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Dietary cholesterol promotes repair of
demyelinated lesions in the adult brain
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Multiple Sclerosis (MS) is an inflammatory demyelinating disorder in which remyelination

failure contributes to persistent disability. Cholesterol is rate-limiting for myelin biogenesis in

the developing CNS; however, whether cholesterol insufficiency contributes to remyelination

failure in MS, is unclear. Here, we show the relationship between cholesterol, myelination and

neurological parameters in mouse models of demyelination and remyelination. In the

cuprizone model, acute disease reduces serum cholesterol levels that can be restored by

dietary cholesterol. Concomitant with blood-brain barrier impairment, supplemented

cholesterol directly supports oligodendrocyte precursor proliferation and differentiation, and

restores the balance of growth factors, creating a permissive environment for repair. This

leads to attenuated axon damage, enhanced remyelination and improved motor learning.

Remarkably, in experimental autoimmune encephalomyelitis, cholesterol supplementation

does not exacerbate disease expression. These findings emphasize the safety of

dietary cholesterol in inflammatory diseases and point to a previously unrecognized role of

cholesterol in promoting repair after demyelinating episodes.
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I
n demyelinating diseases such as multiple sclerosis (MS),
the failure to remyelinate contributes to axonal damage1, a
major factor in persistent disability. Remyelination failure can

be attributed partially to an insufficient capacity of resident
oligodendrocyte precursor cells (OPC) to proliferate, migrate,
differentiate and initiate myelin membrane growth2,3. There
is now good evidence to implement therapies that combine
the established immunosuppressive treatment of MS with
compounds that stimulate remyelination and hence may
secondarily limit axonal damage4,5. A number of factors that
support differentiation of OPCs have been reported recently,
some of which are linked to cholesterol metabolism in
differentiating oligodendrocytes6–9.

Patients with MS have disturbed brain lipid metabolism10, but
serum lipid profiles are in the normal range11. During active
disease and disease progression, total cholesterol levels can rise to
the upper limit of the normal range12–15. Increased dietary intake
of cholesterol is assumed to increase serum cholesterol and
stimulate immunological responses in inflammatory diseases16.
However, it is unclear whether the elevated serum cholesterol in
MS patients (i) contributes to disease progression, (ii) is a
consequence of acute disease or (iii) reflects an attempt to
counterbalance the pathophysiological manifestation of the disease.

We previously showed that cholesterol is rate limiting for CNS
myelination17 and that nutritional cholesterol supplementation
can stimulate developmental myelination in a mouse model of
leukodystrophy18. Here, we investigate the effects of increased
dietary cholesterol on disease parameters in three distinct
mouse models of MS, that is, on (i) inflammation and
demyelination in experimental autoimmune encephalomyelitis
(EAE), (ii) remyelination in lysolecithin induced lesions and
(iii) demyelination and remyelination in the cuprizone model.
High-cholesterol chow does not aggravate clinical symptoms nor
inflammatory parameters in EAE or alter demyelination in
cuprizone treated animals. Rather, we identify a novel
function for cholesterol in myelin repair in adult mice. Dietary
cholesterol modulates the profile of growth factors, simult-
aneously enhancing OPC proliferation and oligodendrocyte
differentiation, thereby facilitating remyelination and reducing
axonal injury. These data have implications for the treatment of
demyelinating diseases.

Results
Cholesterol supplementation does not affect pathology in EAE.
To test whether elevated serum cholesterol is a biomarker of acute
inflammatory disease, we induced MOG-EAE and determined
serum cholesterol at the peak of clinical symptoms, typically
16–20 days after induction. Surprisingly, in acute EAE, total
serum cholesterol was reduced to about 75% of normal values
(76±2 mg dl� 1±s.e.m. cholesterol in EAE mice compared
with 103±2 mg dl� 1 in untreated controls, n¼ 6–9, Po0.0001,
Student’s t-test). Similar reductions were observed during
remission at 28 days after immunization (76±1 mg dl� 1±s.e.m.,
n¼ 18, Po0.0001 Student’s t-test).

Next, we asked whether dietary cholesterol supplementation
worsens acute inflammatory disease. Unexpectedly, mice on a
high-cholesterol chow (5% w/w cholesterol, fat content
unchanged) either prophylactically, two weeks before inducing
MOG-EAE, or therapeutically with onset of clinical symptoms,
showed similar disease onset (normal chow 12.6±0.3 days;
cholesterol 12.6±0.4d, n¼ 12–16), mean clinical scores and body
weight, as controls, during the 28 days of monitoring (Fig. 1a,b;
Supplementary Fig. 1). Moreover, high-cholesterol chow did not
correct the reduced serum cholesterol (77±8 mg dl� 1, n¼ 6).
Correspondingly, at the peak of the clinical symptoms, dietary

cholesterol did not influence the level of inflammation:
histopathological lesions in the lumbar spinal cord white matter
as well as the immune cell infiltration and characteristics of the
pro-inflammatory milieu were comparable in extent and
composition (Fig. 1c; Supplementary Fig. 2). These findings are
in agreement with dietary cholesterol supplementation in the
Theiler’s virus model of MS (ref. 19). Nonetheless, inflammation
was slightly ameliorated in cholesterol fed animals in remission,
28d after immunization (Fig. 1, Supplementary Fig. 2). Reduced
infiltration of T cells and microglia/macrophages was
accompanied by attenuated expression of several pro-inflamma-
tory markers, such as interferon-g (IFNg), interleukin 17 (IL-17),
granulocyte-macrophage colony-stimulating factor (GM-CSF),
tumour necrosis factor (TNF), and major histocompatibility
complex II (MHCII). Taken together, EAE is associated with
decreased serum cholesterol that is not restored by supplemented
cholesterol. Importantly, cholesterol does not exacerbate disease
but even slightly ameliorates inflammation during remission,
suggesting it is safe to administer in inflammatory diseases.
As cholesterol supplementation promotes developmental
myelination18, these data prompted us to examine cholesterol
supplementation in a remyelination paradigm.

Cuprizone lowers serum cholesterol and affects BBB integrity.
We first tested whether serum cholesterol was altered in the
cuprizone model of demyelinating disease (see also below).
Surprisingly, after 4 weeks on cuprizone, mice had markedly
reduced total serum cholesterol (76±3 mg dl� 1±s.e.m. in
comparison to 103±3 mg dl� 1 in controls, n¼ 9–13, Po0.0001,
Student’s t-test). Although liver function values were normal
(Supplementary Fig. 3), we cannot exclude the possibility that this
is due in part to altered liver metabolism20. In contrast to EAE,
dietary supplementation with 2% w/w cholesterol normalized
total serum cholesterol (106±5 mg dl� 1, n¼ 13).

Under physiological conditions, the blood-brain barrier (BBB)
prevents the passage of cholesterol from the circulation into the
CNS (refs 21,22). Therefore, we tested whether dietary cholesterol
could penetrate the CNS in cuprizone fed mice. Surprisingly, BBB
integrity was compromised in mice treated with cuprizone for 4
weeks, as indicated by extravasation of Evans blue dye into the
CNS, following systemic administration (Fig. 2a,b). Systematic
evaluation revealed increased BBB permeability during the entire
treatment period of up to 12 weeks of cuprizone feeding (1.4±0.1
fold, n¼ 4 Po0.05 Student’s t-test).

