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Remotely-sensed detection of 
effects of extreme droughts on 
gross primary production
Sara Vicca1,2, Manuela Balzarolo1, Iolanda Filella2,3, André Granier4, Mathias Herbst5, 
Alexander Knohl6, Bernard Longdoz4, Martina Mund7, Zoltan Nagy8, Krisztina Pintér8, 
Serge Rambal9,10,  Jan Verbesselt11, Aleixandre Verger2,3, Achim Zeileis12, Chao Zhang2,3 & 
Josep Peñuelas2,3

Severe droughts strongly impact photosynthesis (GPP), and satellite imagery has yet to demonstrate 
its ability to detect drought effects. Especially changes in vegetation functioning when vegetation 
state remains unaltered (no browning or defoliation) pose a challenge to satellite-derived indicators. 
We evaluated the performance of different satellite indicators to detect strong drought effects on GPP 
in a beech forest in France (Hesse), where vegetation state remained largely unaffected while GPP 
decreased substantially. We compared the results with three additional sites: a Mediterranean holm oak 
forest (Puéchabon), a temperate beech forest (Hainich), and a semi-arid grassland (Bugacpuszta). In 
Hesse, a three-year reduction in GPP following drought was detected only by the Enhanced Vegetation 
Index (EVI). The Photochemical Reflectance Index (PRI) also detected this drought effect, but only after 
normalization for absorbed light. In Puéchabon normalized PRI outperformed the other indicators, 
while the short-term drought effect in Hainich was not detected by any tested indicator. In contrast, 
most indicators, but not PRI, captured the drought effects in Bugacpuszta. Hence, PRI improved 
detection of drought effects on GPP in forests and we propose that PRI normalized for absorbed light is 
considered in future algorithms to estimate GPP from space.

Increased frequency and intensity of drought events is among the prospects that we are facing due to climate 
change. How ecosystems cope with and respond to extreme droughts will be crucial in the terrestrial feedback 
to climate change1. Severe and recurrent droughts can reduce the terrestrial carbon sink2, eliciting a positive 
feedback on climate change. Ecosystem responses to drought, however, are highly variable in time and space3–5. 
Our knowledge of these responses is still very limited, in part because research on the effects of extreme droughts 
began only relatively recently and because extreme events occur only rarely in nature. The tools best suited for 
large-scale, long-term, and continuous high-frequency monitoring of terrestrial ecosystems, i.e. remote sensing 
imagery, though, have yet to demonstrate their ability to capture the effects of extreme droughts on carbon cycling 
in natural ecosystems.

To use satellite data for detecting and quantifying the effects of drought at a global scale, we need products that 
can reliably capture the variation in vegetation state (e.g. defoliation or browning) and in vegetation functioning 
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(e.g. decreases in photosynthesis). Both can change in response to drought, but drought effects may also be 
restricted to changes in vegetation functioning, for example when trees that already reached peak leaf area experi-
ence a drought event, close their stomata and thereby strongly reduce photosynthetic CO2 uptake. When drought 
severity remains below the level where leaves turn brown, vegetation state remains largely unaltered whereas 
vegetation functioning is altered and gross primary production (GPP) is decreased considerably.

Although commonly used remote sensing indicators such as the Normalized Difference Vegetation Index 
(NDVI) detect green biomass and generally detect changes in vegetation state (greening, mortality or defoliation)6,7,  
these indicators often fail to reflect drought-induced decreases in plant activity. This failure can be due to absence 
of structural changes, to early saturation at high leaf area index masking moderate structural changes, or to par-
ticularly complex structural changes8,9. A recent comparison of commonly used remote sensing indicators with 
field observational data accordingly indicated a modest performance of these indicators in capturing the inter-
annual variability in GPP10. Whereas for grasslands and evergreen broadleaved forests, NDVI and the Enhanced 
Vegetation Index (EVI) capture interannual variability in GPP relatively well, the relationships between the rela-
tive anomalies in annual GPP (estimated from eddy covariance measurements) and the corresponding anomalies 
for the remote sensing indicators was very poor for deciduous broadleaved and evergreen needleleaved forests10.

The GPP derived from Moderate Resolution Imaging Spectroradiometer (MODIS) product (modGPP) is an 
advanced satellite product for estimating the uptake of carbon by plants. The modGPP has been compared to 
field estimates of GPP in various studies, which typically suggest that this product is reliable at large spatial and 
temporal scales, but is more erratic at fine temporal and spatial resolution10–13. The modGPP is calculated as a 
function of FAPAR (fraction of absorbed photosynthetically active radiation), temperature, vapor pressure deficit 
(VPD), light (all three derived from a global dataset14) and an estimate of maximum light use efficiency (LUE). It 
thus includes important abiotic variables that enable short-term fluctuations in this indicator that are not detected 
in commonly used remote sensing indicators such as FAPAR. Field conditions, however, may deviate from those 
suggested by these abiotic variables, which may lead to substantial differences between modGPP and field-based 
GPP estimates during drought periods (see e.g.11). The VPD obtained from the global dataset in particular may 
not well represent water availability. For example, a drought-induced decline in GPP may last much longer than 
the increase in VPD, which could lead to an underestimation of the drought effect by modGPP if FAPAR is unal-
tered. Moreover, LUE is here expressed as a biome-specific constant at its potential maximum that may not be 
representative of the seasonally variable LUE of an ecosystem. Hence, resulting GPP estimates often do not scale 
with field observations15.

It has been suggested that LUE can be estimated remotely from the Photochemical Reflectance Index (PRI)16. 
The PRI is linked to the de-epoxidation status of the xanthophyll cycle pigments, which is one of the components 
of the non-photochemical de-excitation pathway16. PRI can capture the temporal dynamics in LUE via variations 
in the xanthophyll cycle pigments and the relative ratio of carotenoids to chlorophyll. It is a promising tool to 
better represent plant functioning through spectral measurements15,17,18. However, a valid remotely-based LUE 
estimate across different plant functional types and wide range of conditions has not yet been identified15,19. 
Accordingly, the performance of PRI in detecting drought effects on plant activity is still debated.

