficiently long time*,
As we have already stressed out, properties of soft particulate
flows are predominated by the rare fluctuations which result to
intermittent behavior of these flows. It can be seen that FRs of
type SSFTs are not suitable for soft particulate flows. The reason
is that as a consequence of averaging process during the sampling
time, the rare fluctuations can be washed out. Therefore, we use
an instantaneous, time-independent FR to characterize strength
of rare fluctuations. Whether our postulated FR would enjoy a
rigorous treatment, will remain a theoretical challenge.

In addition, we have shown here that fluctuations in soft
particulate flows differ essentially from those of classical fluids.
First of all, they are very strong as demonstrated by the expo-
nential decay of the PDFs of negative power injection (Fig. la)
rather than the much faster decay of Gaussian distributions. Even
for shear rates as large as y = 0.2 we observe negative power
injection (lowermost curve in Fig. 1b). Even more surprising, rare
fluctuations are strongly suppressed close to the critical point
(minima of the curves in Fig. 1b). They behave exactly contrary to
the strength of critical fluctuations that diverge at the critical
point and die out rapidly outside the critical region'®. It will be
challenging numerically, but extremely interesting from a
conceptual point of view to explore how classical fluids behave in
this respect. Finally, we have shown that there are different
physical mechanisms underlying rare fluctuations in fluid and
jammed states: In fluid states negative power injection originates
from fluctuations where the shear stress takes a negative sign,
in jammed states they arise in regions with negative shear rates.
This dichonometry of mutually exclusive mechanisms of rare
fluctuations above and below a critical state is a distinctive feature
of soft particulate flows that has no counterpart in equilibrium
thermodynamics.

Rheological properties of particulate flows are commonly
characterized in terms of hydrodynamic equations and con-
stitutive relations®> 3¢, Fluctuations are not a part of the mod-
eling. The present study takes a different approach to characterize
the systems: We focus on the fluctuations as an inherent property
of the dynamics. Remarkably, the fluctuations obey a local,
time-independent FR, and this relation can be used to define
an effective temperature of the system. In contrast to the
hydrodynamic approaches the temperature is not a field variable
in this setting. Rather it characterizes the variability of snapshots
of the flow. It is a scalar quantity that characterizes the ensemble
of observations of the flows, taking full note of fluctuations.
It neither requires to find appropriate heuristic constitutive
equations, nor does it rely on the scale separation at mesoscopic
scales that is implicit to the definition of thermodynamic fields.
Hence, it is less prone to pitfalls arising from inapt choices of
constitutive relations and applicable to a larger class of far-from-
equilibrium flows. Thus, the present study opens a qualitatively
new road to the description of far-from-equilibrium particulate
flows.

In a recent study, Maloney’” investigated distribution of
dissipation power P(I") in Durian’s bubble model. Whereas we
find that P(p) has always exponential tails, it is shown that above
jamming density P(I") becomes power law for small shear rates.
This implies that distributions of injection and dissipation powers
might not be equivalent. Stationarity condition implies that first
moments of these distributions must be equal. But as one can see,
higher moments of these distributions, which refer to the char-
acteristic of the tails, might be different. This suggests a new
avenue of research for investigation of steady state properties
of non-equilibrium states. In this context, Maloney’s work®’
together with our approach to calculate P(p) in shear flows
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provide a solid framework for investigation of similarities and
differences between distributions of injection and dissipation
powers.

Methods
Simulation details. We perform molecular-dynamics simulations of
two-dimensional frictionless bidisperse disks. Particles interact via short range
repulsive and dissipative forces. Two particles i and j of radii R* and R? (where
a,b=0, 1 stand for two different radius of bidisperse particles) at positions r; and r;
interact when &; = R} + ij — r;;>0. Here &; is called the mutual compression
of particles i and j, r;;=Ir;~r;l. The particles interact via a linear Dashpot model,
c

d . - .
F;j=Y¢;+y where Y and 7 are denoted as elastic and dissipative constant,

respectively. Throughout the study we adopt the values Y =100 and y =0.315,
respectively.

In order to prevent crystallization we use a 1:1 binary mixture of particles where
the ratio of the radii of large and small particles is set to RY/R" = 1.4.

The equations of motion are non-dimensionalized by choosing the unit of the
length to be R%+R! = 1, and setting the mass of each particle equal to its area, m, =
#[R%). Finally, the ratio of Y and y provides the time scale t* = y/Y = 3.15x 1073,

Lees-Edwards boundary conditions are applied along
x-direction. They create a uniform overall shear rate, 7. These equations of motion
are integ4rated with a 5th-order predictor-corrector Gear algorithm with time step,
dt=107"%

Data availability. The authors declare that the data supporting the findings of this
study are available from the authors on request.
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