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ABSTRACT

High-throughput methods for measuring transcript
abundance, like SAGE or microarrays, are widely
used for determining differences in gene expression
between different tissue types, dignities (normal/
malignant) or time points. Further analysis of such
data frequently aims at the identification of gene
interaction networks that form the causal basis for
the observed properties of the systems under
examination. To this end, it is usually not sufficient
to rely on the measured gene expression levels
alone; rather, additional biological knowledge has to
be taken into account in order to generate useful
hypotheses about the molecular mechanism leading
to the realization of a certain phenotype.
We present a method that combines gene expres-
sion data with biological expert knowledge on
molecular interaction networks, as described by
the TRANSPATH1 database on signal transduction,
to predict additional—and not necessarily differen-
tially expressed—genes or gene products which
might participate in processes specific for either of
the examined tissues or conditions. In a first step,
significance values for over-expression in tissue/
condition A or B are assigned to all genes in the
expression data set. Genes with a significance value
exceeding a certain threshold are used as starting
points for the reconstruction of a graph with
signaling components as nodes and signaling
events as edges. In a subsequent graph traversal
process, again starting from the previously identi-
fied differentially expressed genes, all encountered
nodes ‘inherit’ all their starting nodes’ significance
values. In a final step, the graph is visualized,
the nodes being colored according to a weighted

average of their inherited significance values. Each
node’s, or sub-network’s, predominant color, ran-
ging from green (significant for tissue/condition A)
over yellow (not significant for either tissue/con-
dition) to red (significant for tissue/condition B),
thus gives an immediate visual clue on which
molecules—differentially expressed or not—may
play pivotal roles in the tissues or conditions under
examination.
The described method has been implemented
in Java as a client/server application and a web
interface called DEEP (Differential Expression
Effector Prediction). The client, which features an
easy-to-use graphical interface, can freely be down-
loaded from the following URL: http://deep.bioinf.
med.uni-goettingen.de

INTRODUCTION

It has always been a major goal of biological research to
understand how the behavior of biological systems is
governed by the properties of and interactions between
their parts. Today’s experimental high-throughput tech-
nologies allow us to simultaneously determine the state of
thousands of system components at a cellular or molecular
level. More and more powerful bioinformatics methods
are applied to high-throughput data in order to unravel
the interaction networks underlying a system’s apparent
behavior. Examining those networks in aberrant systems,
e.g. malignant tissues, may lead to new insights into
molecular etiology and thus suggest possible targets for
the development of new therapeutic drugs.
A wide range of technologies is available for obtaining

data on the expression level of genes. Most frequently used
are methods like SAGE or microarrays, which measure
transcript abundances as an estimate for gene expression
height. In principle, both methods allow for two different

*To whom correspondence should be addressed. Tel: +49 551 3914915; Fax: +49 551 3914914; Email: martin.haubrock@bioinf.med.uni-
goettingen.de

1TRANSPATH is a registered trademark of BIOBASE GmbH, Wolfenbüttel.
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experimental set-ups (1,2): (i) Comparison of expression
levels between different tissues or the same tissue under
different conditions (treated/untreated) or dignities
(normal/malignant). In this case, all genes which are
over-expressed in one sample with regard to the other one
are considered to be co-regulated and are generally
believed to be also functionally related (‘guilty by
association’). (ii) Time series experiments typically moni-
tor the temporal change in expression in just one tissue
type after a stimulus has been applied. Genes for which
changes in expression height are observed at an earlier
time point are suspected to have a causal influence on
the expression of genes displaying altered expression levels
at a later stage. Various methods exist to derive possible
gene interaction networks from such data.
In either case, the detection of significant expression