A study by Peguero-Pina et al.20 demonstrated that ground-based PRI can be a reliable index for detecting 
drought-induced reductions in plant activity (or more specifically, plant stress indicators such as chlorophyll 
fluorescence), but drought detection using PRI derived from satellite data may be more problematic19. Although 
PRI can capture changes in the xanthophyll cycle, indicative of stress21,22, these changes can be obscured by the 
much stronger signals of seasonal variation in the pigment pool of the leaves (e.g. chlorophyls)21, and by sea-
sonal changes in illumination23. Recent insights from ground-based remote sensing suggest that a normalization 
for absorbed light may overcome many of these problems24. This promising approach of normalizing PRI for 
absorbed light remains to be evaluated for satellite-based PRI.

The aim of this study was to test if commonly used remote sensing indicators and PRI calculated with MODIS 
bands could detect effects of extreme drought on GPP. We hypothesized that commonly used remote sensing 
indicators, except for modGPP, detect drought effects only when vegetation state is affected. We expected PRI 
to capture drought effects on GPP in case of physiological changes and in particular, we anticipated a substan-
tial improvement of drought detection by PRI when normalized for absorbed light. To test our hypotheses, we 
selected a beech forest in Hesse, France where long-term monitoring revealed a strong reduction of GPP during 
the European heatwave25 that was associated with a drought event that lasted from 2003 until 2005 in this forest, 
but hardly affected vegetation state (leaf area index, tree mortality). To further test the generalizability of our find-
ings, this ideal test case was further complemented with three long-term monitoring sites that had experienced 
a severe drought. These three additional sites – which were the only ones that met the necessary criteria (see 
Methods) - are an uneven-aged and unmanaged beech forest in Hainich, Germany; an evergreen broadleaved 
holm oak forest in Puéchabon, France; and a semi-arid grassland in Bugacpuszta, Hungary (see Supplementary 
Table S1 for general site information). We used the following remote sensing indicators in our study: NDVI, EVI, 
EVI2, FAPAR, absorbed photosynthetically active radiation (APAR), Leaf Area Index (LAI), Simple Ratio (SR), 
Global Environmental Monitoring Index (GEMI), Normalized Difference Water Index (NDWI), modGPP and 
PRI (see Methods and Supplementary Table S2 for calculations).

Results
In Hesse, the 2003 heatwave is clearly visible in the Standardized Precipitation Evapotranspiration Index (accu-
mulated over 12 months; SPEI12; see Methods); SPEI12 decreased below − 1.5 and did not return to zero until 
2006 (Fig. 1a; for temperature and precipitation data, see Supplementary Fig. S1). This corresponds well with pat-
terns for relative extractable soil water (REW; calculated from ground data of soil moisture) which reached a min-
imum in 2003 and remained low in 2004 and 2005. No other droughts were visible in SPEI12 or REW for the rest 
of the observation period (Fig. 1a). The strong and lengthy drought had little effect on ground-based leaf area 
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index (LAI) estimates, which varied between 5.8 and 8.7 and reached a minimum in 2005, after the thinning of 
autumn 2004 (Fig. 1b). In contrast to LAI, tower GPP was substantially reduced during 2003–2005 (Tables 1 and 2)  
and returned to pre-2003 levels only in 2006 (Fig. 1c). The strong reduction in tower GPP due to the 2003–2005 drought 
was clearly captured by the test for structural change (Table 1) and by the breakpoint-detection technique (Fig. 1d).

The GPP product of MODIS did not reproduce the pattern observed for tower GPP. Although the test for 
structural change indicated a significant difference between drought and non-drought periods (Tables 1 and 2) 
and a minor break was detected at the end of the drought period, modGPP could obviously not reproduce the field 
observations; modGPP during drought was even higher than pre-drought modGPP (Fig. 2a, Table 2). Another 
commonly used reflectance index, NDVI, did not change throughout the time series (Fig. 2b, Table 1). EVI, in 
contrast, decreased significantly during the drought, as did the simple ratio (SR; for calculation see Table S2),  
albeit only for 2004–2006 (Fig. 3e, Tables 1 and 2). None of the other commonly used remote sensing indicators 
decreased during the 2003–2005 drought episode (Figs 2 and 3). We suspected an important role for the blue 
band in the successful detection of the drought effect with EVI, so we tested if EVI2 (which does not cover the 
dynamics in the blue band) could detect the drought effect on tower GPP. EVI2 did not decrease during the 
2003–2005 drought (Fig. 2d, Tables 1 and 2), supporting the postulated importance of the blue band in EVI.

We further tested if and how the drought effect was reflected in standardized PRI (sPRI; see Eq. 1) and in sPRI 
normalized for absorbed light (sPRIn; see Eqs 2 and 3). Whereas sPRI showed no significant response to drought, 
sPRIn decreased significantly in 2003 and 2004 (Fig. 2e,f, Tables 1 and 2). In 2005, i.e., prior to GPP recovery, 
sPRIn returned to a level similar to pre-2003.

We also tested the performance of the remote sensing indicators at the three other sites where drought had 
decreased GPP. The first site, Hainich, is an unmanaged beech forest in Germany. Similar to Hesse, SPEI12, REW 
and GPP in Hainich decreased during the 2003 drought, but this effect was much less pronounced, and soil water 
was obviously replenished in Hainich in 2004, when REW never decreased below the common stress threshold 
of 0.4 (Fig. 4). Whereas the reduction in tower GPP at the end of the 2003 growing season can be considered 
drought-induced, the slightly reduced tower GPP in 2004 as compared to other years most likely resulted from an 
extraordinary cold and rainy spring and massive fruit production (masting) that was associated with the displace-
ment of leaf buds and thus a lower foliar production in 2004 (Supplementary Table S3).

Similar to Hesse, the modGPP data for Hainich did not match the observations in the field well (Fig. 4). The 
reason for the lower modGPP in 2001–2003 compared to other years is unclear, but we presume it was related 
to artifacts in the algorithm, because neither FAPAR (included in the modGPP algorithm) nor any of the other 
remote sensing indicators showed this pattern. Interestingly, the 2003 drought was not captured by any of the 
remote sensing indicators (see also Fig. S5). Also, sPRIn did not detect the reduction in photosynthetic activity 
(Fig. 4e; Tables 1 and 2). On the other hand, the reduction in GPP (associated with a reduction in plant area index; 
Supplementary Table S3) was somewhat reflected in EVI (Table 1; but detection was not robust across methods 
and only the test for structural changes comparing 2002–2004 against the rest of the time series revealed an 
effect) and in GEMI (Global Environmental Monitoring Index; detected in the breakpoint analysis; Table 1 and 
Supplementary Fig. S5).

