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Abstract Heart failure (HF) is characterized by molecu-

lar and cellular defects which jointly contribute to

decreased cardiac pump function. During the development

of the initial cardiac damage which leads to HF, adaptive

responses activate physiological countermeasures to over-

come depressed cardiac function and to maintain blood

supply to vital organs in demand of nutrients. However,

during the chronic course of most HF syndromes, these

compensatory mechanisms are sustained beyond months

and contribute to progressive maladaptive remodeling of

the heart which is associated with a worse outcome. Of

pathophysiological significance are mechanisms which

directly control cardiac contractile function including ion-

and receptor-mediated intracellular signaling pathways.

Importantly, signaling cascades of stress adaptation such as

intracellular calcium (Ca2?) and 30-50-cyclic adenosine

monophosphate (cAMP) become dysregulated in HF

directly contributing to adverse cardiac remodeling and

depression of systolic and diastolic function. Here, we

provide an update about Ca2? and cAMP dependent

signaling changes in HF, how these changes affect cardiac

function, and novel therapeutic strategies which directly

address the signaling defects.
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Abbreviations

AAV Adeno-associated virus

AP Action potential

b-AR b-Adrenergic receptor

Ca2? Free ionized calcium

[Ca2?]i Intracellular Ca2? concentration

CaMKII Ca2? calmodulin dependent protein kinase

II

CICR Ca2? induced Ca2? release

cAMP 30-50-Cyclic adenosine monophosphate

CaV1.2 L-type Ca2? channels

DAD Delayed after depolarization

EC coupling Excitation-contraction coupling

HF Heart failure

ICa Ca2? influx current

ITI Ca2? activated transient inward current

I-1 Phosphatase inhibitor 1

MI Myocardial infarction

NCX Na?/Ca2? exchanger

PKA cAMP-dependent protein kinase A

PLN Phospholamban

PP1 Phosphatase 1

SERCA2a Sarco-endoplasmic reticulum Ca2? pump

SR Sarcoplasmic reticulum Ca2? storage

organelle

RyR2 Cardiac ryanodine receptor
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Introduction

Congestive heart failure (HF) is a condition in which heart

function is insufficient to supply the organs with enough

blood nutrients. The consequence is a progressive cascade

of changes that lead to fatigue, shortness of breath and,

ultimately, death. Much progress has been made in

understanding the molecular and cellular processes that

contribute to HF. Despite these insights and modern

treatment options, chronic HF remains a major cause of

illness and death and generally has a poor prognosis.

Because HF is more common with increasing age, the

number of affected individuals is rising rapidly with the

ageing population. Thus, new treatments directed at critical

disease mechanisms are needed to halt and reverse the

devastating consequences of this disease.

Here, we focus on chronic HF and our understanding of

molecular disease mechanisms related to Ca2? metabolism.

Many insights into HF stem from the elucidation of intra-

cellular signaling pathways that mediate cardiac perfor-

mance as well as contribute to cardiac dysregulation under

disease conditions. The clinically critical transition occurs

when the heart can no longer provide adequate blood flow

and/or pressure to meet the body’s demands. Consequently,

physiological countermeasures include the stimulation of

neurohormonal outflow and the activation of intracellular

signaling cascades. These acute responses may initially

offset reduced cardiac performance. However, sustained

stimulation of the heart by cellular stress signaling cas-

cades ultimately increases the likelihood of organ failure

and contributes to a worse prognosis.

Cardiac remodeling and changes in intracellular

signaling

HF is characterized by chronic activation of neuro-hor-

monal pathways representing a compensatory response to

overcome depressed cardiac function. However, over

weeks to months, a chronic hyperadrenergic state ensues

with elevated plasma catecholamine levels, which con-

tribute to maladaptive cardiac chamber remodeling, pro-

gressive deterioration of pump function, and deadly

arrhythmias. Due to the chronic hyperadrenergic state,

desensitization of b-adrenoreceptors (b-ARs) and reduced

global intracellular cAMP synthesis occur in the failing

heart [1–3]. However, stimulation of b-ARs and other

signaling pathways is maintained and continues to affect

the remodeled cells and proteins.