The extent of extravasation was much smaller than in EAE,
likely explaining why previous studies have missed this
BBB defect23–26. Notably, dietary cholesterol did not influence
BBB permeability. When tested one week after a single injection
of bodipy-cholesterol, the fluorescence from this cholesterol
derivative (its biophysical properties are very similar to
unmodified cholesterol27) was readily detectable in the corpus
callosum of cuprizone fed mice (in contrast to untreated controls)
with a pattern typical for an intracellular localization, potentially
in glial cells (Fig. 2c). Quantification of extravasated
bodipy-cholesterol revealed a B3-fold increase in comparison
to control mice (Fig. 2d). Thus, in cuprizone fed mice, peripheral
cholesterol can cross the BBB.

Cuprizone mediated demyelination is unaltered by cholesterol.
Next we tested whether nutritional cholesterol altered
histopathology during the demyelination phase of cuprizone
treatment (Fig. 3a)25,28. In the corpus callosum, oligodendrocyte
loss and demyelination evolved over the same time course in
control and cholesterol supplemented mice (Fig. 3b), leading to
almost complete depletion of mature oligodendrocytes after
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Figure 1 | Dietary cholesterol does not aggravate EAE pathology. (a) Clinical score of mice with MOG-EAE on normal chow or chow supplemented with

5% cholesterol (n¼ 12–16 mice, 2 independent experiments). Start of cholesterol feeding was prophylactic, two weeks before immunization. Arrows

illustrate the time points of analyses at the peak of clinical symptoms (16–18 dpi) and at remission (28 dpi). (b) Body weight of experimental animals as in

(a) assessed from the day of induction of EAE to the end of monitoring clinical scores (28 days). Data is expressed as mean weight±s.e.m. of n¼ 12–16

animals. Onset of clinical symptoms was paralleled by a drop in body weight, and mice gained weight only after the peak of disease. (c) Lesion

characteristics were determined on sections of lumbar spinal cord from mice fed normal chow or cholesterol enriched chow (n¼ 5 animals, representative

images on the left, scales 200mm). Luxol fast blue-periodic acid-Schiff-hematoxylin (LFB/PAS) staining was used to determine the lesion area and number

of lesions per section (arrow). Immuno-labeling for myelin basic protein (MBP) was used to determine the per cent of myelinated area within a lesion

(defined in the DAPI channel as clusters of 420 nuclei, marked by arrows). On sections immuno-labeled for APP, the number of axonal speroids (arrows)

per square mm white matter area was counted, as a readout of axonal damage. In remission, unpaired Student’s t-test revealed significantly less axonal

damage in cholesterol fed animals. Sections triple stained for microglia/macrophages, T cells, and astrocytes (Iba1-CD3-GFAP triple immuno-labeling) were

used to assess the cellular composition of lesions. Unpaired t-tests revealed significantly reduced densities of microglia/macrophages and T cells in

cholesterol fed animals (*, Po0.05). Bars represent mean values with individual data points.
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four weeks. In addition, oligodendroglial numbers (Olig2,
oligodendrocyte lineage transcription factor 2 marks OPCs and
oligodendrocytes), astrogliosis (GFAP, glial fibrillary acidic
protein) and microgliosis (MAC3, macrophage-3 antigen)
steadily increased in a comparable manner in both groups, and
axonal damage (APP positive spheroids, Fig. 3c) was similar at all
time points tested. Taken together, cholesterol supplementation
does not interfere with the cuprizone treatment, and mature
oligodendrocytes do not escape the toxic insult.

Cholesterol facilitates remyelination and motor learning. Next,
we tested the hypothesis that dietary cholesterol supplementation
enhances adult remyelination. When mice are continuously exposed
to cuprizone, an episode of spontaneous repair occurs in the sixth
week, resulting in marked remyelination (Fig. 4a)25,29. At this time
point, cholesterol neither influenced oligodendrocyte numbers,
remyelination nor glial responses (Fig. 4b,c). However, the density
of APP positive axonal spheroids in cholesterol fed animals was
reduced, suggesting attenuated axonal damage (Fig. 4d).

After chronic cuprizone exposure (12 weeks), a second episode
of weak and transient remyelination (up to 20% of full
myelination) occurs (Fig. 4a). However, even if cuprizone is
withdrawn at this point, repair is very limited30. Thus, despite a
considerable density of OPCs and mature oligodendrocytes,

remyelination is marginal and astrogliosis substantial (Fig. 4b,
blue bars at 12 weeks). Remarkably, cholesterol supplementation
increased remyelination B1.6-fold as assessed in Gallyas silver
impregnated sections (Fig. 4b) and in electron micrographs of the
corpus callosum (Fig. 4c, Supplementary Fig. 4). Coupled to this,
a similar increase in OPCs and in mature oligodendrocytes
was observed (Fig. 4b, 12 weeks). In addition, the positive
influence of cholesterol was associated with increased body
weight (Supplementary Fig. 5). Thus, in the context of
recurrent depletion of mature oligodendrocytes, cholesterol
supplementation enhances tissue repair.

To specifically determine the effect of cholesterol during
remyelination, we exposed mice to cuprizone for four weeks to
achieve complete demyelination, then withdrew cuprizone to
induce remyelination (‘induced remyelination’) (Fig. 5a). Mice
fed normal chow during the first 7 days after cuprizone
withdrawal demyelinated further and had only slightly increased
oligodendrocyte densities (Fig. 5b, compare blue bars 4 and
4þ 1). In contrast, cholesterol supplementation following
cuprizone withdrawal dramatically increased OPC proliferation
and augmented Olig2 positive cell density 1.5-fold (Fig. 5b,c).
Densities of newly differentiated TCF4þ PCNA� (TCF4, also
called TCF7L2, transcription factor 7-like 2; PCNA, proliferating
cell nuclear antigen) oligodendrocytes were also increased by
cholesterol (Fig. 5d, Supplementary Fig. 6), similarly as found in
actively repairing lesions from patients with MS31–33. The
resulting 2.7-fold increase in mature oligodendrocytes (Fig. 5b,
time point 4þ 1) led to a 1.8-fold increase in myelin content on
Gallyas silver impregnated sections and on electron micrographs
(Fig. 5e; Supplementary Fig. 4). Cholesterol supplementation also
altered the glial response, leading to a B30% increase in
astrocytes and B50% reduction in microglial cells (Fig. 5b,
4þ 1). Axonal damage was attenuated to B70% in cholesterol
fed animals of controls (Fig. 5f). These histological signs of repair
were associated with a net gain in body weight, occurring within 7
days of cholesterol supplementation and contrasting with weight
maintenance in mice fed normal chow (Supplementary Fig. 5).
The beneficial effect of cholesterol persisted, leading to a robust
increase in mature oligodendrocytes and myelin content at 2
weeks after cuprizone withdrawal (Fig. 5b, 4þ 2); a result that
was confirmed on electron micrographs (Fig. 5e).