Figure 1. Time series of ground data and of the SPEI12 for the beech forest in Hesse. (a) SPEI12 and 
relative extractable water (REW); (b) leaf area index (LAI; determined from trapped litter; see29); (c) daily 
values for tower GPP; and (d) the results of the breakpoint analysis for GPP (with 8-day values). In (a), the 
blue line corresponds to SPEI12 and the black line to REW. The red line indicates the SPEI12 threshold of − 1.5 
(indicative of severe drought). Black symbols for LAI indicate the year after thinning. No thinning occurred in 
the years with open symbols for LAI. In (d), the seasonally adjusted data (abbreviated as ‘ad.’ in axis labels) are 
shown and the black line indicates the results of the breakpoint analysis. The grey area indicates the drought 
episode that is focused on in this study.
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In contrast to Hesse, the Mediterranean forest in Puéchabon is exposed to a dry period every year (see REW 
in Supplementary Fig. S2), causing a decrease in tower GPP every summer, followed by an increase in autumn 
(Fig. 5b). This typical seasonality is not reflected in SPEI12, which indicates the anomalies of the historical mean 
season. In 2005, however, SPEI12 decreased below − 1.5, indicating a more extreme drought than usual. SPEI12 

Hesse Hainich Puéchabon Bugacpuszta

ANOVA
SC (2002–

2006) ANOVA
SC (2002–

2003)
SC (2002–

2004) ANOVA
SC (2004–

2006)
SC (2008–

2011) ANOVA
SC (2002–

2003)
SC (2006–

2007)
SC (2008–

2009)

GPP < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.03 < 0.01 < 0.01 < 0.01 < 0.01

modGPP < 0.01 0.05 0.01 0.15 0.37 < 0.01 < 0.01 0.07 < 0.01 0.15 < 0.01 < 0.01

EVI < 0.01 < 0.01 0.74 0.99 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 NA < 0.01 < 0.01

sPRIn 0.03 < 0.01 0.21 0.12 0.36 < 0.01 < 0.01 < 0.01 0.10 0.99 NA 0.01

APAR 0.90 0.30 0.76 0.44 0.48 0.04 0.02 0.52 < 0.01 0.03 0.07 < 0.01

EVI2 0.08 0.77 0.63 0.21 0.79 0.08 0.90 0.10 0.02 0.74 < 0.01 0.02

FAPAR 0.53 0.48 0.52 0.63 0.45 < 0.01 0.38 1.00 < 0.01 < 0.01 < 0.01 0.01

GEMI 0.05 0.27 0.22 0.98 0.01 0.02 0.15 < 0.01 < 0.01 NA < 0.01 < 0.01

LAI 0.07 < 0.01 0.53 0.32 0.10 < 0.01 < 0.01 0.99 < 0.01 < 0.01 < 0.01 < 0.01

NDVI 0.90 0.90 0.26 0.78 0.90 < 0.01 < 0.01 0.05 < 0.01 NA < 0.01 < 0.01

NDWI 0.62 0.06 0.41 0.97 0.97 < 0.01 < 0.01 0.01 < 0.01 NA < 0.01 < 0.01

sPRI 0.25 0.37 0.19 0.78 0.57 0.25 0.41 0.12 < 0.01 0.03 0.69 0.99

SR 0.04 < 0.01 0.94 1.00 0.67 < 0.01 < 0.01 0.04 < 0.01 NA < 0.01 < 0.01

Table 1.  For each site and each variable the P values of ANOVA analysis comparing a model with and 
without drought term and P values resulting from the test for structural changes (SC) for the indicated 
period (i.e., the drought episode + the year before). P values in bold indicate robust reductions during the 
drought period (i.e. the structural change test corresponds to the results of the breakpoint analysis presented in 
Figs 2–7 and in SI). NA indicates that too few data were available to run the test for structural changes.

Hesse Hainich Puéchabon Bugacpuszta

No 
drought

Pre-
drought Drought

No 
drought

Pre-
drought Drought

No 
drought

Pre-
drought Drought

No 
drought

Pre-
drought Drought

GPP 0.72 (1.31) 0.88 (1.32) −1.65 
(1.57) 0.46 (1.04) 0.99 (1) −0.74 

(1.33) 0.42 (1.13) 0.36 (1.17) −0.48 
(1.12) 0.73 (1.74) − 0.53 

(2.17) −1.3 (1.41)

modGPP 0.08 (0.72) − 0.18 
(0.73) −0.07 (0.6) 0.11 (0.75) − 0.08 

(0.69) −0.29 (0.7) 0.17 (0.72) 0.03 (0.69) −0.15 
(0.68) 0.27 (0.66) − 0.01 

(0.62)
−0.31 
(0.64)

EVI 0.02 (0.06) 0.02 (0.05) −0.03 
(0.05) 0.01 (0.08) 0 (0.09) 0.02 (0.04) 0.01 (0.03) 0.01 (0.03) −0.01 

(0.03) 0.03 (0.07) − 0.04 
(0.06)

−0.05 
(0.08)

sPRIn*100 50.05 (0.52) 50.14 (0.59) 49.86 
(0.48) 49.89 (0.56) 49.81 (0.6) 49.64 (0.67) 50.16 (0.55) 50.07 (0.55) 49.88 

(0.38) 50.02 (0.34) 50.1 (0.23) 50.17 (0.29)

APAR − 0.35 
(94.32)

− 3.98 
(91.73)

− 4.91 
(105.97)

− 4.38 
(63.88)

− 2.04 
(71.65)

− 2.39 
(81.01)

− 2.57 
(49.04)

− 0.77 
(48.41) 1.41 (49.1) 14.54 

(48.49)
− 11.25 
(42.17)

−19.28 
(46.15)

EVI2 0 (0.06) 0.01 (0.06) 0.03 (0.06) 0.01 (0.06) 0.01 (0.06) 0.02 (0.08) 0.01 (0.06) 0.02 (0.06) 0.01 (0.06) 0.02 (0.06) 0.04 (0.07) 0.01 (0.08)

