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Abstract

Background: Parallel computing is frequently used to speed up computationally expensive tasks
in Bioinformatics.

Results: Herein, a parallel version of the multi-alignment program DIALIGN is introduced. We
propose two ways of dividing the program into independent sub-routines that can be run on
different processors: (a) pair-wise sequence alignments that are used as a first step to multiple
alignment account for most of the CPU time in DIALIGN. Since alignments of different sequence
pairs are completely independent of each other, they can be distributed to multiple processors
without any effect on the resulting output alignments. (b) For alignments of large genomic
sequences, we use a heuristics by splitting up sequences into sub-sequences based on a previously
introduced anchored alignment procedure. For our test sequences, this combined approach reduces
the program running time of DIALIGN by up to 97%.

Conclusions: By distributing sub-routines to multiple processors, the running time of DIALIGN
can be crucially improved. With these improvements, it is possible to apply the program in large-
scale genomics and proteomics projects that were previously beyond its scope.

Background

Multiple sequence alignment continues to be an active
field of research in Computational Biology and a number
of novel approaches have been developed during the last
years, see |1] for an overview on multi-alignment algo-
rithms and [2,3] for systematic evaluation of the com-
monly used software tools. Until some years ago, research
on sequence alignment was mainly concerned with align-
ing proteins or single genes. During the last few years,
however, comparison of genomic sequences became a

crucial tool for uncovering functional elements such as
genes or regulatory sites. Consequently, the focus of align-
ment research shifted to large genomic sequences [4,5].
Alignment of sequences in the order of hundreds of kilo-
bases or megabases is computationally demanding. Some
extremely efficient tools have been developed that are
able to align entire chromosomes or genomes [6,7]. These
approaches, however, work best on closely related species;
they are unable to compare sequences with larger evolu-
tionary distances.
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DIALIGN [8] is a versatile tool for pair-wise and multiple
alignment of nucleic acid and protein sequences. It com-
bines global and local alignment features and is therefore
particularly useful to align distantly related sequences sets
sharing isolated local homologies. In a number of recent
research projects DIALIGN has been used to align syntenic
genomic sequences; some new program options have
been implemented for this purpose [9]. Recent applica-
tions of DIALIGN in comparative genomics include detec-
tion of regulatory elements by multiple alignment [10-
14], phylogenetic studies [15,16] and identification of sig-
nature sequences to detect pathogenic viruses as part of
the US biodefense program [17]. An independent study
by Pollard et al. evaluated the capability of alignment pro-
grams to detect conserved non-coding sites in genomic
sequences. These authors conclude that DIALIGN can pro-
duce alignments with high coverage and sensitivity, as well as
specificity to detect constrained sites [3].

Though DIALIGN produces alignments of high quality, it
is slower than alternative multi-alignment programs.
Especially if large genomic sequences are to be aligned
DIALIGN is far more time-consuming than the above
mentioned specialized programs for genomic alignment.
A recently introduced anchored alignment option [18] can
be used to speed-up the program, but even with this
improvement DIALIGN is still slower than alternative
software tools. Parallel computing has been used by vari-
ous researchers in order to improve the running time of
computationally expensive alignment procedures, see for
example [19-21]. Herein, we introduce a parallel version
of DIALIGN. We apply two different strategies to distrib-
ute sub-routines to multiple processors. In our test exam-
ples, the running time of DIALIGN could be reduced by
up to 94.5 % for multiple protein alignment and by up to
97.5 % for alignment of large genomic sequences.

Implementation

Parallel multiple alignment

For multiple alignment, the DIALIGN algorithm works as
follows: in a first step, all respective optimal pair-wise
alignments are carried out. This means that, for each pair
of input sequences, a chain of local fragment alignments
with maximum total weight score is identified. A fragment
or fragment alignment is defined as an un-gapped local
pair-wise alignment, and the weight score of such a frag-
ment is calculated based on a P-value i.e. on the probabil-
ity of its random occurrence, see [8] for a detailed
explanation of this approach. The chaining algorithm that
identifies a fragment chain with maximum total weigth is
described in [22].