To examine the generality of this response, we investigated
whether dietary cholesterol enhanced remyelination in another,
completely distinct in vivo model of remyelination that is
accompanied by confined BBB disruption. Localized injection of
lysolecithin into the ventral-lateral spinal cord of adult mice was
used to produce focal demyelination. As in the cuprizone model,
demyelination was associated with a reduction in serum
cholesterol to about 70% of untreated controls. Further, dietary
cholesterol (2% w/w for 14 days) increased serum cholesterol
slightly (79±3 mg dl� 1±s.e.m. in cholesterol fed mice compared
with 72±6 mg dl� 1 in chow fed controls, n¼ 3–5),
enhanced remyelination and significantly increased the density
of oligodendroglial cells within the lesion (Fig. 6a–c). The
beneficial effect of cholesterol was also reflected in significantly
increased body weight, relative to chow fed mice (Fig. 6d).

To investigate whether the histopathological improvements in
cholesterol fed animals was associated with improved clinical
measures, we returned to the ‘induced remyelination’ paradigm in
the cuprizone model (for a scheme of experimental paradigm, see
Supplementary Fig. 7), measuring the maximum running velocity
(Vmax) on a running wheel. First, a training wheel with regularly
spaced rungs was placed into the cages to improve cardiopul-
monary and musculoskeletal strength. One week after cuprizone
withdrawal, the training wheel was replaced by a complex wheel
with irregularly spaced rungs to measure bilateral sensorimotor
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(a) Extravasation of Evans blue on sections of the corpus callosum. In

control animals, Evans blue fluorescence is restricted to blood vessels but

extravasates in mice on cuprizone (arrows) (scale, 50mm). (b) BBB

permeability was measured by Evans blue (EB) extravasation in brains of

animals fed cuprizone (cup) for 5 weeks on normal chow or cholesterol

supplemented chow, or in brains of animals with EAE 2d after the peak of

clinical symptoms (n¼ 3 animals). All treatment groups were normalized to

untreated control animals (n¼ 5) and compared by one way ANOVA

(Po0.0001). Nutritional cholesterol did not influence BBB permeability.

Bars represent mean±s.e.m. (c) Extravasation of bodipy-cholesterol.

Maximum intensity projection of bodipy-cholesterol fluorescence in the

corpus callosum (delineated by dashed lines) of mice that were kept on

cuprizone for 5 weeks in comparison to untreated mice (control) (scale,

50mm). (d) Quantification of bodipy-cholesterol extravasation after

extraction. Data are expressed as fold changes±s.e.m. in cuprizone treated

mice compared with untreated control animals (n¼6 mice per group,

unpaired Student’s t-test, Po0.0001).
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coordination34 (Supplementary Fig. 7). The Vmax of mice
remyelinated on normal chow dropped to about 40% of levels
on the training wheel, and did not improve above 75% (Fig. 5g).
In contrast, mice receiving cholesterol supplementation showed a
less severe drop in Vmax (to 63%), followed by a steady increase

that reached the velocity achieved on the training wheel after two
weeks. Importantly, in control mice (without cuprizone)
cholesterol supplementation, did neither influence performance
on the training wheel nor motor learning (Vmax, run duration,
number of runs and running distance on the complex wheel)
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(Supplementary Fig. 7 and not shown). Hence, cholesterol
supplementation enhances repair after demyelination and
improves neurological outcomes by supporting oligodendrocyte
proliferation and differentiation, promoting remyelination,
decreasing microgliosis, and attenuating axonal damage in a
permissive environment (‘induced remyelination’ after cuprizone
withdrawal).

Cholesterol changes the expression profile of growth factors.
To obtain insight into the mechanism by which cholesterol
supports the simultaneous expansion of OPC and oligoden-
drocyte densities, we monitored differentiation of cultured
primary oligodendrocytes in defined Sato media, with or without
cholesterol supplementation. Oligodendrocytes differentiated
significantly faster in the presence of cholesterol, as indicated by
expression of differentiation markers and morphological changes
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(Fig. 7a, Supplementary Fig. 8a). However, the final stage of
maturation after 5d in culture was unchanged, as shown pre-
viously18. Similarly, the rate of myelination as measured by MBP

(myelin basic protein) positive area per axonal area (SMI31,
phosphorylated axonal neurofilaments), was increased in spinal
cord co-cultures differentiated in the presence of cholesterol
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Figure 5 | Cholesterol facilitates remyelination after cuprizone withdrawal. (a) Scheme depicting the time course of demyelination/remyelination during

cuprizone feeding (remyelination after cuprizone withdrawal in purple). The influence of cholesterol on remyelination was assessed by feeding mice cuprizone

in normal chow for 4 weeks (4, black bars) followed by ‘induced remyelination’ after cuprizone withdrawal for 1 (4þ 1) or 2 (4þ 2) weeks on normal chow or

cholesterol supplemented chow. (b) Representative pictures of the corpus callosum of mice after one week (4þ 1) remyelination. Corresponding

quantification is on the right also including values for 2 weeks remyelination (4þ 2). Assessed were myelination (Gallyas silver impregnation), the number of

mature oligodendrocytes (CAII), the number of oligodendrocyte lineage cells (Olig2), activated microglia (MAC3), and astrocytes (GFAP). Each bar

represents the mean value from n¼4–5 (4 and 4þ 2) or n¼ 7 (4þ 1) animals (scale, 100mm; Two-way ANOVA and Sidak’s post test). (c) Quantification of

proliferating OPCs (PCNA positive Olig2 positive) in the corpus callosum of mice after 4þ 1 treatment paradigm (4þ 1) or after 12 weeks (12) of cuprizone.

Each bar represents the mean of n¼6–7 (week 4þ 1), or n¼4 (week 12) animals (Student’s t-test). (d) Quantification of newly differentiated postmitotic

oligodendrocytes (TCF4 positive, PCNA negative) in the corpus callosum treated as in c). Each bar represents the mean of n¼6–7 (week 4þ 1), or n¼4

(week 12) animals (Student’s t-test). (e) Myelinated axons per 10mm2 in the corpus callosum at the end of the 4þ 1 (n¼ 7) and 4þ 2 (n¼4) treatment

paradigm (two-way ANOVA and Sidak’s post test). (f) APP positive spheroids per mm2 in the corpus callosum (4þ 1 n¼ 7; 4þ 2 n¼ 3–4 animals, two-way

ANOVA and Sidak’s post test). (g) Motor learning as assessed by maximum velocity (Vmax) on a complex wheel (n¼ 6 animals), expressed as per cent of

the Vmax on a training wheel (mean of the last 7 days before changing to a complex wheel). Statistical evaluation of Vmax was done by Two-way ANOVA

(cholesterol effect Po0.0001) and Sidak’s post tests. Asterisks represent significant differences with *Po0.05; **Po0.01; ***Po0.001.
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(Fig. 7b, Supplementary Fig. 8b); neither the final degree of
neurite outgrowth35 nor myelination, were influenced by
cholesterol. These findings suggest that external cholesterol
directly facilitates oligodendrocyte differentiation and the
synthesis of myelin membranes.

