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Abstract

Introduction

Gene-set analysis (GSA) is an approach using the results of single-marker genome-wide

association studies when investigating pathways as a whole with respect to the genetic

basis of a disease.

Methods

We performed a meta-analysis of seven GSAs for lung cancer, applying the method META-

GSA. Overall, the information taken from 11,365 cases and 22,505 controls from within the

TRICL/ILCCO consortia was used to investigate a total of 234 pathways from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database.

Results

META-GSA reveals the systemic lupus erythematosus KEGG pathway hsa05322, driven by

the gene region 6p21-22, as also implicated in lung cancer (p = 0.0306). This gene region is

known to be associated with squamous cell lung carcinoma. The most important genes driving

the significance of this pathway belong to the genomic areas HIST1-H4L, -1BN, -2BN, -H2AK,

-H4K and C2/C4A/C4B. Within these areas, the markers most significantly associated with LC

are rs13194781 (located within HIST12BN) and rs1270942 (located between C2 and C4A).

Conclusions

We have discovered a pathway currently marked as specific to systemic lupus erythemato-

sus as being significantly implicated in lung cancer. The gene region 6p21-22 in this
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pathway appears to be more extensively associated with lung cancer than previously

assumed. Given wide-stretched linkage disequilibrium to the area APOM/BAG6/MSH5,

there is currently simply not enough information or evidence to conclude whether the poten-

tial pleiotropy of lung cancer and systemic lupus erythematosus is spurious, biological, or

mediated. Further research into this pathway and gene region will be necessary.

Introduction

Since the beginning of the 20th century, lung cancer (LC) occurrence has been increasing rap-

idly and has become the most common cancer in males. It is the main cause of cancer-related

death worldwide [1] and tobacco smoke is its major risk factor. The risk of developing LC in

current smokers is 7.6 to 9.3 times higher compared to that of never smokers [2]. However,

around every fourth LC case is not attributable to smoking [3]. A five-fold increased risk of

developing early-onset LC in the presence of a family history of early-onset LC in any first-

degree relatives has also been observed [4, 5]. This and other evidence has led to the general

acceptance that a genetic component in early-onset LC development exists. However, an

increased risk of developing LC has also been observed in patients with other disease, such as

COPD, pneumonia, tuberculosis, or the autoimmune disorder systemic lupus erythematosus
(SLE) [6, 7]. In the case of patients with SLE, an increased relative risk (RR) of developing LC

was observed as being 1.68 (95%-CI: 1-33-2.13) [6]. In spite of multiform clinical manifesta-

tions and outcomes, it is generally accepted that genetics plays a role in SLE [8]. In light of the

results of this investigation, we will discuss a shared genetic susceptibility as a possible connec-

tion between SLE and LC.

Genome-wide association studies (GWASs) have revealed that genomic variations at e.g.

5p15.33, 6p21-22 and 15q25 influence LC risk in European populations [9–16]. Further weakly

associated single markers in at least 12 genes have been found given their known role within

certain molecular mechanisms [17–21]. Since associated genes are elements of respective path-

ways, one may assume that nicotine dependency [14], inflammation [16, 22], or DNA repair

[23], among others, play a role in an individual’s susceptibility to developing LC.

The usual approach to identify such molecular mechanisms with GWAS is primarily to

investigate single-marker-association and then allocate these markers to genes and finally the

genes to pathways. Doing so, either the marginal effect of a single marker and/or the sample

size needs to be large, because a low genome-wide level of significance of 1 x 10−7 or smaller is

needed owing to multiple testing. Gene-set analysis (GSA) strategies were proposed as comple-

mentary approaches in the investigation of the genetic basis of a disease using GWAS results

[24–26], by seeking to identify sets of genes (GS) with sufficient enrichment of marker-specific

significance for an association with a phenotype.

GSA approaches provide no effect estimates of the association, but only p-values (pGS).
To pool the pGS-values of several GSAs, it is important to take into account the concordance

across studies of all single-marker-association point estimates related to every gene in a consid-

ered gene set [27]. However, one only needs to correct for multiple testing using the lower

number of GSs being investigated instead of the larger number of genotyped markers. Once a

GS has been found to be significantly associated, a search may be conducted for the genes that

drive its significance and for the hosted markers which are concordant across studies based on

their observed associations.

