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Abstract The incorporation of hydrogen in enstatite in a

hydrous system containing various amounts of NaCl was

investigated at 25 kbar. The hydrogen content in enstatite

shows a clear negative correlation to the NaCl-concentration

in the system. The most favourable explanation is the

reduction of water fugacity due to dilution. Other reasons for

the limited hydrogen incorporation at high NaCl levels, such

as a significant influence of Na+ on the defect chemistry or an

exchange between OH- and Cl-in enstatite, appear much less

important. A partition coefficient DNa
En/Fluid = 0.0013

could be determined, demonstrating that Na is less incom-

patible in enstatite than H. The new results support the idea

that dissolved components have to be considered when the

total hydrogen storage capacity in nominally anhydrous

minerals is estimated, especially in geological settings with

high levels of halogens, such as subduction zones.

Keywords Enstatite � Hydrogen incorporation �
Water activity � Sodium � Chlorine

Introduction

Significant traces of hydrogen are incorporated into nomi-

nally anhydrous minerals of the Earth’s upper mantle

(Kitamura et al. 1987; Bell and Rossman 1992; Ingrin and

Skogby 2000; Grant et al. 2007), influencing many physical

properties (e.g. Mackwell et al. 1985; Karato 1990; Mei

and Kohlstedt 2000; Wang et al. 2006; Yoshino et al. 2006)

and mantle processes, such as partial melting. More than

half of this hydrogen inventory is hosted in orthopyroxene

(Grant et al. 2007), which exhibits a rather narrow range

around 200 ppm (wt) H2O in mantle xenoliths from con-

tinental alkali basalts and kimberlites (Grant et al. 2007). In

contrast, natural mantle orthopyroxenes from sub-arc set-

tings show a much higher variability (40–260 ppm H2O)

and generally lower water contents (Peslier et al. 2002).

The incorporation of water in orthopyroxene has also been

investigated in many experimental studies (Rauch and

Keppler 2002; Stalder 2004; Stalder et al. 2005; Mierdel

et al. 2007), where up to several thousands ppm H2O have

been reported. In none of the previous studies the effect of

dissolved salts in the coexisting fluids has been examined.

NaCl is an important constituent of seawater and allows

substantial Cl-incorporation in the basaltic oceanic crust

and during serpentinization of mantle rocks at mid ocean

ridges. Upon serpentine breakdown the incorporated chlo-

rine is subsequently released into fluid phases during

subduction processes (Scambelluri et al. 1997, 2004) and

may affect the water activity in the mantle wedge. In this

study the effect of NaCl on the hydrogen incorporation in

pure enstatite is investigated. As a by-product we present

an upper value for Cl-solubility in enstatite, and discuss

consequences for the global chlorine cycle.

Experimental and analytical procedure

Orthopyroxene crystals were synthesised applying a method

similar to Stalder (2002). The starting mixtures consisted of
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an enstatite + quartz mixture (3:1 by weight), to which

solid NaCl or—in one case—KCl was added in different

amounts (Table 1). For most syntheses 50–55 mg oxide

mixtures and 10–15 mg H2O were sealed in a Pt-capsule

with an outer (inner) diameter of 4.0 (3.6) mm. In the most

NaCl-rich synthesis run RS122 only 4.5 mg H2O was added.

All syntheses were performed in an end-loaded piston

cylinder apparatus at 25 kbar and temperatures decreasing

from 1,400 to 1,150�C with a rate of 10–11�/h. When the

final temperature was reached, the run was terminated by

switching off the power.

After the run all charges were weighed, pierced and the

pH of the extruding fluid was checked with indicator paper.

The checked fluid was in all cases neutral to slightly alcalic

(pH = 7–9). Subsequently, the pierced capsules were dried

in an oven at 110–120�C, whereupon salt crystals formed

at the opening of the capsule. Run products of the dried

charges consisted of large orthopyroxene crystals (up

to 1 mm3), amorphous silicate quench material and salt

crystals.

From each experimental charge 2 of the largest crystals

were handpicked and orientated by their optical properties

parallel (100) and (010) in a thermoplastic resin, and ground

and polished (Table 1). After preparation the dimensions of

the cuboids were between 150 9 230 9 900 lm and

390 9 480 9 2,000 lm. In two cases (i.e. run RS118 and

RS122) the size of the synthesized crystals turned out to be

too small to allow alignment of individual crystals parallel

(100) and (010). Therefore two wafers—one parallel (100)

and one parallel (010)—were prepared. The thickness of

these wafers was between 70 and 180 lm.

Polarised IR-spectra were recorded on each polished

crystal face parallel to the main refractive indices na, nb

and nc in transmitted light. All IR measurements were

performed with a Perkin Elmer 2000 FTIR-spectrometer

coupled to an IR microscope. Measurements were taken

using a MIR globar light source, a KBr beamsplitter, a

MCT-detector and a wire-grid polarizer. For each spectrum

100–300 scans in the 1,000 and 5,000 cm-1 range were

acquired with a spectral resolution of 4 cm-1. In contrast

to Stalder (2004) and Stalder et al. (2005) background

corrections were carried out by adjusting a polynomial

baseline at 2,750–2,980, 3,250–3,300 and 3,450–

3,750 cm-1. In this way, the broad absorbance feature

centered at approximately 3,250 cm-1 was excluded for

quantification of water, leading to lower water contents

and spectra comparable to Grant et al. (2006). H-contents

(Table 1) were quantified by adding the a-, b- and

c-components of the background corrected polarised

measurements using the calibration of Libowitzky and

Rossman (1997).