In principle, a substantial induction of OPC differentiation
could be unfavourable, if it occurs at the expense of OPC
numbers. Indeed, gradual depletion of OPCs was observed in
cholesterol supplemented oligodendroglial cultures (Fig. 7a, left
panel). Thus, the expansion of proliferative OPCs in vivo (Fig. 5c)
is likely an indirect consequence of additional factors from the
local environment. To identify factors that mediate cholesterol
dependent OPC proliferation, we analysed another cohort of mice

in the ‘induced remyelination’ treatment paradigm (4þ 1 weeks),
using quantitative RT-PCR on dissected corpus callosi. In
agreement with our histological data, oligodendrocyte related
genes were (i) strongly downregulated in cuprizone fed mice in
comparison to untreated controls (grey line) and (ii) significantly
enhanced in cholesterol fed animals in comparison to chow fed
animals (Fig. 7c, compare Fig. 5, Supplementary Table 1).
Similarly, the astrogliosis (Gfap) and diminished microgliosis
(Aif1, allograft inflammatory factor 1) were also reflected in the
expression levels of respective marker genes (Fig. 7d). Surpris-
ingly, cholesterol supplementation did not lead to feedback
inhibition of cholesterol synthesis, but rather, increased the
expression of genes involved in cholesterol synthesis and
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uptake (Fig. 7e,f), likely indicating enhanced remyelination. In
contrast, expression of LXR family genes, which influence OPC
differentiation36, was not affected by cholesterol (Supplementary
Table 1).

The expression of growth factors involved in OPC survival,
proliferation, migration or differentiation28, including Igf1
(insulin-like growth factor), Cntf (ciliary neurotrophic factor),
Inhba (inhibin beta-A, also called activin beta-A) and Egf
(epidermal growth factor) was strongly increased (2–20 fold) by
cuprizone, but was not further regulated by cholesterol
supplementation (Supplementary Table 1). A set of genes
whose products are known to inhibit differentiation of OPCs,
such as Fgf2 (fibroblast growth factor 2) and Pdgfa (platelet
derived growth factor alpha)37–39, was also strongly upregulated
by cuprizone (8–12 fold higher than untreated controls).
Strikingly, the expression of these mitogens was attenuated
in cholesterol fed animals to levels only 3–8 fold higher than
in untreated controls (Fig. 7g). Moreover, in comparison to
untreated controls, expression of another set of factors, some
of which are known to facilitate differentiation of
oligodendrocytes39,40, such as Fgf1 and Shh (sonic hedgehog),
was reduced by cuprizone, but strongly elevated by cholesterol
supplementation (Fig. 7h). Expression of FGF receptors (1–3) was
not influenced by cholesterol (data not shown). Demonstrating
the generality of these findings (Supplementary Table 2),
cholesterol influenced the profile of growth factor expression in
a similar manner in mice treated chronically with cuprizone
(12 weeks, see Fig. 4). In contrast to the ‘induced remyelination’
paradigm, expression of enzymes involved in cholesterol
synthesis was reduced in this cohort, suggesting feedback
inhibition after remyelination is accomplished (Supplementary
Table 2).

To determine whether the growth factor expression profile
observed in cholesterol treated mice might be causally related to
the enhanced repair, we tested whether these growth factor
combinations directly enhance OPC differentiation in vitro, a
surrogate for remyelination in vivo. Indeed, differentiation was
enhanced when OPCs were cultured for 3 days in media
supplemented with 90 ng ml� 1 FGF1, 35 ng ml� 1 FGF2 and
cholesterol (exemplifying cuprizoneþ cholesterol chow), in
comparison to 45 ng ml� 1 FGF1 and 80 ng ml� 1 FGF2
(exemplifying cuprizoneþ normal chow) (Fig. 7i). These data
suggest the changes in growth factor expression are directly
contributing to the improved repair.

Next, we cultured OPCs for 24 h in the presence of EdU
(5-ethynyl-20-deoxyuridine), a marker of cells in S-phase of the
cell cycle, to determine whether the proliferative effect of growth
factors was modified by cholesterol. Compared with vehicle
treated controls, FGF2 doubled the number of EdU positive cells
(as expected41), while FGF2 plus cholesterol elicited a threefold
increase in this population (Fig. 7j), suggesting that cholesterol
potentiates the effects of FGF2. Indeed, cholesterol alone only
slightly increased the proportion of EdUþ cells in these cultures
(Fig. 7j). We speculate that, despite attenuated Fgf2 expression
(compare Fig. 7g), potentiated FGF2 signalling contributes to the
expansion of proliferating OPCs in cholesterol fed animals
(compare Fig. 5c).

As only relatively few microglial cells are present in the corpus
callosum of cholesterol fed mice in the ‘induced remyelination’
paradigm (4þ 1 weeks) and in the ‘chronic cuprizone’ paradigm
(12 weeks), we hypothesized that astrocytes contributed
principally to the altered profile of growth factors. Indeed, while
primary astrocytes downregulated Fgf1 expression in response
to cuprizone, its expression was upregulated in response to
cholesterol, irrespective of cuprizone (Fig. 7k), correlating with
our in vivo data. Taken together, in the cuprizone model,

cholesterol supplementation modulates the expression profile of
growth factors, rebalancing proliferative and differentiation
signals creating a permissive environment for repair.

Discussion
Cholesterol availability is a prerequisite for myelination17,42,43

and, as we show here, exogenous cholesterol directly increases the
rate of OPC differentiation. In agreement with our findings,
failure to upregulate expression of sterol synthesis enzymes leads
to arrested differentiation of Tcf4 mutant OPCs, which can
partially be rescued by cholesterol supplementation44. Further,
cholesterol synthesis is enhanced during remyelination in mice29

and statin administration (inhibitors of sterol and isoprenoid
synthesis) interferes with remyelination in the cuprizone model45.
Nonetheless, monotherapy with statins ameliorates clinical scores
in EAE; an effect associated with decreased CNS infiltration
and inflammatory activity of T cells, likely reducing
demyelination46–48. The outcomes of studies using statins in
MS patients are contradictory, probably because of the disparate
effects of statins on inflammation (beneficial46–48) and on
remyelination (detrimental45). Accordingly, a recent meta-
analysis does not recommend statin treatment for relapsing-
remitting MS or clinically isolated syndrome49. Hence, we
hypothesize that remyelination failure in MS reflects, at least
partially, the inability to locally increase the cholesterol content in
demyelinated lesions.

This hypothesis is supported by the current study. Exogenous
cholesterol enters the CNS through an impaired blood-brain
barrier, resulting in enhanced repair and an amelioration of the
neurological phenotype in two distinct models of remyelination.
Our data suggest that cholesterol directly facilitates repair by
modulating the profile of growth factor expression, promoting
OPC differentiation and, together with the mitogen FGF2,
potentiating OPC proliferation. Importantly, cholesterol supple-
mentation does not exacerbate inflammation in EAE.