FAPAR − 0.03 
(0.21)

− 0.04 
(0.22)

− 0.06 
(0.21)

− 0.02 
(0.12)

− 0.02 
(0.13)

− 0.05 
(0.15)

− 0.01 
(0.05)

− 0.02 
(0.05)

−0.02 
(0.05) 0.03 (0.1) − 0.03 

(0.09)
−0.08 
(0.11)

GEMI 0.01 (0.06) 0.01 (0.05) − 0.02 
(0.05) 0 (0.08) − 0.01 

(0.08)
− 0.09 
(0.14) 0.01 (0.04) 0.01 (0.04) −0.01 

(0.03) 0.03 (0.06) − 0.03 
(0.05)

−0.04 
(0.07)

LAI 0.98 (1.91) 1.03 (2) 0.29 (1.45) − 0.23 
(1.08)

− 0.14 
(1.22)

− 0.51 
(1.38)

− 0.01 
(1.06)

− 0.08 
(1.01)

−0.24 
(1.03) 0.1 (0.32) − 0.09 

(0.27)
−0.21 
(0.26)

NDVI − 0.04 
(0.12)

− 0.03 
(0.12) − 0.03 (0.1) − 0.03 

(0.15)
− 0.03 
(0.17) − 0.2 (0.28) 0.01 (0.03) 0.01 (0.03) −0.01 

(0.03) 0.05 (0.1) − 0.04 
(0.09)

−0.09 
(0.12)

NDWI − 0.01 
(0.07)

− 0.01 
(0.06)

− 0.02 
(0.05) − 0.02 (0.1) − 0.02 

(0.11)
− 0.11 
(0.18) 0.01 (0.05) 0 (0.05) −0.01 

(0.04) 0.05 (0.14) − 0.12 
(0.11) −0.1 (0.13)

sPRI*100 0 (0.35) − 0.05 
(0.42)

− 0.08 
(0.36)

− 0.01 
(0.37)

− 0.08 
(0.43)

− 0.07 
(0.31)

− 0.03 
(0.27)

− 0.04 
(0.29)

− 0.02 
(0.23)

− 0.06 
(0.26)

− 0.06 
(0.29) 0.14 (0.23)

SR 0.27 (2.9) 1.2 (2.19) −0.15 
(1.97)

− 0.63 
(7.52)

− 0.58 
(8.34) − 3.2 (8.2) 0.16 (0.55) 0.15 (0.63) −0.17 

(0.55) 0.54 (1.21) − 0.35 
(0.94)

−0.71 
(1.14)

Table 2.  For each site and each variable the mean and standard deviation (in brackets) of the anomalies 
from the average season for the periods without drought (white areas in Figs 1–6), for the drought periods 
(grey areas in Figs 1–6) and for the period preceding the first drought. For sPRIn for which the absolute 
values are presented. For sPRI and sPRIn, values are multiplied by 100 for visualization purposes. Bold numbers 
indicate significant differences between drought and non-drought periods (corresponding p values are in 
Table 1, in columns with header ‘ANOVA’).
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further suggests a milder drought in 2009. In contrast to Hesse, the 2003 heatwave was not obvious in SPEI12 for 
Puéchabon. This pattern in SPEI12 corresponded somewhat to the field measurements of predawn leaf water poten-
tial, detected by the water stress index (WSI), but contained some important differences. First, according to the 
WSI, the severest drought occurred in 2006, not 2005 (Fig. 5a). Second, in contrast to SPEI12, WSI did not quickly 

Figure 2. Results of the breakpoint analysis for Hesse. Seasonally adjusted data (abbreviated as ‘ad.’ in axis 
labels) are shown for the 8-day products of (a) MODIS GPP product (modGPP), (b) NDVI, (c) EVI, (d) EVI2, 
and (e) standardized Photochemical Reflectance Index (sPRI). For sPRI normalized for APAR (sPRIn; panel 
f), the absolute values are shown because no seasonal pattern was detected by sPRIn (see SI). The grey area 
indicates the drought episode. The black lines indicate the results of the breakpoint analysis.

Figure 3. Results of the breakpoint analysis for Hesse. Seasonally adjusted data (abbreviated as ‘ad.’ in axis 
labels) are shown for the 8-day products of (a) FAPAR, (b) LAI, (c) GEMI, (d) NDWI, (e) SR, and (f) APAR. 
The grey area indicates the drought episode. The black line indicates the results of the breakpoint analysis.
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recover after the drought in 2009 but remained low until 2011. The substantial decrease in WSI in 2005–2006 and 
the less severe decrease in 2009–2011 were associated with lower GPP (Fig. 5, Table 1). WSI was not extremely low 
in 2003, but GPP decreased substantially (Fig. 5b) due to the extremely high temperatures (Supplementary Fig. S1).  
Most commonly used remote-sensing indicators captured the reduction in 2005–2006, but the reduction in GPP 
associated with the dry period of 2009–2011 was captured only by EVI (Fig. 5d, Table 1). sPRIn decreased for 
each drought where tower GPP decreased (and also during the 2003 heatwave). sPRIn therefore outcompeted all 
other indicators.

Figure 4. Time series of tower GPP, of remote sensing indicators, and of SPEI12 for the beech forest in 
Hainich. (a) SPEI12 (blue line) and relative extractable water (REW, black line). The red line indicates the 
SPEI12 threshold of − 1.5 (indicative of severe drought); (b) daily values of tower GPP, and the results of the 
breakpoint analysis for 8-day GPP and 8-day products of (c) MODIS GPP product (modPP), (d) EVI, and  
(e) sPRIn. For tower GPP, black symbols represent the flux measurements, while grey symbols are the data for 
May-September that were adjusted for the seasonal pattern (abbreviated as ‘ad.’ in axis labels). This adjustment 
was also made for modGPP and EVI. The grey area indicates the drought episode. The black lines in b-f indicate 
the result of the breakpoint analysis.