A broad range of molecular pathways are involved in the

development of HF, and there is likely to be substantial

overlap between these pathways. Typically, cell-surface

receptors are activated by ligands leading to the activation

of stress-response protein kinases and phosphatases such as

cAMP-dependent protein kinase A (PKA), protein kinase C

(PKC), protein kinase D (PKD), mitogen activated kinases

(MAPKs), Ca2? calmodulin-dependent kinase II (CaMKII),

and calcineurin. Chronic activation of these stress pathways

and their cellular effectors including transcription factors,

which target multiple genes, result in changes in cellular

structure, function, and overall regulation of the heart,

collectively referred to as cardiac remodeling. Additionally,

an imbalance between cell survival and cell death pathways

results in a low rate of cardiomyocyte apoptosis which may

contribute to cell loss in HF [4, 5]. A different form of cell

death, necrosis, may contribute to HF, for example through

mitochondrial damage mediated by increased cytosolic

Ca2? concentrations in cardiomyocytes.

HF causes changes in intracellular calcium signals

HF is a syndrome which results from different insults,

typically following myocardial infarction (MI), viral

myocarditis, toxic cardiomyopathy, or other less frequent

causes such as genetic defects. However, following chronic

remodeling of the heart, cardiac phenotypes occurring from

different causes show important similarities, including

depressed intracellular Ca2? metabolism.

Ca2? is the central regulator of excitation-contraction

(EC) coupling, which controls muscle contraction during

each heartbeat. EC coupling is activated by an incoming

action potential wavefront and the subsequent opening of

voltage-dependent L-type Ca2? channels (CaV1.2). A rel-

atively small Ca2? influx current (ICa) triggers a quantita-

tively larger intracellular Ca2? release from sarcoplasmic

reticulum (SR) Ca2? stores through ryanodine receptor

(RyR2) Ca2? release channels by the process of Ca2?

induced Ca2? release (CICR) (Fig. 1a). CICR is followed

by re-uptake of Ca2? into the SR by Ca2? pumps (SERCA2)

and removal of Ca2? from the cytosol by the Na?/Ca2?

exchanger (NCX) (Fig. 1a). The activity of SERCA2 is

regulated by phospholamban (PLN). Unphosphorylated

PLN inhibits SERCA2 activity, and phosphorylation by

PKA and/or CaMKII increases SR Ca2? uptake. Similarly,

RyR2 phosphorylation by PKA and/or CaMKII increases

SR Ca2? release [6, 7]. Within the approximately 12 nm

wide compartment between the plasma membrane and the

terminal SR membrane (junctional SR) where SR Ca2?

release occurs, CICR is organized within Ca2? release units

representing functional microdomains between T-tubuli and

the terminal SR (junctional subspace). Strikingly, all com-

ponents essential for CICR, including the SR Ca2? release

microdomain, the Ca2? storage organelles, and the Ca2?

transport proteins themselves (Table 1), become signifi-

cantly altered during remodeling of the failing heart [8].
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Milestones toward imaging of intracellular calcium

metabolism

The study of intracellular Ca2? concentration, [Ca2?]i, in

heart function requires to monitor the dynamics of [Ca2?]i

in living cells. However, the free [Ca2?]i is heterogeneous

even in resting cells and ranges from nanomolar to

micromolar concentrations in the cytoplasm and SR Ca2?

stores, respectively [9]. During electrical cell activation or

stimulation by hormone receptors, the resultant changes in

the cytoplasmic and organellar Ca2? concentrations occur

as spatially and temporally defined patterns within cellular

microdomains [10]. Thus, understanding of changes in

Ca2? signaling during HF has been largely dependent on

methods to monitor Ca2? concentrations in living cells.

Ca2? indicators form selective and reversible complexes

with free Ca2? ions. The physicochemical differences of

the free and bound indicator allow for the fluorescence

detection of changes in D[Ca2?]i usually by the absorbance

and/or emission of light [11]. Thus, the concentration of

free Ca2? is measured indirectly by monitoring the amount

of the free versus the Ca2? complexed indicator. The

chemiluminescent photoprotein aequorin purified from

Fig. 1 a Physiology of excitation-contraction (EC) coupling. An

incoming action potential (AP) rapidly depolarizes the cell membrane

potential (Vm) in phase 0 through opening of voltage-dependent Na?