Here we aimed to identify pathways taken from the Kyoto Encyclopedia of Genes and

Genomes (KEGG) database [28] as being associated with LC. KEGG provides a collection of
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manually drawn pathway maps representing an up-to-date knowledge on the molecular inter-

action and reaction networks. This includes pathways for metabolisms (e.g. nicotinate and nic-

otinamide metabolism), for genetic information processing (e.g. DNA repair), for

environmental information processing (e.g. Wnt signaling), for cellular processes (e.g. cell

cycle), for organismal systems (e.g. circadian rhythm) and last but not least for human diseases

(e.g. LC or SLE) [29]. We refrained from restricting the KEEG collection, because pathways

that are potentially involved in the etiology of LC (examples are given above in brackets) are

contained in every upper mentioned category.

Our subsequent goal was to determine the driving genes in the pathways identified in the

first step. To this end, we combined the results of seven LC GWASs from the Transdisciplinary

Research in Cancer of the Lung / International Lung Cancer Consortium (TRICL / ILCCO) in

a meta-analysis.

Materials and methods

Description of studies

The meta-analysis was based on summary data from seven previously reported LC GWASs

form TRICL / ILCCO (Fig 1). We included 11,365 LC cases and 22,505 controls of European

descent in the analysis. An overview as well as study name abbreviations are given in Table 1.

Details and references are provided Supplement S1 File.

Strategy and methods

In the original GWASs, a log-additive mode of inheritance was fitted for each marker, adjust-

ing for age, sex, smoking status, study center (if applicable), and the first three principal com-

ponents to account for hidden genomic structure. The results of marker-by-marker

association testing were used as input information for the GSAs.

For this meta-analysis, we set up a two-phase seamless design consisting of a screening

phase and a replication phase. In the screening phase, the results of MDACC, TORONTO,

GLC, and CE were combined, because GSA of these studies was performed for 234 KEGG

pathways previously [30, 31]. In the replication phase, the results of the remaining studies

NCI, deCODE, and HARVARD were combined to investigate only those pathways whose

findings in the screening phase proved promising. If necessary, GSA was performed using the

program ALIGATOR [32]. The method META-GSA [27] was performed to pool GSA results

(p-values pGS,s) at each stage. The aim of META-GSA is to increase statistical evidence by pool-

ing the p-values pGS,s of GSAs, taking also into account the concordance of the signs of single-

marker-association point estimates and related p-values of all markers (pm,s) assigned to genes

contained in the GS [27]. The core element of this approach is a directed p-value (PDR), com-

bining significance and direction of single markers and LD to other markers. Necessary esti-

mates of LD were based on the genotype data of GLC, with imputation of missing markers

based on the 1000-Genome Project [33], the 1000-GenomePilot 1-Panel or the HapMap3-Pa-

nel as available using the SNAP online tool [34].

The SNP-to-gene annotation (StG) for humans of the ENSEMBL database [35] was used.

Markers with LD of at least r2�0.8 to any marker inside a gene were additionally assigned to

that gene [36]. All genes were then annotated to 234 gene sets from the KEGG database (gene-

to-pathway annotation (GtP)).

Both phases can be considered as the first and the second stage of a seamless, adaptive study

with interim selection of gene sets (“drop-loser design” [37]). The investigation of every

KEGG pathway with a pooled pscr.< β1 = 1/234 in the screening phase was stopped early for

futility. The significance, combining screening and replication phase, was assessed according

Lung cancer and systemic lupus erythematosus
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to the “method based on the sum of p-values” (MSP) [37, 38]. The p-value was then calculated

by the equation pGS ¼ b1ðpscr: þ prep:Þ � 0:5b
2

1
. This pGS needs to be corrected for multiple test-

ing by taking into account the total number of 234 pathways. Due to pathway overlap we esti-

mated the number of independent tests teff according to the lowest slope method (LSM) [39]

considering all pscr.-values of the screening phase. Applying a Bonferroni-like correction then

yields the final p-value pGS,corr. =min(1,teff � pGS). Furthermore, META-GSA was also applied

to all seven studies and all pathways surviving the screening phase to take into account the

concordance of single-marker-association point estimates across all considered studies at the

same time.

