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Abstract Viral advertising in social networks has arisen as one of the most promising ways to increase brand awareness

and product sales. By distributing a limited budget, we can incentivize a set of users as initial adopters so that the advertising

can start from the initial adopters and spread via social links to become viral. Despite extensive researches in how to target

the most influential users, a key issue is often neglected: how to incentivize the initial adopters. In the problem of influence

maximization, the assumption is that each user has a fixed cost for being initial adopters, while in practice, user decisions for

accepting the budget to be initial adopters are often probabilistic rather than deterministic. In this paper, we study optimal

budget allocation in social networks to maximize the spread of viral advertising. In particular, a concave probability model

is introduced to characterize each user’s utility for being an initial adopter. Under this model, we show that it is NP-hard

to find an optimal budget allocation for maximizing the spread of viral advertising. We then present a novel discrete greedy

algorithm with near optimal performance, and further propose scaling-up techniques to improve the time-efficiency of our

algorithm. Extensive experiments on real-world social graphs are implemented to validate the effectiveness of our algorithm

in practice. The results show that our algorithm can outperform other intuitive heuristics significantly in almost all cases.

Keywords social network, influence maximization, information diffusion, submodular optimization

1 Introduction

The last decade has witnessed the emergence and

proliferation of online social networks, such as Face-

book, Twitter and Youtube. People have been actively

engaged in the networks and generating contents at an

ever-increasing rate. The online social networks serv-

ing as new platforms are providing great opportunities

for the widespread information among individuals. Vi-

ral advertising, which utilizes information diffusion in

social networks for the promotions of new products,

ideas and innovations, is attracting enormous atten-

tions from advertisers and providers. Compared with

TVs, newspapers and radios which broadcast informa-

tion, viral advertising in social networks has the “word-

of-mouth” effect, and is considered to be more trustwor-

thy. Moreover, the viral advertising can spread across

multiple links and trigger large cascades of adoption.

Such characteristics have made the viral advertising

more and more popular in business campaigns.

Suppose we are given a limited budget. To maxi-

mize the spread of viral advertising, we would first
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distribute the budget as a vector of incentives among

the users, expecting that a seed set of them would ac-

cept the allocated budget to be initial adopters. The

initial adopters will then spread the advertising to

their friends as an information cascade. One of the

fundamental problems adopting this idea is influence

maximization[1], which aims to select the most influen-

tial set of users as initial adopters so that users involved

in the cascade can be maximized. Despite that much

effort has been devoted to optimizing the selection of

initial adopters[2-5], a key issue is often neglected: how

should we incentivize the initial adopters?

In influence maximization, the underlying assump-

tion is that each user has a deterministic cost for being

initial, i.e., a user can be incentivized as long as the allo-

cated budget exceeds the deterministic cost. However,

in practice, user decisions for being initial adopters

are often probabilistic rather than deterministic. With

different amount of allocated budget, the users may

have different probabilities to be initial adopters. For

the above reason, it is necessary to understand how

users make decisions for adopting the allocated bud-

get. Here, we introduce utility model to characterize

users’ satisfaction for being initial adopters with the in-

centives. Utility has been widely adopted in economics

and game theory as a measure of preferences over goods

and services, and can often be described as non-linear

concave functions[6-7].

Under this model, the process of viral advertising

can be summarized in two phases. In the first phase,

a set of users may accept the allocated budget to be

initial adopters according to the utility model. In the

second phase, the advertising will start from the initial

adopters and spread in the social network as a piece

of information. Fig.1 shows an illustrative example of

the two phases. The number of active users after the

cascade is called the spread of the viral advertising.

To maximize the spread of viral advertising, we must

determine to whom we shall allocate budget and how

much should be allocated to each of them.

In this paper, we study optimal budget allocation

in social networks to maximize the spread of viral ad-

vertising. Specifically, we introduce utility functions

to model the user satisfaction for the allocated bud-

get. The advertising would then spread according to

the Independent Cascade (IC) model[1]. The aim is to

maximize the spread of viral advertising. We first show

that the problem can be reduced from existing NP-hard

problems. Due to the hardness of the problem and non-

concavity of the objective function, we first consider

a simpler discrete setting and propose a greedy algo-

rithm with performance guarantee. We further show

that the algorithm can be proved with near optimal re-

sult even in the general continuous setting if the budget

is discretized properly. Several scaling-up techniques

are proposed to improve the time efficiency of the al-

gorithm. Finally we conduct extensive evaluations for

validation.