channels (NaV1.5). Subsequently, EC coupling is initiated through the

opening of voltage-dependent L-type Ca2? channels (CaV1.2) and the

plasma membrane Ca2? influx current (ICa). ICa activates ryanodine

receptors (RyR2s) and intracellular Ca2? release from sarcoplasmic

reticulum (SR) stores, also known as Ca2? induced Ca2? release

(CICR). CICR is followed by extrusion of Ca2? from the cytosol into

the SR by Ca2? pumps (SERCA2) and to the extracellular compart-

ment by the Na?/Ca2? exchanger (NCX) operating in its forward

mode (3 Na? in for each Ca2? out), which creates an electrogenic

inward current. SR Ca2? leak is inhibited by the calstabin2 (Cab2)

subunit which stabilizes the RyR2 closed state. The SERCA2 pump

rate is inhibited by the phospholamban (PLN) subunit in its

dephosphorylated state. Ca2? release and uptake occur cyclically

during each heart beat and represent 60–90% of Ca2? signaling

during EC coupling depending on the species studied. b EC coupling

abnormalities in CPVT. RyR2 missense mutations significantly

increase the propensity for intracellular Ca2? leak in resting

cardiomyocytes (during diastole) with filled SR Ca2? stores. Stim-

ulation of b-adrenergic receptors (b-ARs) during stress adaptation

results in RyR2 and PLN phosphorylation by PKA (indicated by �)

which increases SR Ca2? release and uptake, respectively. However,

RyR2 mutations (as indicated by green star) in the PKA phosphor-

ylated Ca2? release channel lead to partial calstabin2 depletion, a

significant gain-of-function defect of RyR2, and intracellular Ca2?

leak. RyR2 Ca2? leak activates depolarizing transient inward currents

(ITI) supposedly through abnormal forward mode NCX activity. If ITI

currents reach a critical threshold of membrane potential instability in

phase 4 of the cardiac AP, Na? channels are activated leading to

delayed after depolarizations (DADs) which underly triggered

activity. c EC coupling abnormalities in HF. HF is a chronic

hyperadrenergic state which results in downregulation of b-AR

signaling and reduced intracellular cAMP synthesis. However,

maintained hyperadrenergic stimulation of b-ARs during HF results

in chronic RyR2 PKA hyperphosphorylation (indicated by large �),

depletion of the stabilizing calstabin2 subunits as well as other

components of the channel complex including phosphodiesterase 4D3

(PDE4D3). PDE4D3 depletion causes a chronically reduced cAMP

hydrolysis in the channel complex and contributes to RyR2 PKA

hyperphosphorylation induced intracellular Ca2? leak. On the other

hand, PLN is chronically PKA hypophosphorylated (indicated by

small �) creating constitutively inhibited state of SERCA2 and

reduced SR Ca2? uptake. Additionally, NCX expression is signif-

icantly increased leading to abnormally increased Ca2? extrusion to

the extracellular side and depletion of intracellular Ca2? stores.

Despite Ca2? store depletion, DADs and triggered activity are

frequent in HF possibly due to increased SR Ca2? leak and

proarrhythmogenic inward NCX and late INa,L currents
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jellyfish can be microinjected into tissues or cells and

applied as a Ca2? indicator [12]. Moreover, recombinant

aequorin can be targeted to specific subcellular compart-

ments through signal sequences [13]. However, recombi-

nant aequorin emits a relatively small signal upon Ca2?

binding which compromises the measurement of Ca2?

concentrations in smaller cells at the cost of low time

resolution [14]. Tsien and colleagues synthesized the first,

rationally designed, fluorescent Ca2? indicator for intra-

cellular use based on the Ca2?-chelator EGTA [15]. The

widespread and successful use of fluorescent polycarbox-

ylate dyes started with the introduction of lipophilic acet-

oxymethyl (AM) ester derivatives allowing efficient and

stable indicator loading of living cells without potentially

damaging pipette injection techniques [16].

Global intracellular calcium abnormalities in heart

failure

Pioneering studies used injection of the aequorin Ca2?

sensor into physiologically contracting muscle preparations

from explanted human hearts. Aequorin loaded muscles

from failing hearts showed a reduced capacity to restore

nanomolar resting Ca2? levels during diastole in conjunc-

tion with depressed muscle contraction and relaxation [17].

Different from healthy heart muscle and pronounced at

faster rates, the aequorin injected failing heart muscle

showed a reduced amplitude of the intracellular Ca2?

transient (D[Ca2?]i) together with diminished force pro-

duction [18]. Additionally, myothermal measurements in

isolated muscle strip preparations from failing and non-

failing human hearts showed that the thermal equivalent of

total Ca2? cycling is reduced significantly in HF [19]. The

rate of heat production was significantly reduced indicating

reduced SR Ca2? uptake [19].