For a set of N input sequences, N x (N - 1)/2 pair-wise
alignments are to be calculated; fragments contained in
these pair-wise alignments are then used to build up a
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multiple alignment in greedy fashion. If the maximum
sequence length is bounded by some constant, the time-
complexity of this algorithm as a function of the number
N of sequences is as follows: Performing all pair-wise
alignments takes O(N2) time. During the greedy proce-
dure, O(N) independent fragments can be included into
the multiple alignment; additional fragments would be
either inconsistent or already contained in the existing
multiple alignment. Accepting a single fragment takes
O(N?2) time since for each accepted fragment, so-called
consistency frontiers are to be updated. These frontiers are
used to decide if subsequent fragments are consistent with
previously accepted fragments. Thus, the worst-case time
complexity of our multi-alignment algorithm is O(N3).
Test runs with real data show, however, that the real time-
complexity is something between quadratic and cubic, see
[23] for a detailed analysis of the complexity and running
time of our algorithm.

The current version of DIALIGN uses an efficient algo-
rithm to update the consistency frontiers. This means that,
although performing all pair-wise alignments has a lower
theoretical time complexity than processing the fragments
from these alignments in the greedy algorithm, for realis-
tic data sets most of the CPU time is spent on the pair-wise
alignments. For example, for a set of 20 protein sequences
with an average length of 367 amino acid residues, as
much as 97.4 % of the CPU time is used to perform the 20
x 19/2 = 190 pair-wise alignments. However, the relative
proportion of CPU time used for pair-wise alignments
decreases with the number of input sequences, as can be
expected from the above theoretical considerations.

The pair-wise alignments that are calculated as the first
step of the multi-alignment procedure are completely
independent of each other. Thus, it is obvious that the
total program running time can be crucially reduced by
running these procedures on parallel processors. Here, an
important point is to distribute the work load evenly to
the different processors in order to minimize the total pro-
gram running time. To this end, our algorithm first esti-
mates the running time for each pair-wise alignment as a
function of the sequence length. As outlined in [22], the
running time of DIALIGN for pair-wise alignment is pro-
portional to the product of the sequence lengths. Based on
this estimate, the algorithm distributes the N x (N - 1)/2
pair-wise alignments to the available processors in order
to balance the work load. Here, we are using a greedy algo-
rithm to find a satisfactory work-load distribution in rea-
sonable time: we first assign a processor to the pair-wise
alignment with the longest expected running time, then
assign a processor to the second-largest pairwise align-
ment etc.
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Alignment of large genomic sequences

The quadratic time complexity of the original DI ALIGN
algorithm for pair-wise alignment is clearly not efficient
enough to align large genomic sequences. To improve the
running time of DIALIGN for long sequences, an anchored
alignment procedure has recently been implemented
[18,24]. For our parallel approach, we use the fast local
alignment tool CHAOS to identify a chain of high-scoring
local alignments for each pair of input sequences http://
www.stanford.edu/~brudno/chaos/. To select a consistent
sub-set of these local alignments, a greedy algorithm is
used, see [18] for details.

CHAOS uses a trie data structure to identify pairs of seg-
ments with a user-defined upper bound on the number of
mismatches per segment pair. It defines a local alignment
as a chain of such gap-free local alignments that are
located within a certain distance from each other. Finally,
the algorithm returns an optimal chain of such local align-
ments. After the consistency check, these alignments are
used by our algorithm to define anchor points in order to
narrow down the search space for the final pair-wise align-
ment procedure that is performed by DIALIGN as
explained in [18].

To be precise, an anchor point is a pair of segments, one
segment from each of the two input sequences; this way
each position in the first segment is assigned to the respec-
tive position in the second segment. If a residue x is
assigned to a residue y through one of the anchor points,
this means that x is the only residue that can be aligned
with y in the final output alignment. Whether or not x and
y will be aligned depends on the degree of local sequence
similarity that DIALIGN detects. Moreover, all residues to
the left of x can be aligned only with residues to the left of
y and vice versa, see Figure 1. The algorithm then returns
an optimal alignment, i.e. a chain of fragments with max-
imum total weight score respecting the constraints
imposed by the selected anchor points. Note that, if all
anchor points are consistent with the optimal non-
anchored alignment, then the result of the anchored align-
ment procedure will necessarily be the same as for the
non-anchored procedure. In particular, this is the case if
all anchor points are part of the optimal non-anchored
alignment.