1.1 Our Results

The main contributions of this paper are summa-

rized as follows.

•We introduce probabilistic functions to model user

utility for the allocated budget. The model is practi-

cal and can characterize different users’ preferences for

being initial adopters in social networks. Under such

model, we formalize the budget allocation problem as



Bo-Lei Zhang et al.: Budget Allocation Maximizing Viral Advertising in Social Networks 761

an optimization problem and show that it can be re-

duced from existing NP-hard problems.

• Due to the hardness, we propose a discrete greedy

algorithm. We prove that in the discrete setting, the

greedy algorithm achieves 1− 1/e approximation ratio,

and in the more general continuous setting, when the

budget is discretized in O(n) pieces, the algorithm can

reach 1− 1/e− o(1) approximation ratio, where o(1) is

a relatively small error.

• We improve the time efficiency with scaling-up

techniques. Moreover, we design a novel algorithm

for estimating the pairwise diffusion probability in IC

model.

• Extensive experiments on different datasets are

implemented to validate the effectiveness of our algo-

rithm. The results show that our algorithm outper-

forms other intuitive algorithms significantly in almost

all cases. In addition, the algorithm has relatively

higher time-efficiency.

1.2 Related Work

Our work has a strong tie with the problem of influ-

ence maximization, which was first proposed by Domin-

gos and Richardson[8-9]. Suppose we would like to mar-

ket a new product to be adopted by a large fraction of

the network. They posed the idea that by giving the

“influential” initial adopters free samples can trigger a

large cascade. Later, Kempe et al.[1] formulated the

problem as a discrete optimization problem by model-

ing the influence spread as IC model or Linear Thresh-

old (LT) model. They showed that finding the opti-

mal solution in these models is NP-hard and proposed

greedy algorithm with hill-climbing strategies to find

the influential nodes. Due to the monotonicity and

submodularity of the diffusion models, the algorithm

can be proved to achieve constant approximation ratio.

Following their work, extensive researches[2-5,10-11] have

studied the algorithmic improvement of the spread of

influence in social networks. In [2], the authors pro-

posed a lazy-forward technique which can accelerate

the greedy algorithm for about 700 times faster. We

will also adopt this idea in our algorithm. Chen et

al.[3,12] proved that computing the influence spread in

IC and LT models is #P-hard. Despite a lot of algo-

rithmic progress in selecting the most influential initial

adopters, one key issue of how to incentivize the initial

nodes has been largely overlooked.

Another thread of our work is inspired by the prob-

lem of revenue maximization which was first introduced

by Hartline et al.[13] In order to influence many buyers

to buy a product, a seller could first offer some popular

buyers discounts, instead of “giving them free samples”.

The problem then studies marketing strategies like how

large the discounts should be and in what sequence the

selling should happen. Since then, a lot of following

researches have studied revenue maximization in so-

cial networks[14-17]. For example, Candogan et al.[18]

studied optimal uniform budget allocation to maximize

the profit of a seller. In particular, they considered

each consumer’s usage level depends directly on the us-

age of their neighbors in the social network. In [19],

the authors studied iterative pricing strategies for rev-

enue maximization. They also considered the Bayesian

setting in which there is prior knowledge of the proba-

bility distribution on the valuations of buyers. Arthur

et al.[15] considered cascading manner through the net-

work for revenue maximization, i.e., a user is offered

the product via recommendations from his/her neigh-

bors. In [20] and [21], the authors proposed that it is

more effective if we offer incentives after influence maxi-

mization and only the users who adopted the incentives

should be counted. In comparison, we offer budget be-

fore influence maximization and argue that it is also

very important to incentivize the initial adopters.

In a recent work[22], Singer considered auction-based

influence maximization in which each user can bid a

cost for being an initial adopter. Singer[22] designed in-

centive compatible mechanisms to make sure that each

user declares the true cost. However, the mechanism

requires an extra step for each user to bid a cost which

may be cumbersome to implement for the advertisers.