Consistent with multicellular muscle preparations, dis-

sociated single cardiomyocytes from failing human hearts

displayed a prolonged relaxation, depressed systolic con-

traction, and elevated diastolic tension [20]. Contractile

dysfunction of failing cardiomyocytes occurred in conjunc-

tion with abnormal [Ca2?]i metabolism including reduced

SR Ca2? release, elevated resting [Ca2?]i, and a reduced rate

of Ca2? removal [21, 22]. For late stage HF it is now accepted

that cardiomyocytes and/or muscle preparations from ex-

planted patient or animal hearts exhibit a reduced D[Ca2?]i

amplitude and a slowed decay of the global intracellular

Ca2? transient [17, 23–25]. Thus, depressed contractility in

HF appears to be associated with cellular signaling abnor-

malities at the level of the global intracellular Ca2? transient.

Notably, the combination of an abnormal intracellular

Ca2? transient together with depressed contractile function

all occur from quite different forms of cardiac insults. Such

phenotypic changes have been documented in dilated

human cardiomyopathy [23, 26], hypertension induced

hypertrophy HF in salt-sensitive rats [24], rats with

Table 1 Major calcium

handling abnormalities in the

failing heart

ARVC2 arrhythmogenic right

ventricular cardiomyopathy

type 2, AVND atrioventricular

node dysfunction, CPVT
catecholaminergic polymorphic

ventricular tachycardia, SSS
sick sinus node, n/a not

available

Gene Physiological function Pathophysiology in HF Genetic syndromes

NCX1,
SLC8A1

Na?/Ca2? exchange INCX gain-of-function n/a

Forward mode Contractile dysfunction

Reverse mode Pro-arrhythmogenic

RyR2 Ryanodine receptor isoform 2 Intracellular Ca2? leak CPVT (ARVC2 ?)

Intracellular Ca2? release Contractile dysfunction Missense mutations

HF, SSS, AVND

Contractile activation in systole Pro-arrhythmogenic Deletion mutation

ATP2A2 SERCA2a pump Loss-of-function Darier disease

Intracellular SR Ca2? uptake Depressed SR Ca2? uptake

Muscle relaxation in diastole Depressed contraction and

relaxation

PLN Phospholamban Gain-of-function Dilated

cardiomyopathy,

early onset

Constitutive inhibition of

SERCA2a pump function

Increase in ratio of

PLN:SERCA2a results in

decreased SERCA2a

function

Missense and

deletion

mutations

PKA and/or CaMKII

phosphorylation of PNL

increases SR Ca2? uptake

and contractile function

PLN hypophosphorylation

is associated with

decreased SR Ca2?

uptake and contractile

dysfunction
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myocardial infarction [27], mice with muscle LIM protein

knockout [28], mice with replication-restricted full-length

Coxsackievirus B3 overexpression and myocarditis [29],

and mice overexpressing either the catalytic protein kinase

A (PKA)-Ca subunit [30] or the cytosolic CaMKIIdc splice

variant [31]. Thus, different HF models appear to agree that

qualitatively similar changes of the intracellular Ca2?

transient and subsequent alterations of EC coupling and

contractile dysfunction occur.

Local intracellular calcium abnormalities in heart

failure

While cardiac contraction and relaxation cycles are con-

trolled by a cell-wide (global) signaling event, the Ca2?

transient, intracellular Ca2? release occurs within local

(subcellular) Ca2? release units as evidenced by elemen-

tary Ca2? release events measured with bright fluorescent

polycarboxylate dyes [8, 32]. How do local, elementary

Ca2? release events, known as Ca2? sparks, modulate the

intracellular Ca2? transient? At a diastolic [Ca2?]i of

approximately 100 nM, Ca2? sparks occur at a very low

rate (100 s-1 cell-1). When the AP occurs, Ca2? influx

causes a large increase in cytosolic [Ca2?]i within the tight

junctional subspace (Fig. 1a). A raise of junctional [Ca2?]i

above nanomolar concentrations increases the spark rate

103 to 106 fold. Therefore, the ICa influx current becomes

amplified by a dramatic increase in Ca2? spark rate during

CICR. This implies that modulation of the Ca2? spark rate

may control the Ca2? transient amplitude and cardiac force

development (inotropy). Indeed, imaging experiments of

subcellular Ca2? signaling have provided evidence that b-

adrenergic stimulation increases local Ca2? release possi-

bly due to RyR2 phosphorylation [33].