differences may be improved by taking into account other
sources of information, e.g. on the participation of the
examined genes in common biochemical pathways (3).
However, is has turned out not to be sufficient to rely on
expression levels alone in order to generate useful
hypotheses about the gene interaction networks eventually
responsible for the realization of a certain phenotype.
Rather, additional biological knowledge seems indispen-
sable again for narrowing down the vast number of
possible interactions that can be deduced from observed
expression heights to a realistic and comprehensible
amount. A resource frequently used for augmenting
expression analysis methods is GeneOntology (4), which
may provide additional hints on whether genes found to
be co-expressed or inducing each other’s expression do
also share a common functional context. However, even
for knowledge-based methods, additional (manual) expert
evaluation is still indispensable in order to clarify which of
the generated hypotheses on causal relationships seem
plausible and should be subject to further experimental
examination.
The majority of the available gene expression analysis

methods takes primarily into account those genes which
have been observed to be expressed differentially between
the different conditions or time points; genes which are not
found to be differentially expressed are considered to be of
lesser interest. These approaches, however, neglect the fact
that a gene doesn’t necessarily have to be differentially
expressed in order to exert effects specific for, e.g. a certain
tissue or disease state. Rather, its gene product may just be
subject to functional modulation by other, differentially
expressed genes, rendering it functional under the one
condition (where the modulator is over-expressed or, in
case the modulator acts as an inhibitor, under-expressed)
and inactive under the other (modulator under- or over-
expressed, respectively). Thus by being dependent in its
activity on a differentially expressed gene, such a non-
differentially expressed gene acts as an effector specific
for a certain expression profile. Consequently, if (i) a gene
(or gene product) Y is known to be modulated in its
activity by a gene X at least under some circumstances and
(ii) X is found to be differentially expressed between
the examined conditions A and B, we generate the
hypothesis that Y’s activity will also differ between
conditions A and B according to X’s abundance and

hence may be called a (putative) expression-profile-specific
effector.

In order to identify such additional effectors, one has
to identify among non-differentially expressed candidates
those genes (or gene products) which are already known
to be subject to modulation by differentially expressed
ones. We present a method (and provide an implemen-
tation thereof, called DEEP—Differential Expression
Effector Prediction) to identify such molecules by applying
already existing biological expert knowledge about bio-
molecular interaction networks, as provided by resources
like the TRANSPATH database on signal transduction
(5), to user-supplied, newly generated gene expression
data. DEEP thus also demonstrates how the vast amount
of information on potential interactions contained in
databases like TRANSPATH can be utilized by, e.g.
filtering for data sets of actual relevance in a certain
expression background.

METHODS AND IMPLEMENTATION

Possible data sources and gene filtering

DEEP has initially been designed for the analysis of user-
supplied SAGE data in the form of two sets (one for each
condition A and B) of absolute tag counts Ni, mapped to
their corresponding genes Gi. Alternatively, DEEP can
access all human SAGE libraries as provided by CGAP on
their SAGE Genie server (6), pooled according to CGAP’s
organ/tissue and dignity (normal/cancer/tumor asso-
ciated) classification. If such a library set is selected, or
more than two SAGE gene lists have been supplied for
any of the two conditions, the corresponding list set is
being merged into a ‘meta library’ by summing up the tag
counts for each gene found in at least one of these lists.
In any case, Pi values for F-fold over-expression
(default: F=2) are calculated using the method described
in (1). Eventually, all Pi values are re-mapped to
significance values si, with si=1�Pi in case of over-
expression in tissue/condition A and si=Pi� 1 otherwise.
Only those genes with |si| values exceeding a user-defined
threshold are processed further.

Apart from direct support for SAGE data, DEEP is, in
principle, capable of processing all kinds of expression
data sets that consist of a list of genes Gi with corres-
ponding significance values �1� si� 1. Such values can,
for instance, easily be derived from microarray data,
rendering DEEP also applicable to this widely used
experimental method for assessing differential gene
expression.

Mapping over-expressed genes to network nodes

Differentially expressed genes surviving the filtering
process described above are mapped to corresponding
molecule entries in the TRANSPATH Professional
database (version 7.1) on signal transduction, using
UniGene identifiers as common denominator. Since
TRANSPATH contains only manually curated informa-
tion on signaling events for which experimental evidence is
available, and since TRANSPATH comprises signaling
components only, not all expression values will thus be
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assignable to a TRANSPATH molecule; in fact, only
�12% of all tags found in the SAGE-Genie libraries could
be successfully mapped to TRANSPATH. If, on the other
hand, more than one SAGE tag is linked to one
TRANSPATH molecule, their counts are averaged
during the mapping process.