What could prevent the increase of cholesterol in OPCs in
demyelinated lesions? In patients with MS and in models of
demyelination, CNS cholesterol homoeostasis is destabilized by a
variety of mechanisms. First, expression of enzymes involved in
cholesterol synthesis is reduced in demyelinated lesions
(our study and refs 9,29,50). Second, intercellular
cholesterol transport in the CNS is perturbed in patients with
MS, because of reduced abundance of relevant proteins such as
ApoE (Apolipoprotein E)10; and in mouse mutants with BBB
disruption22, by uncontrolled flux of sterols in and out of the
brain. BBB disruption has been shown by diffusion MRI in
inflammatory diseases of the brain, such as MS (ref. 51) and, as
we demonstrate here for the first time, is also a feature in the
cuprizone model. Third, the decrease in serum cholesterol in both
EAE and cuprizone mouse models, probably contributes to the
impairment of CNS cholesterol homoeostasis. Whether patients
with MS experience a drop in serum cholesterol during acute
demyelinating episodes is unknown, and its analysis complicated
by the fact that the standard first-line interferon beta treatment
itself reduces total serum cholesterol52. Finally, the OPCs in
chronically demyelinated lesions in MS50 and mouse models29,
fail to upregulate lipid synthesis and differentiate, potentially as a
consequence of an imbalance in signalling, as previously
hypothesized4. Here, we demonstrate an imbalance in
expression of growth factors in the cuprizone model, in
accordance with previous studies28,53–55. The growth factor
profile associated with cuprizone alone, such as high levels of
FGF2 and PDGFa, is predicted to facilitate OPC proliferation but
impede efficient remyelination, particularly after chronic
demyelination.
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Specifically, FGF signalling could critically influence the fate of
demyelinated lesions39,53,56,57. FGF signalling comprises a very
complex network, including 24 FGF family members and four
different receptors, whose signalling outcome depends on various
splice isoforms and on the multifaceted crosstalk between
different pathways58. Here, we focused on the two major FGF
members involved in myelination, FGF1 and FGF2. FGF2 has
been implicated in OPC proliferation, migration and inhibition of

oligodendrocyte differentiation38,39,41. In the cuprizone model
and in patients with MS, FGF2 abundance correlates with the
degree of OPC proliferation28,53,56,59. FGF2 is increased in
regions of active OPC proliferation and ongoing remyelination,
such as active lesions or the rim of demyelinated lesions, while it
is downregulated in remyelinated shadow plaques, and it is low in
abundance in normal appearing white matter and in the core
of demyelinated silent lesions59. We show that cholesterol
administration attenuates the overexpression of Fgf2 and other
mitogens in the cuprizone model. Surprisingly, this did not
restrict proliferation but augmented OPC numbers, likely through
synergy with cholesterol (see below).

FGF1 is reduced in active MS lesions60, and increased
expression is only found in remyelinated lesions56. In contrast
to FGF2, FGF1 is not mitogenic for OPCs (our study and
refs 39,56). Rather, FGF1 accelerates myelination in vitro56, to an
extent remarkably similar to what we observed in cholesterol
treated cultures. FGF1 might support CNS repair by inducing
lipid synthesis and secretion by astrocytes61. The crosstalk
between FGF signalling and regulation of cholesterol
metabolism is supported by the presence of sterol responsive
elements (consensus sequences for the SREBF2 transcription
factor that increases cholesterol synthesis) in the Fgf1 and Fgf2
promoters (https://www.genomatix.de/). Altered cellular
cholesterol levels can modulate signalling pathways, as shown
for wnt signalling; the cholesterol content regulates the
recruitment of different sets of scaffolding/adaptor proteins to
the plasma membrane62. We demonstrate that cholesterol
induces the expression of Fgf1 in astrocytes; however, the
affected signalling remains enigmatic. In addition to astrocytes,
other cells such as microglia, OPCs, neurons and vascular cells
likely participate in growth factor synthesis. In cholesterol treated
mice, the expression profile of growth factors was altered such
that the mitogens FGF2 and PDGFa were attenuated and
differentiating cues such as FGF1 and Shh were enhanced.
Other factors that are unaffected by cholesterol probably also
contributed to the repair process.

Our data reveal a previously unknown function of nutritional
cholesterol in adult remyelination (Fig. 8 shows a working
model). In response to cuprizone-mediated demyelination in
mice, the secreted mitogens and growth factors favour the
proliferation and oppose the differentiation of OPCs, which slows
and ultimately impairs remyelination. Dietary supplementation
increases cholesterol availability within the demyelinated CNS
and this is associated with rebalancing of growth factor
expression. The altered profile of growth factors in cholesterol
treated mice simultaneously facilitates OPC proliferation and
oligodendrocyte differentiation in vivo. Thus arrested repair can
be overcome by increasing the local availability of cholesterol
which we achieved by nutritional supplementation.

We envision that moderate concentrations of the mitogen
FGF2, when in synergy with cholesterol, potentiate OPC
proliferation, and at the same time opens a window for OPC
differentiation that is also enhanced by increased levels of pro-
differentiation factors. In addition, cholesterol might directly
facilitate oligodendrocyte differentiation, by relieving cells of the
burden of establishing the complex time- and energy-intensive
anabolic cholesterol pathway. Supplemented cholesterol can
directly support myelination by incorporation into myelin
membranes, as shown previously in a leukodystrophy model18.
The current study suggests that cholesterol provides a ‘fast track’
to remyelination and repair.

In contrast to the beneficial effect on remyelination, high-
cholesterol chow (2% cholesterol) has no effect on demyelination
and oligodendrocyte survival in the cuprizone model,
likely because oligodendrocyte loss is induced by direct

+–

FGF1 
FGF2

Chol

Chol

FGF1FGF2 +–

Chol

Vessel with lipoprotein

Dying oligodendrocyte

Mitogens and growth factors

Astrocyte

OPC

Oligodendrocyte

Direct support of cholesterol
synthesis

Indirect influence of cholesterol

Remyelination failure

Blocked differentiation

Proliferation

Imbalanced growth factors

Cuprizone

5. ‘Fast track’ to myelination
and repair

4. Enhanced differentiation

2. Balanced growth factors

3. Increased proliferation

1.

Cuprizone + cholesterol

Figure 8 | Working model of repair processes influenced by cholesterol.

Working model of nutritional cholesterol mediated repair processes.

Cuprizone exposure causes oligodendrocyte loss and demyelination and

slow repair (left panel) because of OPC depletion, imbalanced growth

factors, and low local availability of cholesterol. In case of nutritional

supplementation, cholesterol from the circulation enters the CNS because

of increased BBB permeability (red arrows) increasing the local cholesterol

availability (1). There, cholesterol rebalances the expression of growth

factors and mitogens synthesized e.g. by astrocytes (2). This

simultaneously enhances OPC proliferation (3) and opens a window for

OPC differentiation. Cholesterol directly facilitates oligodendrocyte

differentiation, presumably by relieving cells from time and energy intensive

cholesterol synthesis (4). Altogether, these effects provide a ‘fast track’ to
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cuprizone-mediated damage, and is concomitant with a
low-grade inflammatory cascade involving T cells, astrocytes
and microglia63. Consistent with cholesterol supplementation
not exacerbating demyelination in the cuprizone model,
high-cholesterol chow (5% cholesterol) did not aggravate
disease in EAE. Moreover, cholesterol supplementation
attenuated axonal damage in both models; during active
remyelination in the cuprizone model and during remission in
EAE. Likely, this is secondary to ameliorated disease states and
balanced expression of growth factors and pro-inflammatory
factors. We found that dietary cholesterol slightly ameliorated
inflammation in EAE, while, in contrast, a high-fat chow
aggravates EAE symptoms64,65. Medium and long chain fatty
acids of the high-fat chow probably modulate T cell
differentiation66. Whether fatty acids contribute to the
increased disease activity in some MS patients with elevated
serum cholesterol remains unclear12. Importantly, feeding
cholesterol appears to be safe in mice with inflammatory disease.