An important advance why changes in the intracellular

Ca2? transient occur in HF come from combined voltage-

clamp and Ca2? spark imaging experiments to assess if

changes in EC coupling are responsible for depressed car-

diac function. A rat model of hypertension induced HF with

preserved Ca2? influx current (ICa) density showed that the

ability of any given ICa to activate SR Ca2? sparks

(D[Ca2?]i) was significantly decreased [24]. Thus, HF is

accompanied by a decrease in the gain of EC coupling

(D[Ca2?]i/ICa) which has been confirmed in rats with myo-

cardial infarction [27], dogs with pacing-induced HF [34],

mice with viral myocarditis [29], and muscle LIM protein

knockout mice [35]. Additionally, structural changes of the

T-tubules, SR storage organelles, and/or the architecture of

the junctional microdomain cleft are all likely contributors

to defective EC coupling by altering the geometry of the

Ca2? release unit potentially resulting in orphaned RyR2

release channels and/or abnormal CICR [36, 37].

Abnormal calcium release triggers fatal arrhythmias

Sudden unexpected death accounts for up to 50% of all

deaths in HF patients and is most often due to ventricular

tachyarrhythmias [38]. Both reentry and focal mechanisms

have been documented in patients with ischemic cardio-

myopathy [39]. At the cellular level, arrhythmias have been

associated with Ca2? induced electrical abnormalities

including SR Ca2? overload leading to intracellular Ca2?

waves and Ca2? activated transient inward current (ITI)

[40–42]. In digitalis treated cells, ITI was shown to initiate

delayed after depolarizations (DADs) [43]. Association of

SR Ca2? leak with activation of a depolarizing Na?/Ca2?

exchange current is a likely mechanism of arrhythmogenic

ITI in HF [44–46].

Genetic linkage and translational studies have signifi-

cantly advanced our understanding about specific Ca2?

dependent arrhythmia mechanisms (Table 1). For instance,

RyR2 missense mutations may cause stress-induced syn-

cope and sudden death in a syndrome called Catecholam-

inergic Polymorphic Ventricular Tachycardia (CPVT) [47,

48]. Consistent with a b-AR and cAMP mediated stress

mechanism, PKA phosphorylated RyR2 channels contain-

ing CPVT mutations showed a significant gain-of-function

defect and a Ca2? leak mediated arrhythmia trigger

mechanism [49, 50]. Indeed, cardiomyocytes from knockin

mice with the RyR2-R2474S mutation identified earlier in

CPVT patients [47] showed Ca2? leak mediated ITI cur-

rents and DADs during stimulation with catecholamines

(Fig. 1b) [51]. While we have to anticipate additional

mechanisms of Ca2? leak in HF, mechanistic linkage of

CPVT mutant RyR2 dependent Ca2? leak to arrhythmia

initiation [51] provides a specific mechanism of Ca2?

dependent arrhythmia initiation which can be targeted and

tested by a novel class of RyR2 stabilizing compounds [51]

(Table 2).

Storage organelle and calcium transport dysfunction

Ca2? is the central intracellular messenger which links an

incoming action potential to myofilament activation and

cardiac contraction. Apart from EC coupling, [Ca2?]i is

subject to physiological stress adaptation and a higher

systolic D[Ca2?]i increases force development and cardiac

output (inotropy) [33]. Following the realization that SR

Ca2? uptake might be depressed in failing cardiomyocytes,

the intracellular storage organelles and SR Ca2? content

became a focus of intense research interest.

HF has been associated with decreased function of dif-

ferent Ca2? transport mechanisms (Table 1) including the

sarcoendoplasmic reticulum (SR) Ca2? ATPase (SERCA2)