TRANSPATH features a molecule classification
schema with various levels of abstraction (7); the mapping
process described above, for instance, yields a list of
so-called ‘basic molecules’, which represent species-specific
sequence variants. For easing further processing, the
identified basic molecules are further mapped to
TRANSPATH ‘ortholog’ entries Sj, which subsume all
species-specific variants. All Sj finally get their correspond-
ing differentially expressed gene’s si assigned to them.

Network reconstruction and effector prediction

The differentially expressed ortholog molecules Sj identi-
fied in the previous step are used as starting points for
reconstructing a signal transduction network, represented
as a graph with molecules as nodes Nk and signal
transduction events (also taken from TRANSPATH) as
directed edges. Reconstruction is performed by depth-
first searching the network implicitly described by
TRANSPATH to a user-defined depth, i.e. by calling
the buildNetwork procedure depicted in the pseudocode
outline (Figure 1) for each starting point Sj with
parameters buildNetwork(j, 0).

In a subsequent step, the reconstructed network graph
gets traversed, again starting from each node which
represents a differentially expressed gene (or its corre-
sponding TRANSPATH ortholog entries, respectively) Sj,
by calling the procedure propagateSignificance(j, sj, 0)
from the pseudocode outline for each Sj). During this
traversal, each encountered—and not necessarily differen-
tially expressed!—successor node Nk ‘inherits’ the current
starting node’s sj value. More precisely, each node keeps
track of a weighted average ak of the sj values of all
starting nodes it has been reached from, with 1/kjk as
weighting factor and kjk being the number of steps that
were required to reach Nk, starting from the node
representing Sj. If an Nk gets visited several times—be it
from the same Sj node via different paths, be it from
different starting nodes—each visit will contribute to the
node’s ak as described2. Consequently, each molecule
node’s ak value is based on the significance by which one
or more genes were considered differentially expressed in a
certain experiment, yielding a measure for the degree to
which its activity may be influenced in a tissue- or dignity-
specific manner.

Finally, the graph is visualized, representing each
molecule node’s (initial or calculated) ak value mapped
to a color spectrum ranging from green (ak=1, i.e.
specific for tissue/condition A) over yellow (ak=0, i.e. not
tissue/condition-specific) to red (ak=�1, i.e. specific for
tissue/condition B). Thus a node’s, or sub-network’s,
predominant color immediately gives a visual clue on
which molecules—differentially expressed or not—may

play pivotal roles in the tissues or conditions under
examination.

Treatment of different interaction types

Different types of interaction imply different semantics of
the propagated s values. For instance, if an interaction
between genes/molecules X and Y is known to be of type
‘X inhibits Y’, with X being over-expressed under
condition A and Y not being expressed differentially, Y
can be assumed to be more active under condition B than
under condition A. This fact can be accounted for by
inverting the propagated s value for inhibitory interac-
tions. DEEP allows the user to choose which interaction
types are to be treated this way and re-calculates the node
coloring accordingly.

Calculating percolation clusters

In addition to reconstructing the signal transduction
network in the above-described manner, DEEP also
partitions the network into so-called signal percolation
clusters. These clusters represent self-contained units of
information flow, each starting from one differentially
expressed gene and containing all its putative effector
molecules found in the network. Percolation clusters hence
represent the sub-networks, which may be subject to
causal influence by a differentially expressed gene.
Consequently, if another starting node Sl is encountered
during the calculation of the starting node Sj’s percolation
cluster, Sl’s cluster gets merged into the cluster currently
under construction since it is well imaginable that Sl’s
activity may be modulated by Sj.

2Nodes representing starting points Sj just get their correspoinding sj values assigned as aj values.