Comparatively, we adopt a budget allocation with a

more natural way for incentivizing each user. In [23],

the authors proposed to incorporate rewards as incen-

tives into influence propagation and adoption group to

stimulate active users. In [4], Demaine et al. proposed

partial incentives in social networks to influence peo-

ple. In comparison, we propose more general utility

and influence models and further extend the results in

the discrete setting. In a recent study[24], the authors

tackled the general problem of influence maximization

in the continuous setting. We further assume that the

utility functions are concave and show the approxima-

tion of our proposed algorithm.

1.3 Organization

The rest of this paper is organized as follows. In Sec-

tion 2, we introduce the models for budget allocation
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and formalize the optimization problem. In Section 3,

we present our main discrete greedy budget allocation

and show its approximation. We further scale up the

algorithm in Section 4. Section 5 presents the evalua-

tions. Finally, we conclude our paper in Section 6.

2 System Model

Consider a social network modeled as a directed (or

undirected) graph G = (N , E), where N = {1, 2, . . . , n}

denotes the set of n users in the network, and E ⊆

N ×N denotes the social links between users. Given a

limited budget B, an allocation is then a vector of non-

negative numbers b = (b1, b2, ..., bn),
∑

bi 6 B among

users, where bi is the budget allocated to user i. In

the following, we first introduce a probabilistic utility

model to characterize each user’s satisfaction for being

initial adopters, and then introduce how to model the

process of viral advertising spread in a social network.

Finally, the budget allocation for viral advertising is

formulated as an optimization problem.

2.1 Utility Model

When distributing the budget as incentives, we in-

troduce probability function Fi : R
+ → [0, 1] to charac-

terize user i’s satisfaction for being an initial adopter,

i.e., user i will accept the allocated budget bi with

probability Fi(bi). A natural property of Fi(x) is mono-

tonically increasing, i.e., a user is more likely to be an

initial adopter if i is offered more budget. Formally, we

have that:

Fi(x1) 6 Fi(x2), for any x1 < x2.

As observed in literatures[6-7], the user satisfaction usu-

ally follows the law of diminishing returns, i.e., the

marginal gain of user satisfaction decreases as the bud-

get increases. Therefore, we assume that the utility

function Fi(x) satisfies the property of concavity:

Fi(λx+ (1 − λ)y)

> λFi(x) + (1− λ)Fi(y), for any λ ∈ [0, 1].

Note that different users may have different utility func-

tions (see Fig.2 for some of the possible examples).

Currently, most existing studies assume that the util-

ity functions are known in advance[7,24]. In practice,

with the growing availability of personalized data, the

utility functions could be estimated or learned from the

historical datasets with advanced machine learning ap-

proaches, such as maximum likelihood[25-26].

Fi
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Fig.2. Examples of user utility functions.

2.2 Information Diffusion Model

After allocating the budget as incentives, a set of

users would adopt the incentives to be initial adopters.

The viral advertising will then start from the initial

adopters to spread as an information cascade. We use

the Independent Cascade (IC) model[1] for the infor-

mation diffusion process, which has been widely used

in the literatures[1,27-30].

IC Model. In the cascade, a node is said to be active

if it adopts the information and inactive otherwise. At

the beginning, only the initial adopters of S are active

and they start by sharing the advertising to trigger the

information cascade. Let St denote the set of newly ac-

tivated nodes at step t, where S0 = S is the set of initial

adopters. At step t, each node v, which is a neighbor

of node i ∈ St, will be activated independently with

probability µ(u,v). The whole process terminates once

St = ∅ for some t. The number of all active users after

the information cascade is called the spread of the viral

advertising.

Properties. Let q(b−i, i) be the probability that user

i can be influenced by others with budget allocation

b−i, where b−i is the allocated budget vector except bi.

The function has the following properties.

Claim 1. For the diffusion function q(b−i, i), there

is:

• for any j ∈ N , ∂q
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in [1], the diffusion function can be formulated as the

sum of active probability in all the fixed graphs:

q(b−i, i) =
∑

X

P [X ]qX(b−i, i), (1)

where qX(b−i, i) is the reachability probability that i is

influenced in the fixed graphX via live-edges, and P [X ]

is the probability that we get a result of X . Suppose Xi

is the connected component of i. Then qX(b−i, i) can

be formulated as qX(b−i, i) = 1−
∏

j∈Xi
(1 − Fj(bj)).