The next step was to identify the main genes driving the significance of gene sets (denoted

as pGS–driving genes). Thus we contrasted the mean of PDRs across studies for each gene

(PDRg as a measure of concordance) with pooled p-values regarding the gene-level statistics

(pgene as measure of significance, calculated according to Fisher’s χ2-method). To judge these

findings adequately, we also calculated PDRg for the known LC-related genes CLTM1L, TERT,

CHRNB4,CHRNA3, CHRNA5,MSH5, BAG6, RAD52 and CDKN2B. Within these genes we

looked markers with a large mean of PDRs across studies (PDRm).

Finally, we performed a sub-group meta-analysis for the one identified KEGG pathway

according to histological subtype (AdenoLC, SqCLC, SCLC and LCLC), sex, age (older or

younger than 50 years), and smoking behavior (current, former, ever and never smokers).

Fig 1. Study selection flow cart.

doi:10.1371/journal.pone.0173339.g001
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During this investigation the region 6p21-22 became of interest. Respective correlation of

marker genotypes and gene expression (eQTL) was previously measured in non-neoplastic

pulmonary parenchymal samples taken some distance from the primary tumor in LC patients

[40]. We used the estimated correlation between every SNP located between 31.6MB and 32.2

MB (all within 6p21-22) and the expression of the genes APOM, BAG6, MSH5 (reported as rel-

evant in LC), C2, C4B, SKIV2L, STK19 (closely located to genes driving the significance in this

META-GSA application) and TNXB (reported as relevant for SLE), in total 5,572 estimated

correlations. Estimating teff = 5309 independent tests (by LSM) yields a global threshold for sig-

nificance of 1x10-7.

Results

Association of pathways: Screening and replication phase

Only three of the 234 pathways investigated revealed a p-value lower than the futility threshold

and were selected for the replication phase: hsa05322: systemic lupus erythematosus (SLE),
hsa00790: folate biosynthesis and hsa04940: type I diabetes mellitus (Table 2). Only for the SLE

Table 1. Characteristics of lung cancer GWASs of the International Lung Cancer Consortium (ILCCO).

Study Cases Controls Location Study design Illumina genotyping platform Number of

SNPs

Scanning phase

MDACCa 1 150 1 134 Texas, USA Hospital-based case–

control

317K 312 829

TORONTOb 331 499 Toronto, CA Hospital-based case–

control

317K 314 285

CE (IARCc) 1 854 2 453 Romania, Hungary, Slovakia,

Poland, Russia, Czech Republic

Multicenter hospital-

based case–control

317K, 370Duo

GLCd 487 480 Germany Population-based case–

control (<50 years)

HumanHap550K 503 381

Replication phase

DeCODE

Genetics

830 11 228 Iceland Population-based case–

control

317K, 370Duo 290 386

HARVARD 984 970 Massachusetts, USA Hospital-based case–

control

610Quad 543 697

NCI GWAS 506 062

EAGLEe 1 920 1 979 Italy Population-based case–

control

HumanHap550v3_B, 610Quad

ATBCf 1 732 1 271 Finland Cohort HumanHap550K, HumanHap610

PLCOg 1 380 1 817 10 US Centers Cohort-Cancer

Prevention Trial

317K / 240S, HumanHap550v3_B,

HumanHap610

CPS-IIh 697 674 all US states Cohort HumanHap550K, 610Quad

Overall 11

365

22 505

a MD Anderson Cancer Center.
b Toronto study by Lunenfeld-Tanenbaum Research Institute.
c Central Europe Study of the International Agency for Research on Cancer.
d German Lung Cancer Study.
e Environment And Genetics in Lung cancer Etiology study.
f Alpha-Tocopherol, Beta-Carotene Cancer Prevention study.
g Prostate, Lung, Colon, Ovary screening trial.
h Cancer Prevention Study II nutrition cohort.

doi:10.1371/journal.pone.0173339.t001
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pathway we were able to achieve a low p-value when combining screening and replication

phase and correcting for multiple testing (pGS,corr = 0.0615). Combining all seven studies in a

single META-GSA, in order to take the concordance of single-marker-association point esti-

mates of all studies into account adequately, yielded a pGS-value of 0.0306 for this SLE pathway.