Figure 1. Pseudocode representation of the algorithms for reconstruct-
ing the signaling network and propagating the differentially expressed
starting genes’ significance values.
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Implementation

DEEP has been implemented in the Java programming
language and consists of three parts: the DEEP core
server, a JSP-based web interface and a downloadable
Java client. This architecture prevents users from having
to care for maintenance tasks, like updating the utilized
databases. Just like the browser-based solution, the
Java client communicates with the core server via
firewall-friendly HTTP.

USAGE

Installation and usage

DEEP can be accessed in two ways. On the one hand, a
web interface provides all basic functionality, while, on the
other hand, a Java client is available which runs on the
user’s local computer. Both routes of access are available
from the DEEP homepage (http://deep.bioinf.med.uni-
goettingen.de). Since the local Java client allows for much
more interactivity when inspecting the calculation results
(e.g. zooming and panning), its use is strongly encouraged.
It can be launched via a Java Web Start link, rendering
its installation very straightforward; the only requirement
is the presence of a moderately recent Java runtime
environment (Java 5.0 or newer).
After launching DEEP either way, a new analysis can

be initiated, and a ‘wizard’-like interface will guide the
user through the process of selecting the files containing
the data to be analyzed or any of the pre-defined CGAP
meta-libraries. Once network reconstruction is complete
(which may take several minutes), the resulting network
graph is presented; clicking on a node will display further
information, including hyperlinks to corresponding exter-
nal resources.

Examples

Hypotheses generated by tools like DEEP need to be
verified either experimentally or by checking against
previously published experiments. To this end, we present
two literature-based case studies of DEEP usage.

Example 1. We compared three normal lung tissue
data sets (Lung_normal_B_1, Lung_normal_CL_L15
and Lung_normal_CL_L16) from the pre-defined CGAP
SAGE libraries and compared them with three
corresponding malignant sets (Lung_adenocarcinoma-
_B_1, Lung_adenocarcinoma_MD_L10 and Lung_
adenocarcinoma_MD_L9) derived from lung adenocarci-
noma samples, a subtype of nonsmall cell lung carcinoma
(NSCLC). Network reconstruction was performed with
|si| � 0.9 and search depth 2 (default values for all other
parameters). As shown in Figure 2, interleukin 8 (IL-8) is
one of the genes found to be over-expressed in malignant
lung tissue and is hence used as a starting node for
network reconstruction. Although not being differentially
expressed themselves, the two G-protein coupled IL-8
receptors CXCR1 and CXCR2 are predicted as putative
tumor-specific IL-8 effectors. In a second signaling step,
various G-protein a subunits, including Gai, are also

identified as putative targets of IL-8 in lung adenocarci-
noma. All these predictions are in compliance with the
corresponding literature, since apart from acting as a
chemotactic and activating agent for leukocytes, IL-8 is
known to support tumor growth in NSCLC by its
angiogenic activity (8). Furthermore, IL-8 is suspected to
serve as auto- and/or paracrine growth factor for NSCLC
cells (9). The recent finding that the mitogenic effect of
IL-8 is inhibited by pertussis toxin (10) suggest that signal
transduction does indeed occurs under participation of
G-protein a subunits belonging to the Gai family.
Obviously, all these observations could be confirmed
using the DEEP tool.

A different line of NSCLC particularities could also be
confirmed by DEEP. Fibronectin, an extracellular matrix
glycoprotein, is known to be frequently over-expressed by
NSCLC cells (11). It has furthermore been shown that
fibronectin promotes NSCLC growth and metastasis by
activating members of the AKT family of protein kinases,
which normally participate in growth factor signal
transduction (12). Apart from also identifying fibronectin
as being over-expressed in lung cancer tissue, the analysis
run described above also revealed AKT1 as possible
fibronectin effector.