In the present study, we use selected anchor points as cut-
ting positions to split the input sequences into smaller sub-
sequences, and we reduce the program running time for
DIALIGN by aligning these sub-sequences independently
on multiple processors. This procedure is related to
Stoye's well-known divide-and-conquer approach to multi-
ple alignment [25] and to the linear-space algorithm for
pair-wise alignment proposed by Hirschberg [26].
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It should be mentioned that, unlike the above outlined
anchoring procedure, distributing sub-alignments to mul-
tiple processors may well affect the resulting output align-
ments, even if the selected cut positions are consistent
with the optimal alignment. No matter how well our
anchoring positions are chosen, we can generally not
expect the optimal alignments of our sub-sequences to
coincide with the optimal alignment of the original input
sequences The reason for this behaviour is that DIALIGN
uses a non-additive weighting function w for segment pairs
(fragments). If a large fragment f is split into two smaller
sub-fragments f,, f,, the sum w(f;) + w(f,) is, in general,
lower than the original weight w(f), see [8]. As demon-
strated in Figure 1, concatenating alignments of sub-
sequences may or may not result in the optimal alignment
that would be returned by the naive alignment procedure
or by the anchored procedure if anchor points are selected
appropriately. Thus, special care has to be taken in select-
ing appropriate sub-sequences. In particular, the number
of splits should not be too high as every split can possibly
reduce the quality of the output alignment.

To reduce the total running time of the alignment proce-
dure as far as possible, our algorithm distributes the sub-
sequence alignments evenly to the available processors. At
the same time, it minimizes the loss of alignment quality
that may be caused by splitting the sequences into too
many subsequences. To this end, we first identify a chain
of anchor points using CHAOS. The program then divides
the sequences at every anchor point, thereby producing a
large set S1 of pairs of relatively small sub-sequences. The
running time for each of the corresponding sub-align-
ments is estimated as described above. Using these esti-
mates, the sub-sequences in S1 are concatenated in such a
way that a set S2 of larger sub-sequences is obtained that
can still be evenly distributed to the available processors.
Here again, we use a greedy approach to assign processors
to sub-alignments. As a result, our algorithm minimizes
the program running time by balancing the work load
among the processors while it maximizes the length of the
aligned sub-sequences, thereby reducing the possible loss
of alignment quality.

Computer resources

We decided to use the message-passing interface (MPI)
[27,28] for our work. Efficient MPI libraries are available
for all supercomputing systems, and also for casual work-
station pools. The results reported in the next section were
achieved by experimental tests made on the Kepler-Clus-
ter [University of Tibingen (SFB-382, http://
kepler.sfb382-zdv.uni-tuebingen.de/) that is a Linux-SMP
cluster with two Pentium III processors (650 MHz) and 1
GB main memory per node. The nodes are connected by
a Myrinet 1.28 GBit/s switched LAN. The software was
also compiled and tested on a Sun fire with 8 processors
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Figure |
Anchored alignment and parallel computation of sub-alignments for pair-wise sequence comparison. (a) Un-

constrained alignment: an optimal chain of fragments f, f,, f; is identified in the comparison matrix spanned by input sequences
S, and §,. (b) Anchored alignment: an anchor point (A, A,) is defined prior to the alignment procedure, and an optimal chain of
fragments is searched under the constraints imposed by this anchor. That is, residues to the left of A, can be aligned only to
residues to the left of A, and vice versa, so the alignment search space is reduced by a factor of 2. If anchor point (A, A,) is con-
sistent with the optimal un-constrained alignment as shown in (a), the constraints imposed by this anchor point do not affect
the resulting alignment, so exactly the same fragment chain f|, f,, f; is obtained. (c) In the pardllel aligment procedure, sequence
S, and S, are split into sub-sequences S, S{ and S;, S;, respectively, where the anchor point (A,, A,) defines the exact cut-
ting-position. Alignments of S| and S5 and of S| and S} are calculated independently, and concatenated to obtain an out-
put alignment of S, and S,. In (c), the obtimal sub-alignments involve fragments f; and f; which are sub-fragments of f,
contained in the un-constrained alignment. In this case, the resulting final alignment of sequences S, and S, is therefore the same
as the un-constrained one in example (a). Note, however, that the scoring function w for fragments is not additive and we may
have, for example, w(fz' ) + w(fz' ) < w(fz ) . Therefore, even if anchor point (A, A,) is consistent with the optimal un-con-
strained alignment, there is no guarantee that concatenating optimal sub-alignments yields the same alignment as the un-con-
strained alignment of the input sequences S, and S,. The algorithm may end up with a situation as shown in example (d) where

the parallel alignment procedure leads to a different output alignment.
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Table I: Test results for three data sets using different numbers of processors p Running time of the parallelized version of DIALIGN
on protein sequences (average length: 381 residues) using different numbers p of processors. The values for p = | are measured with
DIALIGN, the others with ParDIALIGN. All running times in the table are the fastest achieved values of several runs. The speed-up
value is defined as the time needed for p = | divided by the time for ParDIALIGN. The percentages show the reduction of the time with

respect to the sequential version of DIALIGN.