This indicates sufficient enrichment and satisfactory concordance of marker-specific signifi-

cance for an association with LC.

Genes driving significance

Four genes of the SLE pathway (HIST1-H4L,-1BN, -H2AK, -H4K) and their close neighbor

HIST1H2BN strike out by concordance of marker-specific association (absðPDRgÞ � 0:8)

across studies and a gene-level pgene –value lower than 0.01 (Table 3). All five genes belong to the

histone cluster 1 and are closely located within 41 kb of each other on 6p22.1. Weaker concor-

dance was observed for further two less significant genes (pgene -value< 0.05): C4A (PDRg =

-0.41) and C2 (PDRg = 0.33).

Markers driving significance

The markers rs13194781, rs1270942 and rs389884 are those with the largest PDRm-values (all

>0.7) and the strongest associations with LC (in terms of OR). For rs13194781, which is located

withinHIST1H2BN (ENSEMBL definition), an OR of 1.23 (p = 0.0032) was estimated. The mark-

ers rs1270942 and rs389884 are perfect proxies for each other according to the 1000-Genome

Pilot 1-panel [33]. They are closely located upstream of C2 and downstream of C4A, respectively.

There is no LD with the first marker rs13194781 (Table 4).

Subgroup meta-analysis

We revealed more evidence for an association of the SLE pathway with AdenoLC (pGS = 0.0030)

than for any other histotype. We also found the association to be significant in women (pGS =

0.0112) but not in men (pGS = 0.1453) and in older cases (pGS = 0.0002) but not in younger (pGS =

0.0588). No significant association was observed when stratifying according to smoking behavior

(Table 5). Significance within the considered subgroups is driven by same pGS-driving genes of

Table 2. Significant results of META-GSA.

KEGG pathways number of genes screening replication MSP combination all

4 studies 3 studies 7 studies

n genes pscr. pscr.corr.
$ prep. pGS pGS,corr.

$ pGS

hsa05322 (SLE) 128 ***0.0003 *0.0457 0.0857 ***0.0004 0.0615 *0.0306

hsa00790 (folate bio.) 13 ***0.0003 0.0543 0.9122 ***0.0046 0.6672 0.3154

hsa04940 (T1DM) 42 ***0.0011 0.1940 0.4890 ***0.0024 0.3570 0.3952

231 other gene sets >0.0043 futility stopping

SLE—systemic lupus erythematosus; folate bio folate biosynthesis; T1DM—type I diabetes mellitus, MSP—combined p-values according to the method

based on the sum of p-values (adaptive designed approach for early futility stopping); pscr.—p-value of the screening phase; pscr.corr.—p-value of the

screening phase corrected for multiple testing; prep.—p-value of the replication phase, pGS—p-value of the gene set (combining pscr and prep); pGS,corr.—p-

value of the gene set corrected for multiple testing; effective number of independent gene sets according the lowest slope method (LSM).
$: teff = 171.5.

* P� 0.05.

** P� 0.01.

*** P � 0.001.

doi:10.1371/journal.pone.0173339.t002
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the region 6p22.1–22.2 as in the total sample (C2 and the genes of the histone 1 cluster). Also,

most of the more moderate concordant genes that drive significance of hsa05322 in at least one

of the considered subgroups are histone-coding genes.

SNP ⨯ eQTL correlation

Both aforementioned SNPs belonging to C2/C4A, rs1270942 and rs389884, are significant cor-

related with the expression of the gene APOM (p<10−13), which is located about 500 kb away

(Fig 2). However, the expression pattern is this region is puzzling, since other markers within

C2 (rs537160, rs622871, rs630379) are also correlated with the gene expression in non-neoplas-

tic samples of LC patients of the neighboring gene C4B (not part of the investigated KEGG

pathway, although related to SLE). It is also remarkably that the correlation of SNPs belonging

to C2/C4Awith the expression of C2 is less significant (p ~10−3) than with the expression of

SKIV2L (p ~10−5), which is not related to SLE.