Example 2. The comparison of the whole collection of
CGAP’s normal mammary gland tissue libraries with their
malignant counterparts provides another example for
the suitability of DEEP for the interactive generation of
hypotheses about expression-background specific effector
genes. This analysis run has revealed kinase-associated

Figure 2. Reconstructed network using CGAP SAGE libraries derived
from normal and malignant lung tissues (excerpt). Large nodes
represent genes identified to be differentially expressed (green: normal
tissue; red: malignant tissue), whereas small nodes stand for non-
differentially expressed molecules, the coloring of which represents the
degree to which they are predicted to act in an expression-background
specific manner (green: active in normal tissue; red: active in malignant
tissue; intermediate colors: specificity less clear; only effectors predicted
to be tumor specific are present in the displayed part of the network).
In concordance with experimental observation, DEEP correctly predicts
the involvement of IL-8, its receptors CXCR1 and CXCR2 and various
G-proteins in lung tumor development. This figure was created using
the DEEP Java client.
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phosphatase (KAP) to be over-expressed in the malignant
set (Figure 3), which complies to reports that KAP is
over-expressed in various types of cancer, including breast
cancer (13).

KAP participates in cell cycle regulation by interacting
with cyclin-dependent kinases, like Cdk2, in an inhibitory
manner. Since high levels of KAP expression should thus
attenuate cell division, one would expect Cdk2 to be more
active in normal tissue than in tumor cells, which seems to
contradict the very nature of cancer. This puzzling
conclusion is supported by DEEP if set up in a way to
invert the sign of si values propagated through inhibitory
interaction edges, as demonstrated in Figure 3. This
apparent paradox has, in fact, only recently been resolved
by the observation that aberrant splice variants of KAP
(including a dominant-negative variant), which lead to
increased Cdk2 activity, are expressed in some cancers
(14). So albeit DEEP predicts the opposite of what has
been observed regarding Cdk2 activity, this prediction was
completely in line with what a human researcher would
have concluded from the available knowledge about the
involved molecules and their interactions.

These examples clearly demonstrate that DEEP is
indeed capable of generating valuable hypotheses
about genes which may act in a tissue- or condition-
specific manner, though not being differentially expressed
themselves.

OUTLOOK AND CONCLUSION

Future development

Although being already quite useful and usable in its
current state, DEEP is, of course, still at the beginning of
its evolution. For instance, a simple further plausibility
check for predicted non-differentially expressed effector
genes could be implemented by verifying that their
transcripts have been found to be expressed at all in the
original data; if not, the corresponding nodes should be
omitted from the constructed graph. (In case of micro-
array data, this criterion, of course, only holds if there has
been any probe for the transcript in question on the chip.)

Another straightforward way of extending the system
would be to utilize databases other than TRANSPATH,
which contain data on biomolecular interaction networks.
The next data resource projected to be thus included into
the DEEP server is KEGG’s LIGAND (15) section,
providing information about the enzymes and metabolites
involved in metabolic pathways. In a metabolic network,
two enzyme genes will be considered to interact if one
enzyme’s product can serve as the other enzyme’s
substrate, or vice versa. The Reactome knowledgebase
of biological pathways (16) is another candidate for
inclusion.
Finally, the inclusion of molecules upstream to differ-

entially expressed genes into the reconstructed network
might also be worth implementing. A propagation of
si-values ‘backwards’ through (directed) interaction edges
will lead to the identification of molecules preceding
differentially expressed gene products in, e.g., signaling
cascades. The molecules thus identified can be considered
as only being enabled to trigger certain functions in a
tissue- or condition-specific manner by differentially
expressed genes.

Conclusion

We have shown that by combining gene expression data
with biological knowledge about biomolecular interaction
networks, additional genes (or gene products) can be
identified which may play distinct roles in different tissues
or under different conditions, though not being differen-
tially expressed themselves. While most gene expression
analysis methods focus only on those genes found to
be expressed differentially and hence will not present
additional effectors in their result lists, our method
extends the range of genes that may be crucial for the
processes under examination, thus shedding new light on
our understanding of the molecular basis of physiological
processes as well as their pathological aberration, culmi-
nating in the prediction of new plausible targets for
rational drug design.
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