Taken together, our data show that demyelinating disease
destabilizes peripheral and CNS cholesterol homoeostasis. Dietary
cholesterol supplementation supports cholesterol metabolism in
the CNS and has the remarkable potential to ameliorate disease
by facilitating several repair mechanisms, leading to improved
remyelination and neurological outcome. This study highlights
the safety of dietary cholesterol and might have implications for
the management of demyelinating diseases, but further studies,
especially in combination with immune suppressive drugs, are
required to determine its feasibility for patients.

Methods
Mice. All animal studies were performed in compliance with the animal policies of
the Max Planck Institute of Experimental Medicine, and were approved by the
German Federal State of Lower Saxony. Adult male C57BL/6N mice (8–10 weeks of
age) were taken for all analyses. Animals were randomly assigned to an experi-
mental group. Mice were fed normal chow (V1124 ssniff Spezialdiäten GmbH,
Germany) or chow supplemented with either 2% w/w (cuprizone and lysolecithin
experiments) or 5% w/w cholesterol (EAE experiments).

For MOG-EAE, mice purchased from Charles River were immunized
subcutaneously with 200 mg myelin oligodendrocyte glycoprotein peptide 35–55
(MOG35–55) in complete Freund’s adjuvant (M. tuberculosis at 3.75 mg ml� 1) and
i.p. injected twice with 500 ng pertussis toxin as described67. Animals were
examined daily and scored for clinical signs of the disease. If disease did not start
within 15 days after induction or the clinical score rose above 4, animals were
excluded from the analysis. The clinical score was: 0 normal; 0.5 loss of tail tip tone;
1 loss of tail tone; 1.5 ataxia, mild walking deficits (slip off the grid); 2 mild hind
limb weakness, severe gait ataxia, twist of the tail causes rotation of the whole body;
2.5 moderate hind limb weakness, cannot grip the grid with hind paw, but able to
stay on a upright tilted grid; 3 mild paraparesis, falls down from a upright tiled
grid; 3.5 paraparesis of hind limbs (legs strongly affected, but move clearly);
4 paralysis of hind limbs, weakness in forelimbs; 4.5 forelimbs paralyzed; 5
moribund/dead. Mice received 5% cholesterol chow commencing either two weeks
before immunization defined as prophylactic regimen or at the first appearance of
EAE symptoms defined as therapeutic regimen and continued until day 28.

For cuprizone experiments, mice were fed 0.2% w/w cuprizone (Sigma-Aldrich
Inc., Germany) in powder chow with or without cholesterol for ‘demyelination’
(2–5 weeks) and ‘chronic cuprizone’ (6 and 12 weeks) paradigms. For ‘induced
remyelination’ experiments, mice were fed cuprizone in standard chow for 4 weeks,
followed by cuprizone withdrawal and feeding mice standard chow with or without
cholesterol supplementation. Mice were fed three times a week an exceeding
amount of chow by dispenser. Food intake and animal weight was monitored.
Age-matched untreated controls were fed standard powder chow.

Focal spinal cord demyelinating lesions were induced under anaesthesia by
stereotactic injection of 1 ml lysolecithin (1%, from egg yolk, alpha-
lysophosphatidylcholine, Sigma) into the ventro-lateral funiculus at Th10 of
8-week old animals, as previously described68. The injection was performed with a
10ml Hamilton syringe, fitted with a thin tapered glass tip, at a rate of
B1 ml min� 1. This procedure created fusiform demyelinating lesions, 5–6 mm in
length. At the day of injection, mice were randomly assigned to normal or 2%
cholesterol chow for 14 days, after which the animals were killed, and the spinal
cord processed for histology.

Bodipy-cholesterol injections were done as described18. Briefly, bodipy-
cholesterol (Topflour, Avanti Polar Lipids) was injected i.p. (16 mg g� 1 body
weight). After one week, mice were perfused, and bodipy-cholesterol fluorescence
was analysed on vibratome sections using a custom made two-photon laser

scanning microscope equipped with a titanium-sapphire laser and a � 20 water
immersion objective (NA 1.0). Z-stacks of 100-mm depth were obtained and
processed to maximum intensity projections. For tracer quantification of
bodipy-cholesterol (5 mg g� 1 body weight, i.p. injection 7d circulation time) or
Evans blue (50 mg g� 1 body weight, i.v. injection, 4 h circulation time) animals
were perfused with PBS to remove tracer from the circulatory system. Brains were
dissected and immediately frozen on dry ice, weighed and stored at � 80 �C for
further processing. Tissue was lyophilized (Christ LMC-1 BETA 1-16) at –36 �C for
24 h under vacuum of 0.2 mBar. For tracer extraction, hemispheres were incubated
shaking in 10ml formamide per mg brain at 57 �C for 24 h. Integrated density of
tracer fluorescence was determined in triplicates on a fluorescent microscope
(Observer Z2, Zeiss, Germany), equipped with an AxioCam MRc3, � 1 Camera
Adaptor and the ZEN 2012 blue edition software recorded at � 10 magnification
(Plan-Apochromat � 10/0.45 M27). Tracer concentration was calculated using a
standard curve and normalized to matched controls (set to 1).

Motor skill performance was assessed essentially as described34. Mice were
randomly divided into two treatment and two control groups (n¼ 6–13) and
housed in individual cages that allow computer-controlled recording of wheel
rotation as a function of time (MatLab-based custom software). The axis of each
wheel was attached to a rotation sensor with a resolution of 16 per turn. One wheel
revolution comes up to a running distance of 35.5 cm. The running wheel
revolutions were recorded continuously at a sampling rate of 1/0.48 s by a
customized recording device and software (Boenig & Kallenbach oHG, Dortmund,
Germany). Mice in treatment groups were treated as in the ‘induced remyelination’
paradigm (feeding 4 weeks cuprizone in normal chow followed by withdrawal of
cuprizone and feeding normal chow or cholesterol supplemented chow). Control
animals received normal chow for the entire experiment or were switched to
cholesterol chow after 4 weeks. One week after the start of the experiment training
wheels with regularly spaced rungs were placed into the cages for adaptation of
cardiopulmonary and musculoskeletal strength. One week after the switch of diets
(week 5 of experiment), wheels were replaced by complex wheels with irregularly
spaced rungs to assess the bilateral sensorimotor coordination that likely involves
the cerebellum and motor cortex and connecting white matter such as the corpus
callosum. Specifically, we measured maximum running velocity (Vmax), in addition
to the total maximum run duration (Dmax), accumulative distance in metres
(Distac) and the number of individual runs (Nrun). Parameters were logged once
daily (12 am).