Figure 5. Time series of tower GPP, of remote sensing indicators, and of SPEI12 for the holm oak forest in 
Puéchabon. (a) SPEI12 (blue line) and annual values of the water stress integral (WSI in MPa day, black line). 
The red line indicates the SPEI12 threshold of − 1.5 (indicative of severe drought); (b) daily values of tower 
GPP, and the results of the breakpoint analysis for 8-day GPP and 8-day products of (c) MODIS GPP product 
(modPP), (d) EVI, and (e) sPRIn. For tower GPP, black symbols represent the flux measurements, while grey 
symbols are the data for May-September that were adjusted for the seasonal pattern (abbreviated as ‘ad.’ in axis 
labels). This adjustment was also made for modGPP and EVI. The grey area indicates the drought episode. The 
black lines in b-f indicate the result of the breakpoint analysis.
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Last, we tested drought detection in Bugacpuszta, a semi-arid grassland in Hungary. Similar to Puéchabon, 
this grassland experiences drought stress every summer, and GPP consequently peaks first in spring and then in 
late summer, interspersed by a reduction in the dry summer months (Fig. 6). Bugacpuszta experienced extremely 
dry summers in 2003, 2007, and 2009, as indicated by SPEI12 and supported also by soil moisture measure-
ments. GPP decreased significantly during each of these droughts (Fig. 6b, Tables 1 and 2). The modGPP cap-
tured the droughts in 2007 and 2009 but not the 2003 drought. Other commonly used remote sensing indicators 
such as NDVI and EVI also detected the drought effects of 2007 and 2009 (Table 1 and Supplementary Fig. S5). 
Interestingly, sPRIn did not show any robust changes throughout the time series (Tables 1 and 2).

Discussion
The European heatwave of 2003 substantially reduced water availability in Hesse, and also 2004 and 2005 were 
dry. Despite the lack of a drought response in LAI, tower GPP obviously decreased. Foliar physiology was thus 
affected by the drought, but massive defoliation or mortality did not occur. The breakpoint detection technique 
further revealed that the drought effect on tower GPP lasted until end of 2006, even though water levels had 
returned to pre-drought levels in that year. This illustrates the value of the breakpoint detection technique, which 
does not require a predefined drought period and is particularly useful to detect and characterize drought impacts 
and climate-related dynamics26. We suggest that the application of this method (previously applied to remote 
sensing data; e.g. in27) to time series of flux data can provide deeper insight into ecosystem responses to drought.

As expected, most commonly used indicators did not change throughout the time series. The lack of response 
of NDVI, FAPAR, and other of these commonly used indicators corresponded to the lack of response of LAI. 
Moreover, the signals are quickly saturated in forests with high LAI (such as Hesse), making these indicators 
insensitive to small changes in foliar biomass. Surprisingly, however, modGPP did not decrease in response to the 
severe drought. Given that the algorithm for this product includes temperature and VPD28, and both increased in 
Hesse during the 2003 heatwave29, modGPP was expected to detect at least a small decrease in 2003. These results 
indicate that modGPP cannot reliably estimate the tower GPP response to drought for the beech forest in Hesse.

Of the commonly used remote sensing indicators tested, only EVI and simple ratio (SR) decreased signifi-
cantly during the drought period. Both indicators are less prone to saturation problems30. Because the reduc-
tion in SR lagged behind the reduction in tower GPP and was not noticeable before 2005, we presume that the 
reduction in SR mainly detected the thinning effect on LAI and not the drought response of tower GPP. EVI, on 
the other hand, had already decreased in 2004, and did not even respond to the thinning event of 2005. EVI thus 
captured the drought-induced reduction in GPP in the absence of a change in LAI.

EVI was the only commonly used indicator under test that includes the blue band, which was included in EVI 
to reduce the effect of atmospheric aerosols but could also provide additional information on foliar carotenoid 
contents. Carotenoid absorption peaks between 400 and 500 nm (covered by the blue band)31, and the carote-
noid:chlorophyll ratio usually increases in response to environmental stresses32, which results in a decrease in 
EVI. The fact that EVI2 (which is related to EVI but does not include blue band reflectance) remained unaffected 
by the 2003–2005 drought episode, supports our postulation that the reduction in EVI was related to an increase 
in foliar carotenoid:chlorophyll ratio that was captured by the blue band.

Figure 6. Time series of tower GPP, of remote sensing indicators, and of SPEI12 for the semi-arid grassland 
in Bugacpuszta. (a) SPEI12 (blue line) and soil water content (SWC, black line). The red line indicates the 
SPEI12 threshold of − 1.5 (indicative of severe drought); (b) daily values of tower GPP, and the results of the 
breakpoint analysis for 8-day GPP and 8-day products of (c) MODIS GPP product (modGPP), (d) EVI, and  
(e) sPRIn. For tower GPP, black symbols represent the flux measurements, while grey symbols are the data for 
May-September that were adjusted for the seasonal pattern (abbreviated as ‘ad.’ in axis labels). This adjustment 
was also made for modGPP and EVI. The grey area indicates the drought episode. The black lines in b-f indicate 
the result of the breakpoint analysis.
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sPRI did not change throughout the time series for Hesse. When normalized for absorbed light, however, 
sPRIn did show a decrease in 2003 and this reduction persisted during 2004. The importance of the normalization 
for detecting the drought effect can be explained as follows: sPRI can capture changes in the xanthophyll cycle 
(which responds quickly to environmental stresses), but these changes are obscured by the much stronger signals 
of seasonal variation in the whole pool of pigments in the leaves21, and by seasonal changes in illumination23. 
Normalization is therefore necessary to remove the signal of seasonality in pigment pool and foliar structure to 
clarify the signal of the xanthophyll cycle24. PRI was normalized for absorbed light to remove (most of) the signal 
caused by changes in the pigment pool and illumination, and the resulting sPRIn should thus reflect changes in 
the xanthophyll cycle. Water limitation was somewhat alleviated in 2005, and sPRIn returned to pre-2003 levels. 
In contrast to EVI and SR, sPRIn seemed thus unaffected by the thinning in 2005, further confirming its perfor-
mance in representing the functioning, but not the state, of the vegetation.

Hainich, a mixed beech forest in Germany, also experienced a drought in 2003, but unlike the case for 
Hesse, this event was brief; soil water was fully replenished during the winter of 2003–2004. Leaf physiology 
was probably affected only briefly, which poses a challenge on drought detection from satellite data. Indeed, the 
drought-induced reduction in tower GPP in autumn 2003 was not detected by any of the remote-sensing indica-
tors evaluated (we did not consider modGPP, which obviously did not well reproduce the field observations for 
previous years) and this example thus indicates the limits of drought detection from satellite imagery. The timing 
of the drought at the end of the season may have complicated the detection of its effects, with relatively few data 
points available during the brief drought, and the regular leaf senescence may have obscured drought detection 
even further.