[52, 53] and with increased function of the Na?/Ca2?
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exchanger (NCX) [54]. The ratio of PLN:SERCA2 is a

critical determinant of cardiac Ca2? homeostasis, and

increases in this ratio have been suggested to contribute to

increased diastolic Ca2? levels and cardiac dysfunction

[53, 55, 56]. On the other hand, due to the changes in the

relative expression and function of NCX and SERCA2, a

net shift toward increased Ca2? extrusion to the extracel-

lular space and a net decrease in SR Ca2? uptake occurs

(Fig. 1c). Therefore, intracellular Ca2? stores may develop

a relatively Ca2? depleted state which has been confirmed

experimentally in cardiomyocytes from dogs and humans

with HF [26, 34]. Decreased SR Ca2? load may result in a

decreased amplitude and slower upstroke of the intracel-

lular Ca2? transient. Since D[Ca2?]i is an important

mediator of cardiac force development, a decreased

D[Ca2?]i due to decreased SR load may result in decreased

force development. However, SR Ca2? store depletion in

HF does not necessarily prevent an increase in Ca2? spark

frequency [31] likely due to chronically increased RyR2

phosphorylation [57] and consistent with an increased

propensity for Ca2? induced arrhythmias in HF.

Molecular mechanisms of depressed SR calcium uptake

Decreased SERCA2 function has been associated with

changes in the regulatory subunit PLN (Fig. 1c). PLN is a

phosphoprotein which inhibits SERCA2 in its dephospho-

rylated state, while phosphorylation of PLN during b-AR

stimulation relieves this inhibitory effect. The regulatory

role of PLN in myocardial contractility has been estab-

lished through the generation and characterization of

genetically altered mouse models, which revealed a cor-

relation between PLN expression and contractile function

[58–60]. PLN phosphorylation in HF is chronically

decreased (PLN hypophosphorylation) which may directly

contribute to depressed SR Ca2? uptake [61]. Chronic PLN

hypophosphorylation can be predicted to compromise

cardiac stress adaptation mediated by cAMP and PKA.

Overexpression of the cardiac SERCA2a isoform or the

constitutively PKA phosphorylated PLN-Ser16 improved

function in rats following aortic banding-induced HF [62]

and decreased arrhythmia susceptibility following ische-

mia-reperfusion cardiomyopathy in pigs [63].

Phospholamban is potently inhibited by phosphatase 1

(PP1), which in turn is inhibited by phosphatase inhibitor I-

1 following PKA phosphorylation and I-1 activation.

Consistent with this mechanism, overexpression of an

activated I-1 form in mice protects the animals from HF

development [64]. Moreover, the identification of PLN

mutations in patients with dilated cardiomyopathy has

strengthened its critical role in cardiac function. Thus,

inhibition of PLN activity and restoration of SR Ca2?

cycling were suggested to hold promise for treating heart

failure [65].

Molecular mechanisms of intracellular calcium leak

In samples from patients and animals with HF, RyR2 is

chronically PKA hyperphosphorylated contributing to

intracellular Ca2? leak and remodeling of the macromo-

lecular channel complex [7, 66, 67]. If the hyperadrenergic

state in HF leads to secondary downregulation of b-adren-

ergic signaling and globally reduced intracellular cAMP

synthesis, which molecular mechanism maintains RyR2

PKA hyperphosphorylation and intracellular Ca2? leak?

During HF, phosphatases (PP1 and PP2A) are depleted

from the RyR2 complex which may contribute to a reduced

rate of RyR2 dephosphorylation [61, 66]. In human HF, the

cAMP-specific phosphodiesterase isoform PDE4D3 was

found to be decreased in the RyR2 complex paralleled by a

decrease in cAMP hydrolyzing activity [57]. Thus, PKA

hyperphosphorylation and calstabin2 depletion may both

Table 2 Clinical and novel

drug rationales to treat HF

OTA off-target activity, n/a not

available

Target Drug Advantage Disadvantage

NCX transporter

Forward mode SEA0400 Reduced infarct size OTA

Reverse mode SEA0400, KB-R7943 n/a Negative inotropic?

RyR2 channel

Phosphorylation b-Blockers Survival, progression Indirect mechanism

ACE inhibitors Survival, progression Indirect mechanism

Pore block Tetracaine n/a OTA; n/a

Stabilization JTV519 Specificity OTA

S107 Specificity n/a

SERCA2 pump

Stimulation Gingerol Specificity Toxicity; n/a

Overexpression AAV-SERCA2a Specificity Gene therapy
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contribute to chronic RyR2 activation and intracellular

Ca2? leak (Fig. 1c). Indeed, single RyR2 channels from

human failing hearts showed an increased open probability

consistent with intracellular Ca2? leak [66].

Using site-directed mutagenesis of RyR2, a specific

Ca2?/calmodulin-dependent protein kinase II (CaMKII)

phosphorylation site (Ser2814) distinct from the PKA

phosphorylation site (Ser2808) has been identified [6].