Serum analyses. Animals were fasted for 4 h, blood was collected from the ret-
roorbital sinus, and serum was prepared after clotting by centrifugation. Choles-
terol measurements were done with the architectII system (Abbott Diagnostics).

Cell isolation and flow cytometry. Single-cell suspensions from spinal cords were
obtained via mechanical dissociation on a cell strainer. Immune cells were
separated over a two-phase Percoll-density gradient. Staining of abTCR/CD4þ

T cells, abTCR/CD8þ T cells and CD45/CD11b cells (macrophages/microglia)
was performed using the following antibodies in a 1:200 dilution: Anti-CD3e
(clone 145-2C11), BioLegend; anti-CD4 (clone GK 1.5), BD; anti-CD8 (clone
53-6.7), BD; anti-CD8 (clone 53–6.7), BD; anti-CD11b (clone M1/70), BioLegend;
anti-CD45.2 (clone 104), BioLegend. The addition of Calibrite APC beads (BD)
allowed for cell quantification. Flow cytometry was performed using a
FACSCalibur operated by Cell Quest software (Becton Dickinson).

Histochemistry. Anesthetized mice were perfused with 4% formaldehyde (PFA).
Brain samples of cuprizone treated animals were cut at Bregma 1.58 for comparable
pathology because the extent of cuprizone mediated demyelination strongly
depends on the rostral/caudal position69. Tissue was postfixed overnight,
embedded in paraffin and cut into 5 mm sections (HMP 110, MICROM). Gallyas
silver impregnation was done as described18. For immunohistological analyses,
sections were deparaffinized followed by antigen-retrieval in sodium citrate buffer
(0.01 M, pH 6.0). For immunofluorescence, sections were blocked with serum free
protein block (Dako). Primary antibodies were diluted in 2% bovine serum
albumin (BSA)/PBS and incubated for 48 h followed by fluorophor coupled
secondary antibodies. For immunohistochemistry, endogenous peroxidase activity
was blocked with 3% hydrogen peroxide. Sections were then blocked (20% goat
serum in BSA/PBS) and incubated with primary antibodies. Detection was done
with the LSAB2 kit (Dako, Hamburg, Germany) or the Vector Elite ABC kit
(Vector Labs). HRP substrate 3,30-Diaminobenzidine (DAB) was applied by using
the DAB Zytomed Kit (Zytomed Systems GmbH). Haematoxylin stain was done to
label nuclei. Sections were dehydrated before mounting (Eukitt). Specimens were
analysed on an Axio Imager.Z1 (Zeiss) equipped with an AxioCam MRc3, � 0.63
Camera Adaptor and the ZEN 2012 blue edition software using � 10 objective
(Plan Apochromat � 10/0.45 M27) or � 20 objective (Plan-Apochromat
� 20/0.8) and evaluated with Image J software. Quantification of areas (Gallyas,
GFAP, MAC3) were done by applying semi-automated ImageJ software macro to
threshold (variable threshold in case of Gallyas and fixed threshold for antibody
stainings) and colour deconvolute the images of the corpus callosum above the
fornix (Bregma 1.58). Three to five sections per animal were analysed.
Quantification of EAE lumbar spinal cord lesions was done on two to four
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quadruple stained sections (Iba1 (induction of brown adipocytes 1), CD3, GFAP,
DAPI) per animal recorded with tile region setup and shading correction. Lesion
area was defined by focal accumulation of at least 20 DAPI positive cells, the
presence of microglia and infiltration of CD3 positive cells. Lesion area, number of
Iba1 and CD3 positive cells and GFAP positive area were evaluated. Quantification
of cuprizone treated animals: cell number (CAII (carbonic anhydrase 2), Olig-2,
TCF4, PCNA), APP positive spheroids and area (Gallyas, GFAP, MAC3) was done
in the corpus callosum above the fornix (Bregma 1.58). Three to five sections per
animal were analysed. Microscope settings are listed in Supplementary Table 4.

Electron microscopic analysis was done as previously described17. Briefly, tissue
was fixed in 4% PFA, 2.5% Glutaraldehyde, 0.1 M Phosphate buffer and sagittal
sections were cut on a vibratome (Leica VT1200, 300 mm). The corpus callosum
with adjacent tissue (� 0.04 mm lateral) was punched with a 2 mm diameter
punching tool and embedded in epon (EMTP, Leica). At least 15 digital pictures
(� 12,000 magnification, TRS, Moorenweis) of uranyl acetate contrasted ultrathin
sections were taken with the Zeiss EM900.

Antibodies. The following antibodies were used: APP (Chemicon MAB348), CAII
(Said Ghandour); CD3 (Serotec MCA1477);CD3e (Biolegend clone 145-2C11),
CD4 (Becton Dickinson clone GK1.5), CD8 (Becton Dickinson clone 53-6.7),
CD11b (Biolegend clone M1/70), CD45.2 (Biolegend clone 104), CNP
(20 ,30-Cyclic-nucleotide 30-phosphodiesterase, Sigma C5922), GFAP (Chemicon
MAB3402), Iba1 (Wako 019-19741), MAC3 (Pharmigen 01781D); MBP (Serotec
MCA409S), Olig2 (Prof Charles Stiles/ Dr. John Alberta, DF308), PCNA (Abcam
ab29), SMI31 (Covance SMI-31P), TCF4 (Millipore 04-1080).

Expression analyses. For the characterization of the proinflammatory milieu in
EAE mice, RNA from total spinal cord lysates was isolated using Trizol (Thermo
Fisher). complementary DNA (cDNA) was synthesized using RevertAid First
Strand cDNA Synthesis Kit (Thermo Fisher) according to the manufactureŕs
protocol. Quantitative RT-PCR was performed using a StepOnePlus Real-Time
PCR System operated by StepOnePlus Software v2.0. Target-specific FAM- and
TAMRA-labeled TaqMan probes were used in all cases. Measurements were
performed in independent duplicates. Gene expression was normalized to b-actin.
Relative changes in gene expression were analysed via the 2DDC(T) method.

For expression analyses on brain sections, mice were killed by cervical
dislocation and brains were quickly cooled and sliced coronally using a brain
matrix (Asi-Instruments). The corpus callosum was dissected from Bregma þ 1.10
to � 2.46 and RNA was extracted using RNeasy Mini (Qiagen). The concentration
and quality of RNA was evaluated using a NanoDrop spectrophotometer and RNA
Nano (Agilent). cDNA was synthesized with Superscript III (Invitrogen) and
quantitative PCRs were done in triplicates with the GoTaq master mix (Promega)
on a 7500 Fast Real-Time PCR System (Applied Biosystems). Expression values
were normalized to the geometric mean of two housekeeping genes, Hprt
(Hypoxanthin-Phosphoribosyl-Transferase 1) and Rplp0 (60S acidic ribosomal
protein P) and analysed by the DDCt method.