Discussion

We could demonstrate an accumulation of genomic association with LC in the KEGG pathway

hsa05322, which comprises genes related to SLE. This suggests some cross-phenotype (CP)

association with LC and SLE. The significance was higher in the subgroup of AdenoLC

patients than within other histological subtypes and in women compared to men. This fits our

expectations in view of women, who predominantly develop AdenoLC, are more often affected

with SLE than men [41], who predominantly develop smoking-related SqCLC [1, 42].

All pGS–driving genes identified in this meta-analysis are located within or next to the

major histocompatibility complex (MHC) on chromosome 6p21-22 (Fig 2), albeit in two

Table 3. Significance and concordance of selected genes of interest.

gene location number of studies with concordance significance

pgene,study < 5% PDRg pgene

significant genes belonging to the significant gene set hsa05322 (SLE)

HIST1H4K 6p22.1 2 -0.84 0.0056

HIST1H2BN 6p22.1 2 -0.80 0.0091

HIST1H2AK 6p22.1 2 -0.80 0.0091

HIST1H1B 6p22.1 2 +0.75 0.0093

HIST1H2AL 6p22.1 2 +0.75 0.0093

C2 6p21.3 2 +0.33 0.0109

C4A 6p21.3 1 -0.41 0.0319

genes known to be associated with LC (for comparison only)

CLPTM1L 5q15.33 4 -0.53 < .0001

TERT 5q15.33 4 +0.49 0.0013

CHRNB4 15q24 3 -0.63 < .0001

CHRNA3 15q24 4 -0.58 < .0001

CHRNA5 15q24 3 -0.45 0.0009

MSH5 6p21.3 3 +0.67 < .0001

BAG6 6p21.3 -- +0.39 0.1425

RAD52 12p13.33 1 +0.23 0.3143

CDKN2B 9p21.3 -- -0.13 0.6729

pgene,study is the study specific p-value for gene; PDRg is the mean of study specific PDRs for a gene (95% random interval derived from all 16.000 assigned

genes: [±0.306]); pooled pgene—pgene,study-values combined by Fisher’s inverse χ2-method.

doi:10.1371/journal.pone.0173339.t003
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separate areas, about 3000 kb apart. The first area comprises the genes of histone cluster I:

HIST1-H4L, -1BN, -2BN, -H2AK, -H4K (the strongest associated marker is rs13194781;

OR = 1.23, p = 0.0032). It is well known that a variety of histone related modifications are

either related to cancer or to SLE, or to both [8, 43]. They play a role e.g. in DNA repair, cell

cycle or gene expression [8, 44], which by themselves are associated to LC or SLE, respectively

[23, 45]. Interestingly enough, we detected associations to LC of the DNA signature of histone

coding genes, rather than with respect to some kind of epigenetic outcome.

The second area comprises the genes C2, C4A, and C4B (the strongest associated markers

are rs1270942 and rs389884; OR = 1.27, p = 0.009). It is well established, that reduced gene

expression of C2 and C4A can predispose to SLE [46]. This two genes, and perhaps also C4B,

are involved in the clearance of apoptotic bodies [8]. This is in turn crucially important for

controlling inflammation, which plays a role in the development of LC [3].