From the above formulations, we can get the fol-

lowing properties of the function q(b−i, i). First, the

diffusion function is monotone with the allocated bud-

get b:

∂q(b−i, i)
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Table 1. Notations



Bo-Lei Zhang et al.: Budget Allocation Maximizing Viral Advertising in Social Networks 765

Algorithm. In the discrete setting, we first re-

duce the objective to a set function: defining a new

ground set A = N×[m] = {a11, a12, ..., a1m, a21, a22, ...,

a2m, ..., an1, an2, ..., anm}, where aij means assigning

the j-th piece budget to user i and |aij | = B/m.

In set A, the j-th piece of budget element is repli-

cated n times as {a1j, a2j , ..., anj}, but only one of

them can be chosen. And we need to choose a sub-

set A =
⋃

i∈N Ai of size m from A to maximize the

spread of viral advertising, where Ai is the set of bud-

get elements allocated to user i (|Ai| = bi). In this

discrete setting, we propose a greedy algorithm which

starts from an empty set and incrementally adds bud-

get elements for allocation. In the j-th iteration, we

add asj to the user who could get the largest marginal

gain i = argmaxs∈N (f(A ∪ {asj}) − f(A)). Slightly

abusing notations, we use the budget vector b and the

budget set A in a similar way.

Analysis. We show the approximation ratio of the

above algorithm by viewing it as a special case of maxi-

mizing a monotone submodular function subject to a

matroid 1○ constraint. A set function f(·) is submodu-

lar if for any element a ∈ A\T , for all U ⊆ T , there is

f(U ∪{a})−f(U) > f(T ∪{a})−f(T ). Submodularity

implies that the marginal gain of choosing an element

decreases as the number of chosen elements increases.

First, the matroid M = (A, I) can be defined as:

I = {A ⊆ A|A ∩ (N × {j}) 6 1, ∀j}.

Next, we show that the objective function is monotone

and submodular with respect to the allocated budget.

Lemma 1. The objective function f(·) in the dis-

crete setting is monotone and submodular.

Proof. Monotonicity. Obviously, by adding any new

budget element aij , namely assigning the j-th piece of

budget to user i, the probability that user i could get

active will not decrease. Accordingly, the probability

that user i influences other users will also not decrease,

which concludes that f(·) is non-decreasing monotone.

Submodularity. For submodularity, let δ(aij |A) be

the marginal gain by adding element aij to set A. It

can be formulated as the sum of increased probability

from all related users:

δ(aij |A) = f(A ∪ {aij})− f(A)

= δi(aij |A) +
∑

k∈N\{i}

δk(aij |A),

where δk(aij |A) is the increased activation probability

of user k by adding aij in set A. Since the class of

submodular functions is closed under non-negative lin-

ear combinations, function f(·) can be proved to be

submodular if the marginal gain of each user is non-

increasing.

For user i, by adding a budget element aij , the in-

creased probability is:

δi(aij |A) = wi(A ∪ {aij})− wi(A)

= (Fi(Ai ∪ {aij})− Fi(Ai))(1 − q(A−i, i)),

where A−i is the allocated budget set except Ai. Since

submodularity is the discrete analog of concavity, there

is Fi(U∪{aij})−Fi(u) > Fi(T∪{aij})−Fi(T ) if U ⊆ T .

Meanwhile, the term 1−q(A−i, i) is irrelevant with aij .

Therefore, we can conclude that wi(·) is submodular.

Similarly, for any other user k (k 6= i), the increased

probability can be formulated as:

δk(aij |A) = (q(A−k ∪ {aij}, k)−

q(A−k, k))(1− Fk(Ak)). (2)

As shown in Claim 1, there is ∂2q
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1. DiscreteGreedy
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i 6= j, there is

∂2f
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4 Scalable Algorithms

In Section 3, we have shown the approximation ra-

tio of the DiscreteGreedy algorithm. However, the al-

gorithm can still be computationally intensive for large

networks. When allocating the budget, in each itera-

tion, we need to compute and choose the user with the

largest “marginal gain”, which requires massive BFS

traversals in the networks and is often time consuming.

In this section, we try to scale up the DiscreteGreedy

algorithm by reducing the number of BFS traversals

when computing the marginal gain.