20 sequences

55 sequences 100 sequences

b time (sec) speed-up time (sec) speed-up time (sec) speed-up

| 37.69 - 334.17 - 1283.80 -

4 10.40 3.62 (72.41%) 104.61 3.19 (68.70%) 552.68 2.32 (56.95%)
8 593 6.36 (84.27%) 65.69 5.09 (80.34%) 421.69 3.04 (67.15%)
16 3.57 10.56 (90.53%) 46.25 7.23 (86.16%) 359.50 3.57 (72.00%)
32 2.65 14.22 (92.97%) 36.92 9.05 (88.95%) 332.22 3.86 (74.12%)
64 1.95 19.32 (94.82%) 30.74 10.87 (90.80%) 309.43 4.15 (75.90%)

and on an ordinary Linux-based workstation pool that
generally exists in every institute.

Results and conclusion

The performance of existing multi-alignment software has
been evaluated in detail. All programs have been exten-
sively tested by their authors; in addition several inde-
pendent studies have been carried out using numerous
sets of real and artificial benchmark data. The quality of
multiple-protein-alignment programs including DIA-
LIGN has been systematically studied by Thompson at al.
[29] and by Lassmann and Sonnhammer [2]. The ability
of multi-alignment tools to detect conserved patterns in
genomic sequences has recently been investigated by Pol-
lard et al. [3]. Since the goal of the present study is to
speed-up an existing approach, we do not evaluate the
quality of the produced output alignments; the ability of
our software to produce biologically meaningful align-
ments under various conditions has been evaluated in the
above cited papers. Herein, we compare the running time
of our parallel software to the original serial version of the
program.

As a first test example, we aligned sets of proteins with 20,
55, and 100 sequences, respectively. The program distrib-
uted the pair-wise alignments to different processors as
described in section. Table 1 shows running time and
speed-up for different numbers p of processors. Using 64
processors, the running time for these data sets can be
reduced by 94.82%, 90.80% and 75.90%, respectively,
compared to the serial running time. The observed differ-
ences in the relative speed-up are due to the different pro-
portion of CPU time that is spent on the pairwise
alignments, see [23]. The larger this proportion is, the
higher is the relative speed-up that can be achieved by
running these procedures on parallel processors
(Amdahl's law [30]). Further improvements in program

running time should be possible by parallelizing other
parts of the algorithm such as fragment sorting and con-
sistency calculations during assembly of the multiple
alignment [23].

Next, we looked at the improvement of program running
time that can be achieved for large genomic sequences
using the algorithm described in section. As a test exam-
ple, we used a set of three syntenic genomic sequences
from mouse, rat and human. Each of these sequences is
around 1 MB in length. The program CHAOS identified a
total of 15,818 anchor points; 4,294 for human/mouse,
4,072 for human/rat and 7,452 for mouse/rat. Most of
these anchor points were consistent with each other, only
121 out of the 15,818 anchor points had to be discarded
because of consistency problems [18]. The consistent
anchor points led to a set S1 containing 15,700 pairs of
sub-sequences with an average length of 214 bp (note that,
for each sequence pair, a chain of n anchor points divides
the sequences into n + 1 pairs of sub-sequences). These
pairs of subsequences were concatenated to obtain a set S2
of larger sub-sequences that can be evenly distributed to
the available processors.

Using CHAOS anchor points, the serial version of our pro-
gram took 267,574 s = 74 h 19 m 34 s to compute the
multiple alignment of our input sequences on a single
processor of our cluster. We estimate that, without the
anchoring option, the original DIALIGN program would
have taken around three weeks to align these sequences.
By contrast, the parallel version of the program with 64
processors took only 6,583 s = 1 h 49 m 43 s to align the
same sequence set, corresponding to a running time
improvement by 97.5 %. With a speed-up from more than
three days to less than two hours, DIALIGN can now
compute long-range multiple alignments of genomic
sequences that were, until recently, far beyond its scope.
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Availability

The program will be available online through Gottingen
Bioinformatics Compute Server (GO-BICS) at http://
www.gobics.de. The program code is available on request.
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