However, the identification of disease-relevant genes in the MHC region (6p21–6p22) and

far beyond is complicated owing to the strong and extensive LD across both common and rare

haplotypes [47]. Hence any observed CP association will probably tag plenty of genes. An asso-

ciation of the gene area APOM/BAG6/MSH5 in the MHC region with LC has previously been

reported, which is strongest for SqCLC and AdenoLC [9, 13]. The strongest associations with

SqCLC in this area was previously reported for the markers rs3117582 (located within BAG6
and APOM;OR = 1.3, p = 4.5×10−10), which was found associated also with SLE (OR = 2.2,

p = 4.2×10-21) [48]. This marker is about 220 kB apart but in strong LD with the newly identi-

fied markers rs1270942 and rs389884 (located close to C2; Table 4 and Fig 2). More important,

a highly significant correlation between markers of the area C2/C4A/C4Bwith the expression of

the gene APOM in non-neoplastic samples taken from LC patients was also recently reported

[40] (Fig 2). APOM is involved in lipid transport and is linked with high-density lipoprotein

Table 4. Markers with <0.5 in genes of interest on 6p21-22.

SNP allocated to Position MAF r2 to D‘ to PDRm LC SqCLC

(A) (B) (A) (B) OR p-value OR p-value

rs200991 HIST1++ 27847716 0.12a 0.646b 1a 0.598 1.14 0.0021 1.16 3.1×10−5

rs13194781 (A) HIST1++ 27847861 0,08 1 1 0.719 1.23 0.0032 1.22 9.7×10−6

rs9262143 MDC1 30685004 0.16§ 0.769 1.25 0.0027 1.25 1.3×10−7

rs3094127 MDC1 30729670 0.18 0.664 0.84 0.0029 1.10 4.0×10−2

rs3128982 HCP5 31449414 0.30 0.578 1.07 0.0032 1.12 1.1×10−3

rs3117582 BAG6 31652743 0.09b 0.881b 1b 0.485 1.27 0.0049 1.30 4.5×10−10

rs3131379 MSH5 31753256 0.09b 0.881b 1b 0.461 1.20 0.0074 1.28 3.8×10−7

rs652888 C2 31883457 0.17 0.336b 1b 0.538 1.14 0.0013 1.18 1.3×10−4

rs535586 C2 31892560 0.35 0.131b 1b 0.606 1.09 0.0001 1.11 1.2×10−3

rs659445 C2 31896527 0.35 0.131b 1b 0.711 1.09 3.7×10−6 1.10 3.1×10−3

rs1270942 (B) C2 31951083 0.09b 1 1b 0.728 1.27 0.0090 1.29 5.8×10−6

rs438999 C2 31960529 0.06 0.005b 1b -.517 0.91 0.0027 0.85 1.0×10−2

rs454212 C4A 31966595 0.08 -.556 0.95 0.0034 0.84 1.7×10−2

rs389884 C4A 31973120 0.09b 1$ 1b 0.724 1.27 0.0080 1.28 7.2×10−6

Odds ratios (OR), corresponding p-values from a random effects meta-analysis model; single study ORs were adjusted for age, sex, smoking and genetic

background; r2 and D’ were calculated according to the HapMap3-panel.

(a) or the 1000 Genome Pilot 1-panel.

(b) using SNAP Version 2.2; HIST1++ denotes the gene cluster HIST1-H4L/H2BN/H2AK/H2BN/H4K; LC—lung cancer (all histological subtypes),

SqCLC – squamous-cell lung cancer; markers with largest PDRm with genes driving the significance of the SLE gene set (HIST1++, C2 and C4A) are

printed in bold. Position of SNPs is given according to NCBI Build 37. MAF . . . minor allele frequencies in controlls.

doi:10.1371/journal.pone.0173339.t004
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cholesterol in the pathogenesis of emphysema, which is on the other hand considered as associ-

ated with LC [49, 50]. But other explanations of the observed associations have been given, too;

for instant a connection to embryonic lethality with defects in the development of the lung

(related to the function of BAG6) or deficits in mismatch excision repair (related to the function

ofMSH5) [13]. Moreover, the association of MSH5 with SLE was reported as not shared with

other autoimmune/inflammatory diseases [51].

Apart from all this, some remarks about the applied method need to be made. The whole

approach is an intensive investigation of p-values, which—in the context of this project—are

indicators of evidence for or against the rejection of a null-hypothesis of no genetic association.