In the DiscreteGreedy algorithm, the marginal gain

is the sum of increased probabilities from all related

nodes. We need to compute the diffusion probability

q by running massive BFS from the given node ((2)),

which is time consuming. Note that the budget ele-

ments added in each iteration are uniform in our al-

gorithm. Accordingly, to avoid many traversals, we

propose to “update” the marginal gain of each node

instead of “computing” the marginal gain. Given the

diffusion probability q(A, k), we try to update it to get

q(A∪{aij}, k). When adding element aij , the difference

between them will be

q(A ∪ {aij}, k)− q(A, k)

=
∑

X,i∈Xk

P [X ](qX(A ∪ {aij}, k)− qX(A, k))

= (1−
1− Fi(A ∪ {aij}, k)

1. DiscreteGreedy++
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of a traversed node c, we examine if the directed edge

(c, k) is visited or not. If not, we can update the lower

bound diffusion probabilities as

rl(i, k) ← rl(i, k)(1 − µck(1− rl(i, c))).

The upper bound diffusion probabilities can be updated

as:

ru(i, k) ← ru(i, k) + µucru(i, k).

For the lower bound probability, the assumption is that

the diffusion probability on each path is independent.

And thus rl(i, k) is the negative of the probability that

k is not influenced by all of the incoming edges. For

the upper bound probability ru(i, k), we get the sum

of the probabilities from all incoming edges iteratively.

The details are presented in Algorithm 3. We compute

the reachability function of i from r(i, 1) to r(i, n). For

each neighbor k of the traversing node c in current, we

check if the directed edge (c, k) is visited. The proba-

bilities are updated if the edge is not visited. The al-

gorithm returns the average of the upper and the lower

probabilities.

1. BFSEstimate(i)



770 J. Comput. Sci. & Technol., July 2016, Vol.31, No.4

Table 2. Datasets
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Fig.5. Spread of advertising in the IC model with utility function Fi(bi) = bi
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Fig.7. Spread of viral advertising in the Coverage model with utility function Fi(bi) =
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pare the efficiency of the DiscreteGreedy and the Dis-

creteGreedy++ algorithm before and after using the

scaling-up techniques introduced in Section 4. The al-

gorithms are running on a Linux server with a 2.66 GHz

i7 CPU and 6 Gb RAM in C++ code. We also adopt

lazy forward methods[2] for the DiscreteGreedy and the

FullGreedy algorithms. The results of Uniform and

Proportional are not presented since both of them can

be finished in O(1) time. Fig.8 shows the running

time of different algorithms in the IC and the Cove-

rage model. As expected, DiscreteGreedy++ takes

much less time than DiscreteGreedy, since we adopted

scaling-up techniques in the DiscreteGreedy++ algo-

rithm. DiscreteGreedy++ can be very efficient under

the Coverage model even with millions of nodes. For

the IC model, the consumed time is still within an ac-

ceptable range. Even when there is a large gap be-

tween the granularity of the DiscreteGreedy++ and the

FullGreedy algorithms, the running time is almost the

same. Among the algorithms, PageRank achieves the

highest efficiency. However, the performance may be

too poor for usage.
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Fig.8. Running time of different algorithms in the IC and the Coverage model. (a) IC model. (b) Coverage model.

6 Conclusions

In this work, we studied budget allocation problem

in a social network to maximize viral advertising with

budget constraint. Compared with the classical influ-

ence maximization problem which aims to select the

most influential set of users, we proposed that user uti-

lities for being initial adopters are often probabilistic

rather than deterministic. In particular, the user uti-

lities can be modeled as non-decreasing concave func-

tions. Suppose the viral advertising can spread in the

social network according to the IC model. We for-

malized the budget allocation as an optimization prob-

lem and established its hardness. A novel Discrete-

Greedy++ algorithm with near optimal results was

proposed with performance guarantee, and scaling-up

methods were introduced for higher efficiency. Exten-

sive evaluations showed that our DiscreteGreedy++ al-

gorithm outperforms other intuitive heuristics signifi-

cantly in almost all cases.

For possible future work, we are interested in the

following aspects. First, we would like to learn the user

utility functions for being initial adopters empirically.

The online social networks have provided rich histori-

cal datasets of user behaviors and social interactions.

Thus, it is possible for us to infer user utilities accu-

rately. Second, even when the advertising can spread

in the social network according to the diffusion models,

the diffusion probabilities often depend on the content

of the advertising. We would try to encourage users to

composite advanced contents. For example, the users

can get incentives proportional to their contribution to

the viral advertising.

References

[1] Kempe D, Kleinberg J, Tardos É. Maximizing the spread of
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