Expression of the following genes was measured: Abca1 (ATP-binding cassette
transporter A1), Actb (beta actin), Aif1 (allograft inflammatory factor 1), Apoe
(apolipoprotein E), Bdnf (Brain-derived neurotropic factor), Bmp2 and Bmp4
(Bone morphogenic protein 2 and 4), Car2 (carbonic anhydrase 2), Ch25h
(Cholesterol 25-Hydroxylase ), Cntf (ciliary neurotrophic factor), Cyp27a1 (Sterol
27-hydroxylase ), Cyp46a1 (Cholesterol 24-hydroxylase), Cyp51a1 (Sterol 14 alpha-
demethylase), Dhcr24 (24-Dehydrocholesterol reductase), Egf (epidermal growth
factor), Fdft1 (Farnesyl-Diphosphate Farnesyltransferase 1), members of the Fgf
(fibroblast growth factor) gene family, Gfap (glial fibrillary acidic protein), Gmcsf
(granulocyte-macrophage colony-stimulating factor, CSF2), H2-DMb2 (MHCII,
major histocompatibility complex class II), Hmgcr (3-Hydroxy-3-Methylglutaryl-
CoA Reductase), Hmgcs1 (3-Hydroxy-3-methylgutaryl-CoA synthase 1), Ifng
(interferon gamma), Igf1 (insulin-like growth factor 1), Il2 (interleukin 2), Il17,
Inhba (inhibin beta-A, also called activin beta-A), Ldlr (Low density lipoprotein
receptor), Lrp1 (Low density lipoprotein receptor-related protein 1), Mvk
(Mevalonate kinase), Ntf3 (Neurotrophin 3), Ngf (Nerve growth factor ), Nr1h3
(Liver X receptor alpha, LXR alpha), Nr1h2 (Liver X receptor beta, LXR beta), Olig2
(oligodendrocyte lineage transcription factor 2), Pdgfa (platelet derived growth
factor alpha), Plp1 (proteolipid protein 1), Ptn (Pleiotrophin), Rxrg (Retinoic X
receptor gamma, RXR gamma), S100b (S100 calcium-binding protein B), Shh
(sonic hedgehog), Srbf2 (sterol regulatory element binding transcription factor 2),
Tnf (tumour necrosis factor), Vldlr (Very low density lipoprotein receptor). All
primer sequences are listed in Supplementary Table 3.

Cell cultures. For primary oligodendrocyte cultures, dissected cortices of newborn
mice or rats were digested in 0.25 mg ml� 1 Trypsin/EDTA for 10 min followed by
triturating and plating in plating media (DMEM 4.5 g l� 1 Glucose, 10% fetal calf
serum containing about 300 mg ml� 1 cholesterol, GlutaMAX, penicillin/strepto-
mycin). About 14 days after plating, OPCs were isolated by differential shaking and
lectin panning, and plated in differentiating Sato media (DMEM 4.5 g l� 1

glucose, 4 mM glutamine, 5 mg ml� 1 insulin, 16mg ml� 1 putrescine, 6.2 ng ml� 1

progesterone, 5 ng ml� 1 sodium selenite, 400 ng ml� 1 L-thyroxine, 400 ng ml� 1

triiodothyroxine, 50mg ml� 1 holo-transferrin, penicillin/streptomycin, lacking any

cholesterol source). Cell purity was routinely determined by immune stainings and
always exceeded 95%. Cholesterol (10 mg ml� 1) was added from a 10 mg ml� 1

stock solution in ethanol. Control cultures received 0.1% ethanol. In case of growth
factor supplementation assays, cells were allowed to adhere for 2 h before treatment
with EdU (5-ethynyl-20-deoxyuridine, 10 mM, Invitrogen) and growth factors
(FGF1, FGF2; Peprotech) at 100 ng ml� 1 for proliferation experiments or
45 ng ml� 1 FGF1 plus 80 ng ml� 1 FGF2 or 90 ng ml� 1 FGF1 plus 35 ng ml� 1

FGF2 for differentiation experiments. Cultures were fixed with PFA and
permeabilized with 0.5% Triton X100.

Myelinating co-cultures were established as described70 with minor
modifications. Briefly, six E13 embryonic spinal cords per culture were digested in
0.125% Trypsin solution in HBSS (without Caþ 2 and Mgþ 2) at 37 �C for 20 min.
After stopping the digestion with 1 ml plating media (DMEM, 25% horse serum,
25% HBSS, 50 mg ml� 1 DNAse) the tissue was homogenized by gentle trituration
and centrifuged for 5 min. 150,000 cells were plated per poly-L-lysine coated
coverslip; 3 coverslips per 35 mm Petri dish. After cell attachment in plating media,
differentiation media was added (low glucose DMEM, 10 mg ml� 1 insulin,
10 ng ml� 1 biotin, 50 nM hydrocortisone, 0.5% N1-mix). N1 mix was 1 mg ml� 1

apo-transferrin, 20 mM putrescine, 4 mM progesterone, and 6 mM sodium selenite.
50% media change was performed every 24–48 h with differentiation media. After
12 days, insulin was removed from differentiation media. Coverslips were fixed
with PFA after 20, 24 and 28 days in culture and permeabilized with � 20 �C
methanol for 10 min.

Fixed and permeabilized cells were blocked with 10% horse serum in PBS and
incubated with primary antibodies in blocking solution followed by secondary
antibodies together with click-it kit for detection of EdU and DAPI for nuclear
staining. Coverslips were mounted on slides with aqua polymount. On five
randomly chosen visual fields of primary oligodendrocyte cultures (� 10
magnification), stainings were evaluated. For differentiation of oligodendrocytes,
CNP and MBP positive cells were categorized according to morphological criteria
(see Fig. 7a). New oligodendrocytes (new OL) were CNP-positive MBP-negative
cells with complex processes. MBPþOL cells contained few MBP-positive
intracellular spots but did not form sheaths. Mature oligodendrocytes were
CNP- and MBP-positive with sheaths. In myelinating co-cultures, the axonal
(SMI31) area and the area with myelin sheaths (MBP) of seven randomly chosen
visual fields of myelinating co-cultures (� 10 magnification) was measured after
binarization of thresholded images. Specimens were analysed on an Axiophot
observer.Z1 (Zeiss) equipped with an AxioCam MRm and the ZEN 2012 blue
edition software and evaluated with Image J software. Microscope settings are listed
in Supplementary Table 4.

Statistical analyses. Statistical evaluation was done by unpaired Student’s t-test for
pairwise comparisons or by ANOVA for comparisons of more than two groups as
stated in the figure legends. Two-way ANOVA was combined with a post test to
evaluate individual groups. For all statistical tests, significance was measured against
an alpha value of 0.05. All error bars show s.e.m. P values are shown as *Po0.05;
**Po0.01; ***Po0.001. No statistical methods were used to predetermine sample
sizes, but our sample sizes are similar to those reported in previous publications25,28.
Data analysis was performed blind to the experimental groups.

Data availability. All data generated or analysed during this study are included in
this published article (and its supplementary information files) or available from
the authors on request.
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