Interestingly, a reduction in GPP in 2004, related most likely to reduced foliar biomass production caused by 
an extraordinarily cold and rainy spring (Supplementary Fig. S1) and masting in 200433, was detected to some 
extent by EVI and especially by GEMI (Supplementary Fig. S5), but not by sPRIn. This illustrates the added value 
of sPRIn, as EVI and GEMI alone could be taken to suggest a carry-over effect of the drought, whereas the lack 
of a change in sPRIn indicates that this change in GPP was due to a structural change, not to a change in leaf 
functioning.

The evergreen broadleaved forest in Puéchabon experienced recurrent droughts during the study period. GPP 
decreased most strongly during the 2005–2006 drought, which was clearly detected by most remote-sensing indi-
cators. Neither LAI, nor foliar production decreased in 200634, whereas decreases in GPP are directly controlled 
by water limitation35. On the other hand, sPRIn was the only indicator that detected the less pronounced drought 
in 2009–2011 and the reduction of tower GPP during the 2003 heatwave. The inability of modGPP to detect the 
drought effects on tower GPP in 2009–2011 may be related to the meteorological data, which in our case differed 
from field observations.

Lastly, GPP in the Hungarian grassland decreased during each of the three drought events, and these decreases 
were well detected in many commonly used remote sensing indicators, but not in sPRIn. The contrasting perfor-
mance of different remote sensing indicators between the grassland and forests studied here could be related to 
the earlier observations that grasslands respond differently to drought than forests. Whereas trees close their sto-
mata and thus reduce tower GPP when soil moisture decreases below the comfortable level, thereby maintaining 
leaf water potential above a critical threshold and avoiding cavitation, grasses are not conservative in their water 
use and tend to remain active until moisture levels drop below the wilting point36. Grasses subsequently turn 
brown and die. Grasslands may thus respond to drought in a way that is more easily detected by remote sensing 
indicators such as NDVI that reflect green biomass. The quick transition of grasslands from active to dead vege-
tation may complicate detection by eight-day PRI indicators. The performance of PRI has also been suggested to 
depend highly on the density of the vegetation37. View angle had very little effect on PRI for dense forests, but may 
confound PRI for sparser vegetation due to the increased importance of background reflectance37.

In summary, evaluation of sPRIn and commonly used remote sensing indicators against four sites where 
a severe drought event reduced GPP revealed (1) that commonly used remote sensing indicators, including 
modGPP are likely to leave drought effects on GPP in forests undetected, (2) that sPRIn is a promising indicator 
that allows drought detection from space and provides useful information about vegetation functioning that is not 
captured by the other remote sensing indicators under test, and (3) that GPP responses in a seasonally dry grass-
land are best detected by greenness indicators such as NDVI, whereas the utility of sPRIn is limited. The fact that 
drought effects on GPP were in several cases not detected by modGPP contrasts somewhat with Reichstein et al.38,  
who found a strong reduction in modGPP across Europe during the 2003 heatwave. This apparent discrepancy 
can be clarified by the difference in spatial resolution and scale. While Reichstein et al.38 reported changes across 
Europe, using 10 ×  10 km pixel resolution, we zoom in on just a few 1 ×  1 km pixels in Europe. Given that for 
example the forest in Hesse is relatively small and surrounded by cropland and grassland, the difference between 
our studies highlights the importance of choice of resolution: use of small pixels is essential for a more mechanis-
tic understanding, whereas large pixels facilitate estimation of large-scale impacts, although following our study, 
the latter might underestimate the drought impact on GPP.

A global product for estimating GPP from space would obviously be of great value for understanding and 
predicting terrestrial carbon cycling. However, the most advanced product currently available - modGPP - can 
not explain substantial spatial and temporal variation in GPP10 and often fails to accurately capture pronounced 
drought effects on GPP39. This illustrates the broader problem that modGPP (and other commonly used remote 
sensing indicators) reflect primarily changes in vegetation state and leave important changes in vegetation func-
tioning undetected. The drought response of modGPP is modeled on meteorological data (temperature and 
VPD), and these may not represent the drought as experienced by the biota, which depends not only on incoming 
water, but also on soil characteristics and rooting depth40. Obviously, if modGPP cannot capture strong drought 
effects, it is unlikely to capture even more subtle changes with possible important implications for the terrestrial 
carbon cycle. Remote sensing products targeting drought responses but based solely on greenness indicators 
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and meteorological data (e.g. the Vegetation Drought Response Index41) may be prone to similar problems as 
modGPP. We suggest that remote sensing products to estimate GPP be based on a combination of indicators of 
vegetation state (e.g. FAPAR) and functioning (e.g. sPRIn).

The PRI has been successfully incorporated in remote sensing algorithms to estimate GPP of a specific site 
from space42, and this GPP estimate was more accurate than modGPP for the Mediterranean forest under test 
(Castelporziano, Italy). Until now, however, a key limitation of PRI is that its relationship with plant physiolog-
ical variables such as LUE varies spatially and temporally43,44, complicating its incorporation in remote sensing 
algorithms for wider application. Possibly, sPRIn has more robust spatiotemporal patterns because at least part 
of the complicating factors typical for PRI are excluded through the normalization that removes the influence 
of variation in pigments and illumination. A thorough evaluation of the overall spatiotemporal performance of 
sPRIn should enable further improvement of the algorithms for estimating GPP from space and future studies 
need to evaluate such product against modGPP and alternatives as e.g. provided by39.

Direct assessment of photosynthetic activity and LUE with PRI remains thus an area of ongoing research, 
requiring a careful consideration of the spatial and temporal factors affecting the PRI components, and a thor-
ough evaluation of sPRIn. Different ecosystems having contrasting constraints on carbon fluxes should also have 
contrasting optical properties reflected in PRI and NDVI dynamics45. It is not likely that any single parameter-
ization will apply equally well across all ecosystems, biomes and/or seasons due to the contrasting controls on 
physiology and structure, but this is an open question that needs further consideration in the immediate future.