CaMKII phosphorylation increased RyR2 Ca2? sensitivity

and open probability. Since CaMKII was activated by

higher cardiac pacing rates, RyR2 CaMKII phosphoryla-

tion may contribute to enhanced CICR and enhanced

contractility at higher heart rates. However, the rate-

dependent increase in RyR2 phosphorylation by CaMKII

as seen in sham-operated, healthy rat hearts was compro-

mised in rat hearts with HF [6]. Transgenic mice over-

expressing the cytosolic CaMKIIdc isoform develop

cardiac hypertrophy, HF, and intracellular Ca2? leak [68].

Acute overexpression of CaMKIIdc in cardiomyocytes

resulted in significant SR Ca2? leak without changes in

contractile function [69]. Adenoviral CaMKII overexpres-

sion was not associated with calstabin2 dissociation from

RyR2 [69] confirming earlier results [6]. On the other hand,

PKA phosphorylation of RyR2 resulted in depletion of the

stabilizing calstabin2 subunit [6], and decreased calstabin2

levels have been linked to Ca2? triggered arrhythmias in

the structurally normal heart [49]. Disruption of RyR2

PKA phosphorylation in Ser2808Ala knockin mice with

myocardial infarct induced HF has provided evidence that

PKA hyperphosphorylation induced SR Ca2? leak may

directly contribute to HF progression [70]. However, the

significance of concomitant PKA and/or CaMKII RyR2

phosphorylation in Ca2? dysregulation during HF has not

been addressed conclusively.

Altered sodium handling in heart failure

Intracellular Na? and Ca2? concentrations are intricately

coupled through the NCX current. In addition, Na? influx

through sarcolemmal NaV1.5 channels contributes to

intracellular [Na?]i homeostasis (Fig. 1a). Studies about

[Na?]i in human myocardium showed a stimulation rate

dependent increase in [Na?]i [71, 72]. For any given stim-

ulation rate, human end-stage failing myocardium showed a

shift toward higher intracellular [Na?]i [71]. In a rabbit HF

model with elevated [Na?]i, the function of the Na?/K?-

ATPase function was found normal [73]. A potential role of

altered Na? channel inactivation and a significantly

increased late INa,L in HF as a cause of intracellular [Na?]i

overload has been documented in animal models of HF and

human failing myocardium [74, 75]. Slow pacing of failing

cardiomyocytes with increased [Na?]i may enhance Ca2?

influx from the extracellular side through reverse mode

NCX contributing to increased SR Ca2? load and force

development. Indeed, at higher pacing rates failing cardio-

myocytes with high [Na?]i are prone to diastolic Ca2?

overload and contractile dysfunction. Interestingly, phar-

macological inhibition of INa,L was found to improve dia-

stolic dysfunction in failing human myocardium [76].

Additionally, increased late INa,L may result in Ca2?

induced electrical cardiomyocyte dysfunction as shown in

SCN5A-DKPQ knockin mice resembling the Long-QT3

syndrome [77].

Altered force frequency relation in the failing human

heart

Pathophysiological consequences of altered EC coupling

have an immediate impact on cardiac stress adaptation dur-

ing higher heart rates. The force–frequency relation (FFR) or

staircase phenomenon of healthy human myocardium and

within physiological limits describes a heart rate dependent

increase in contractile force and cardiac output. However, in

failing human hearts or isolated muscle preparations, the

frequency-dependent potentiation of contractile force is

blunted or, even worse, inversed [78]. Alteration of the FFR

in the failing human heart has been accepted as a functional

milestone which may partially explain the decreased exer-

cise capacity of symptomatic HF patients.

Using aequorin Ca2? measurements it has been shown

that a positive FFR in normal healthy myocardium is

associated with a positive D[Ca2?]i transient amplitude–

frequency relation, and vice versa, a negative FFR in the

failing myocardium is associated with an inverted

D[Ca2?]i–frequency relation [18]. Alterations of the fre-

quency response of contractile performance have been

confirmed in vivo in HF patients [79]. A different experi-

mental protocol which is thought to enable increased Ca2?

accumulation into the SR stores in diastole, uses post-rest

pacing which typically produces an increase in developed

force in healthy myocardium also referred to as ‘post-rest

potentiation’. However, alterations in post-rest potentiation

that may underlie reduced stress adaptation and the FFR

inversion have been associated with a blunted post-rest

D[Ca2?]i increase of SR Ca2? content (Fig. 2) [80]. While

in healthy human myocardium a pronounced upregulation

of SR Ca2? content occurs at higher heart rates, failing

human myocardium shows a blunted regulation of SR Ca2?