We used the program ALIGATOR to perform GSA, which circumvents bias due to uneven

counts of markers per gene as well as genes per gene set [32]. Choosing another algorithm

Table 5. Subgroup analysis for hsa05322: histological subtypes, sex, age, smoking.

hsa05322: SLE META-GSA Gene Location concordance significance

pGS PDRg pgene

AdenoLC 0.0030 HIST2-1q21.2 1q21.2 -0.6 0.1666

SqCLC 0.0376 H2AFV 7p13 0.5 0.7209

SCLC 0.0626 C1QA 1p36.12 -0.5 0.7101

HIST2-1q21.2 1q21.2 -0.5 0.0577

ELANE 19p13.3 0.5 0.4864

HIST1-6p22.2 6p22.2 0.5 0.2177

HIST1-6p22.2 6p22.2 0.5 0.2177

LCLC 0.2056 --

male 0.1453 HIST1H3C 6p22.2 -0.5 0.3726

female 0.0112 HIST1H2AL 6p22.1 0.5 0.1229

old (>50) 0.0002 HIST1-6p22.1a 6p22.1 -0.7 0.0054

HIST1-6p22.1b 6p22.1 0.5 0.1578

C2 6p21.3 0.5 0.0013

H2AFV 7p1 0.6 0.4005

young (�50) 0.0588 --

current smokers 0.3563 HIST1-6p22.1a 6p22.1 0.4 0.1720

H3F3C 12p11.21 0.4 0.5821

HIST3H3 1q42 0.4 0.6468

HIST1-6p22.1b 6p22.1 0.4 0.2028

HIST1-6p22.1c 6p22.1 0.4 0.3375

former smokers 0.4691 --

ever smokers 0.5132 HIST1-6p22.1a 6p22.1 0.5 0.0462

HIST1-6p22.1c 6p22.1 0.5 0.1587

never smokers 0.5429 FCGR3A 1q23 -0.5 0.2300

CTSG 14q11.2 -0.5 0.3403

Listed are genes, respectively regions containing genes with absðPDRgÞ � 0:5.

HIST2-1q21.2: HIST2H2AA3 / HIST2H2AA4 / HIST2H3C / HIST2H4B.

HIST3-1q42: HIST3H2A / HIST3H2BB / HIST3H3.

HIST1-6p22.1a: HIST1H4K / HIST1H2AK / HIST1H2AL / HIST1H2BM / HIST1H2BN / HIST1H3I / HIST1H4L / HIST1H3J / HIST1H4J (27.800K).

HIST1-6p22.1b: HIST1H2AG / HIST1H2BK (27.150 K).

HIST1-6p22.1c: HIST1H2BI / HIST1H3G / HIST1H4H (26.280 K).

HIST1-6p22.2: HIST1H3E / HIST1H2AE / HIST1H2BG / HIST1H4E (26.200 K).

The numbers in brackets are the approximate locations according to dbGENE.

doi:10.1371/journal.pone.0173339.t005
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would probably lead to different results [31]. In addition, a p-value can be used to justify the

existences of an association; however it is not solely determined by the strength of the observed

effect, but also by factors like sample size, the used statistical model and the applied test proce-

dure. Hence we can present significance of our findings but are unable to estimate the part of

LC risk that can be attributed to the identified genes or gene sets.

Conclusion

We were able to identify CP risk factors by first pooling results of gene set analyses and looking

afterwards for those genes driving the significance of discovered gene sets. In doing so, we

have discovered a pathway that is currently marked as specific to SLE as being significantly

implicated in LC. The gene region 6p21-22 in this pathway appears to be more extensively

associated with lung cancer than previously assumed. Given wide-stretched linkage

Fig 2. Association and correlation with gene expression in the chromosome 6p21-22 region. LC—lung cancer, SLE—systemic lupus erythematosus;

correlation to gene expression: pooled p-values as reported by Nguyen et al., 2014 [40]; association with LC: pooled p-values as reported by Timofeeva et al.

2012 [13].

doi:10.1371/journal.pone.0173339.g002
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disequilibrium to the area APOM/BAG6/MSH5, there is currently simply not enough informa-

tion or evidence to conclude whether the potential pleiotropy of LC and SLE is spurious, bio-

logical, or mediated. Further research into this pathway and gene region will be necessary.
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