Methods
Site description. The key site in this study was a beech forest in Hesse, northeastern France. The monitoring 
site was installed in a 0.6-ha fenced experimental plot in the central part of the forest. The forest was naturally 
regenerated and contained 95% European beech (Fagus sylvatica L.) trees averaging 40 years of age in 2005. The 
young forest has been managed traditionally by the French forest service (ONF) and was thinned just before the 
start of the monitoring (end of 1995, no data available), in spring 1999, at the end of 2004, and at the beginning of 
2010. Stem density was reduced by 24.4, 17.7 and 10.5%, whereas LAI decreased by 35.1, 33.3 and 22.9%, in 1999, 
2004 and 2010, respectively (Fig. 1b). More information about this forest is provided in Supplementary Table S1 
and in Bréda et al.46 and Granier et al.29.

We further searched the FLUXNET and European fluxes databases for sites to test the robustness of the results 
obtained for Hesse. These sites, as for Hesse, had to meet the following criteria:

1. Time series of GPP covering at least five consecutive years
2. Homogenous vegetation at 1 km resolution
3. Drought event that is detected in GPP

The first criterion is a prerequisite for analyzing time series. The effect of a drought on GPP and its detection 
by remote sensing imagery can only be tested with sufficiently long time series that (1) enable comparison of 
drought and non-drought periods, and (2) enable detection of potential lagged and/or carry-over effects. The 
second criterion ensures reliable comparisons between field data and remote sensing indicators, as it avoids con-
tradictory flux measurements that depend on wind direction and footprint extent. The third criterion is necessary 
for testing the use of satellite data for detecting the effects of drought. We selected only those sites where GPP 
was significantly affected during a drought based on a breakpoint-detection technique and for which the site 
investigators confirmed that the reduction in GPP during the drought could indeed be attributed to water stress. 
These three criteria excluded the vast majority of sites, especially because drought events were often not reflected 
in GPP measurements (e.g. because trees had access to deep soil water), or because simultaneous management 
activities confounded the drought response of GPP. The remaining sites provided datasets of high quality, which 
was essential for this study. These three additional sites were: an uneven-aged and unmanaged beech forest in 
Hainich, Germany; an evergreen broadleaved holm oak forest in Puéchabon, France; and a semi-arid grassland 
in Bugacpuszta, Hungary.

Drought episodes. We calculated the Standardized Precipitation Evapotranspiration Index (SPEI) using 
the SPEI-package in R47. SPEI is a meteorological drought indicator based on a monthly climatic water balance 
(precipitation – potential evapotranspiration), which is adjusted using a three-parameter log-logistic distribution. 
We then accumulated the values at a timescale of 12 months, and this SPEI12 indicates for each moment in time 
the meteorological dryness (or wetness) of the previous 12 months as compared to historical observations. The 
choice of this timescale was arbitrary but of minor importance for this study, because it only served to identify the 
occurrence and timing of a severe drought. Moreover, the patterns in SPEI were similar for all timescales between 
six and 18 months (data not shown). SPEI values between 1 and − 1 are considered normal, whereas values < − 1 
indicate drought and values < − 1.5 indicate severe drought47. We defined a drought as a period where SPEI12 
decreased to ≤ − 1.5.

Because we were interested in evaluating the use of globally available products, we extracted the necessary 
long-term precipitation and potential evapotranspiration data from EC-JRC-MARS (a dataset based on ECMWF 
model outputs and a reanalysis of ERA-Interim; see http://spirits.jrc.ec.europa.eu/), based on the geographic 
location of each site. This dataset provides a finer spatial resolution (0.25°) than the CRU data set (0.5°) used by 
Vicente Serrano et al.47. The period covered by the JRC-MARS dataset was 1989–2012. Potential evapotranspira-
tion estimates in this dataset are calculated using the Penman-Monteith equation48.

Although SPEI is a useful and convenient metric for detecting meteorological drought, with good spatial and 
temporal coverage, it does not necessarily indicate field conditions well. Plants experience a given reduction in 

http://spirits.jrc.ec.europa.eu/
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precipitation quite differently between sites (e.g., because of differences in soil texture)40, and periods of drought 
are therefore best identified using site-specific data. For that reason, we computed for the selected sites relative 
extractable water (REW) based on a water balance model49 (see details in Supplementary Notes S1). REW repre-
sents soil moisture as a fraction of maximum soil water across the rooting zone and is thus a type of agricultural 
drought index50. Below REW =  0.4, plants can be considered drought stressed29.

Because the necessary data for calculation of REW were not available for Bugacpuszta, soil water content 
(SWC) was used instead as an indicator of the water status of the site. These data suggested a strong drought in 
2009, when SPEI12 remained only slightly above − 1.5. Therefore, 2009 was also considered as a dry year in the 
analyses. In addition, we computed for Puéchabon the water stress index (WSI), which incorporates not only soil 
measurements but also predawn leaf water potential measurements and is therefore an even better indicator of 
plant drought stress than REW. We consider WSI ≤  − 250 MPa day to be indicative of moderate to severe drought 
(see Supplementary Notes S1 for details).

Flux data. We extracted half-hourly data from the European fluxes database (http://www.europe-fluxdata.
eu), and complemented these with the most recent data available (provided by the PI). We then calculated daily 
means from the half-hourly data. Gaps in the data due to sensor malfunctions or less than ideal turbulence 
conditions51 were filled using marginal distribution sampling described by Reichstein et al.52. We used only days 
when both daily meteorological and flux data contained less than 20% gapfilled half-hourly data. Gross primary 
production was estimated using flux partitioning, based on the extrapolation of nighttime flux observations cor-
rected for temperature differences with temperature-dependency relationships52. We further refer to this GPP 
estimate as ‘tower GPP’ to distinguish from MODIS’ GPP product (modGPP; see below).