content [26]. Therefore, the chronic hyperadrenergic state

and associated higher heart rates in HF patients may create

an increased risk for Ca2? induced cardiac dysfunction and

arrhythmias. Accordingly, novel therapeutic strategies have

successfully used pharmacological heart rate reduction in

HF patients to improve prognostic outcome [81].
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Therapeutic rationales to modulate calcium handling

in heart failure

Several therapeutic rationales exist which aim to correct

known molecular Ca2? signaling abnormalities in HF as

summarized in Table 2. Among these strategies, NCX

blockers may have therapeutic utility if mode-selective

block can be established and/or risks for disturbing intra-

cellular Ca2? metabolism can be avoided. Partial inhibition

of NCX by SEA-0400 in MLP-/- knockout cardiomyocytes

with heart failure showed a net gain of [Ca2?]i and SR load

but no improvement in contractility whereas cardiomyo-

cytes from mice with aortic-banding induced hypertrophy

and HF showed improved contractile function [82]. Further

development of NCX blockers for HF will depend on the

critical assessment of the potential benefits of NCX reduc-

tion versus effects on [Ca2?]i by refining mode dependence

and/or including additional targeting strategies.

Some traditional ion channel blockers like tetracaine

inhibit ion permeation through RyR2 channels, however,

lack of specificity and potential side effects on contractile

function indicate significant limitations toward therapeutic

applicability [83, 84]. Recently, the efficacy of novel RyR2

channel stabilizing drugs of the 1,4-benzothiazepine class

(JTV519 or K201) which stabilize the RyR2 closed state

but do not block ion permeation has been established in

animal models of heart failure where they inhibit pro-

gression of cardiac remodeling and dysfunction [57, 85,

86]. RyR2 stabilizing compounds with high specificity and

cardiac activity have been developed [51] and their efficacy

as potential HF treatment is under investigation. Addi-

tionally, b-blockers and angiotensin-II receptor blockers

have been associated with beneficial effects on RyR2

channel dysfunction in HF through mechanisms which

indirectly prevent excess post-translational modification of

RyR2, e.g. by PKA hyperphosphorylation or nitrosylation

[87–89].

Adeno-associated viruses (AAVs) are currently best

suited for myocardial gene delivery due to minimal path-

ogenicity and several serotypes exhibit tropism for the

heart. Following identification and comprehensive charac-

terization of SERCA2a as a potential therapeutic target in

HF, cardiac gene therapy trials using replication-deficient

viral vectors (AAV-SERCA2a) have been approved by the

US Food and Drug Administration and are under review

with the UK regulatory authorities for clinical trials [90].

Fig. 2 Representative traces of aequorin-based Ca2? signals and

corresponding isometric forces from human nonfailing (top) and

failing (bottom) myocardial muscle preparations. Upper panel:
Nonfailing myocardium shows post-rest potentiation of the intracel-

lular Ca2? transient and force development which increases from 10

to 120 s rest period. Lower panel: Failing myocardium shows

depressed post-rest intracellular Ca2? transient and force develop-

ment after 120 s rest. Steady-state pre-rest signals are shown on the

left of each trace; first and second post-rest signals are shown

afterwards; post-rest signals represent 10 s (left) and 120 s (right),
dimensions as indicated. Reproduced with permission from the

Journal of Clinical Investigation (Pieske et al. [80])
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Summary and future perspectives

HF is characterized by chronic maladaptive changes and a

poor prognosis. Chronic activation of intracellular signaling

pathways mediates structural and functional remodeling of the

failing heart. Changes in EC coupling at the level of local and

global Ca2? signals represent a key mechanism of contractile

depression and arrhythmia propensity. It has become

increasingly clear that cardiac remodeling in HF occurs within

cytosolic Ca2? signaling microdomains. Translational

approaches about the local and global Ca2? signaling mech-

anisms, remodeling mechanisms, and related disease pro-

cesses will be of key importance to develop novel and specific

therapeutic rationales. We anticipate that Ca2? imaging

techniques will significantly increase our understanding of the

cardiac pathophysiology underlying HF and boost develop-

ment of novel therapeutic strategies in the future.
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