Satellite data. We used MODIS subset data (collection 5) provided by ORNL DAAC (http://daac.ornl.
gov/cgi-bin/MODIS/GR_col5_1/mod_viz.html, col. 5) for deriving the commonly used indicators (Table S2). 
The MOD09A1 ASCII subset dataset contains surface reflectance data of MODIS bands ranging from 620 nm 
to 2155 nm at 500 m spatial resolution and eight-day synthesis period. For comparison with the other satellite 
indicators at 1-km spatial sampling, the 500 m reflectance data were re-sampled to 1-km spatial resolution by 
simple aggregation of the 2 ×  2 pixels centered at the flux tower. Only high quality data were included and images 
affected by clouds or snow cover were removed according to the quality flag associated with MOD09A1 data. The 
reflectances at 1 km spatial resolution were used to compute the standard MODIS indicators presented in Table 
S2 (NDVI, EVI, EVI2, SR, GEMI, NDWI). We also gathered FAPAR and LAI from MOD15A253 at 8 days and 
1 km and GPP data from MOD17 at 8 days and 500 m, aggregated at 1 km; http://www.ntsg.umt.edu/project/
mod1728. Finally, APAR (absorbed photosynthetically active radiation) was calculated from the MODIS FAPAR 
data, and global radiation was calculated from EC-MARS-JRC data (0.25° spatial resolution; one-day interval). 
We assumed a constant fraction of PAR in global radiation: global radiation was divided by 43 to obtain an esti-
mate of the photosynthetically active radiation (PAR; this relationship was derived from a comparison with field 
observations of PAR; Fig. S3). This method removed gaps in the field data of PAR and was especially relevant for 
the current study where the aim was to determine how drought effects observed in the field could be detected 
using global databases. Note that we did not gapfill MODIS data because the interpolations that are used for gap-
filling could create important artefacts that can influence drought detection.

Calculations of PRI were based on MOD21KM daily-calibrated radiance data (see http://ladsweb.nascom.
nasa.gov). These images were georeferenced using MOD3 geolocation information and the Swath MODIS Tool 
available from LP DAAC (https://lpdaac.usgs.gov/tools/modis_reprojection_tool_swath). The pixel area of 
1 ×  1 km corresponding to the flux tower position was extracted and PRI was calculated as suggested by its devel-
opers16,54 (see Supplementary Table S2) and later also applied by, for example, Drolet et al.17, Garbulsky et al.42, 
Goerner et al.44, Guarini et al.55.

Dates when clouds were detected (using the MODIS MOD35 cloud algorithm and visual inspection) were 
discarded. The maximum value of PRI was calculated from a daily time series over an eight-day window to 
correspond to the temporal resolution of MOD09 and MOD15A2. Because corrected reflectances for applying 
an atmospheric correction are currently not available, we used the uncorrected PRI. Earlier studies reported 
that atmospheric correction did not improve the estimation of LUE17,42,44, and therefore MODIS PRI without 
atmospheric correction was assumed to be an accurate indicator of LUE in different ecosystem types17,42,55. The 
temporal consistency observed in the PRI profiles presented in our study supports the reliability of the estimates.

To ensure positive values that are better comparable to commonly used remote sensing indicators such as 
NDVI, PRI values were standardized as by Rahman et al.56 and Goerner et al.57:

= +sPRI (1 PRI)/2 (1)

Because the relationship between PRI and LUE varies over the seasons24, along with the dynamics in green 
biomass that absorbs the incoming radiation, we calculated a standardized PRI (PRIn), which is normalized for 
APAR (absorbed PAR; see24 for rationale). This normalization allows to focus on the part of PRI explaining LUE 
and photosynthetic performance because it removes the part linked to pigments and structure. PRIn was calcu-
lated by:

= –PRIn PRI PRI0, (2)

with PRI0 the intercept of PRI vs APAR for a two-month window. This window size was the best compromise 
between having sufficient data for a reliable fit (eight data points if none are missing), and an informative rela-
tionship between PRI and APAR. The latter changes over time24, so the smaller the window, the better APAR 
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represents the structure of the vegetation. Finally, we standardized PRIn to obtain only positive values analogous 
to sPRI:

= +sPRIn (1 PRIn)/2 (3)

sPRIn is an indicator of the excess energy not photosynthetically processed; when plants are stressed, their 
LUE decreases as more energy is lost through heat dissipation. An increase in sPRIn should thus indicate an 
increase in foliar photosynthetic activity.

Analyses. To test whether drought effects on tower GPP are detected by any of the remote sensing indica-
tors under test, we first calculated for each site the average seasonal pattern over the entire time series, using a 
1-month moving window (thus providing for each day the average value across the time series). The anomalies 
from this average season were then computed and used for further analyses, except in the case of sPRIn, which 
showed no seasonality (Supplementary Fig. S4). We then removed for all sites data for October-April (thus leav-
ing only May-September) to study only the season when plants have leaves and are active. This elimination was 
necessary to avoid artifacts in the remote sensing indicators caused by sensing soil instead of leaves.

In order to test if tower GPP and the remote sensing indicators were significantly different during the drought 
period(s) as compared to the rest of the time series, we compared a linear model with and without a drought term 
(which indicates the pre-defined drought periods visualized as grey areas in Figs 1–7) using ANOVA. In addition, 
we ran a test for structural changes58 considering only the pre-defined drought period and the year before. As 
the data were all seasonally adjusted prior to this analysis, a simple piecewise constant model was used. Hence, 
whereas the ANOVA considers all drought periods within a time series at once, the test for structural changes 
considers the individual drought periods.

Responses in remote sensing indicators may lag behind the responses observed in the field - for example when 
physiological changes reduce tower GPP while vegetation state (LAI for example) is unaltered -, and full recovery 
from drought may be (long) after precipitation ends the meteorological drought. These inconsistent responses 
complicate robust detection of drought effects and are best analyzed with a flexible technique, such as breakpoint 
analysis. Breakpoint analysis is a technique developed for detecting breaks based on structural changes in the time 
series59. This analysis is related to the test for structural changes indicated above, but does not presume any peri-
ods where breaks would occur (i.e., no pre-defined drought periods are considered). A simple piecewise constant 
model with unknown number and location of breakpoints was adopted. Given a certain number of breaks, their 
location is chosen to minimize the residual sum of squares across the corresponding segments subject to a mini-
mal segment size of 12 observations (about three months of observations). The number of breaks was then chosen 
to optimize the Bayesian information criterion (BIC). The result for each site and anomaly series is a piecewise 
constant fit with the BIC-optimal number/location of breaks/segments. See Zeileis et al.60 for more details.

All analyses were performed in MATLAB R2014b (The MathWorks Inc., Natick, USA), except for the break-
point analysis and the test for structural change, which both used the strucchange package in R58.
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