After IR measurements all crystals were embedded in

epoxy and were analysed with a JEOL JXA 8900 RL T
a
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electron microprobe using an accelerating voltage of 15 kV

and a beam current of 30 nA. Albite, olivine and NaCl

were used as standards. For Si and Mg the analysis time

lasted 15 s on the peak and 5 s on the background, for Na

and Cl the analysis time lasted 150 s on the peak and 75 s

on the background on Ka emission lines. Five to ten points

were measured on each crystal. All analysed crystals were

stoichiometric within analytical error. Results for Na and

Cl are given in Table 1. Detection limits calculated on the

basis of counting statistics of the background signals were

30 ppm for Na and 10 ppm for Cl.

In order to get more information about the alkali content

of the alkali-poor crystals, samples were also analysed by

LA-ICP-MS. 23Na, 29Si, 35Cl, 37Cl and 39 K were measured

using a Perkin Elmer DRC II (Sciex, Canada) equipped

with a GeoLas Laserablation system (Mikrolas, Göttingen)

and a 193 nm Excimer Laser (Lambda Physik, Göttingen).

Ar-gas was used to transport laser ablation aerosols into the

ICP-MS. Results are given in Table 1.

Results

IR-spectra show for all samples absorption bands at the

same position (3,360 and 3,070 cm-1), but with different

intensity. The positions of the observed absorption bands

are identical to the positions in pure (Na-free) enstatite

(Fig. 1). The absorbance in different directions follows the

order E//nc � E//na C E//nb. In all samples, the c-com-

ponent (E//nc) of OH-dipole vectors accounts for 60–70%

of the total absorption.

Na-contents measured by laser ablation-ICP-MS are in

quite good agreement with electron microprobe data. In

contrast, Cl-contents measured by laser ablation-ICP-MS

deviate by approximately 1 order of magnitude from

electron microprobe data. The Cl level determined by

electron microprobe is just above the detection limit and no

correlation between Cl-content of the start mixture and

Cl-content in orthopyroxene could be revealed (Table 1). It

has to be noted that even electron microprobe analysis may

overestimate the real Cl-concentration of the samples, as

some Cl may have been excited from the epoxy matrix due

to secondary fluorescence. Therefore the values measured

by electron microprobe should be regarded as upper limit

for the real Cl-concentration. This idea is supported by the

fact that even in the pure enstatite sample—synthesized

in a nominally Cl-free system—a similar level of Cl is

revealed (Table 1). Laser ablation-ICP-MS is not the

method of choice to analyse low-level concentrations of

chlorine, but the exact reason for the elevated measured Cl-

concentrations could not be revealed. Possible explanations

are (1) volatilisation from the epoxy during ablation and/or

(2) matrix effects. As the Cl-content of nearly all samples

is within analytical error constant and independent on the

Na-content, a continuous low-level leakage from fluid

inclusions as Cl-source can be excluded. Though, laser

ablation turned out to be a valuable tool for detecting

NaCl-rich inclusions. Solid NaCl inclusions in the syn-

thetic crystals have not been observed under the

microscope, but can be inferred from the laser ablation-

ICP-MS signal (Fig. 2). In nearly all samples the time

resolved ablation signal shows a homogeneous NaCl/Si-

ratio (Fig. 2a). Only in the most NaCl-rich run, a simul-

taneous Na- and Cl-increase at constant Si-signal could be

observed (Fig. 2b), suggesting ablation of NaCl-inclusions

or NaCl-rich brines in the enstatite crystal.

K was for all laser ablation-ICP-MS analyses below the

detection limit (\10 wt. ppm).

Discussion

Reduction of H-incorporation

There are several possible factors to explain the reduced H

incorporation with increasing salt content in the system: (1)

OH- is replaced by Cl-, (2) Na+ affects the defect chemis-

try, and (3) the water fugacity is reduced due to the

dissolved salt.

Cl-concentrations in enstatite determined by electron

microprobe do not exhibit a significant trend over a broad

range of NaCl in the system (Table 1). Therefore, a

replacement of OH- by Cl- cannot account for the strong

decrease in H-content with increasing NaCl in the system.
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In addition, Cl-concentrations are generally too low to allow

a significant exchange of OH- and Cl-. Thirty-five wt ppm

Cl correspond to 100 Cl/106Si, which is more than an order of

magnitude less than the observed change in H/106Si

(Table 1).

From the IR spectra it is evident that all samples host the

same type of OH-defects, suggesting that Na+ does not

contribute to the generation of new OH-defect associates

(i.e. defects which are not already existing in pure ensta-

tite). In contrast, the negative correlation between the

H-content and the Na-content in enstatite (Fig. 3) may be

interpreted in a way that Na+ concurs with H+ during

charge balancing of the Mg-vacancies. This is, however,

not very probable, since KCl causes a reduction in

H-content similar to NaCl. In RS118 K was below detec-

tion limit and therefore (by mole) at least one order of

magnitude less abundant than Na in runs with comparable

NaCl concentrations in the starting mixture. Therefore the

influence on Na+ on H-incorporation in enstatite can be

neglected.

The only remaining important mechanism for the

decreased H-incorporation is the reduced water activity due

to dissolved salt (Fig. 4). It has to be stressed that—as far

as the nature of the fluid is concerned—there are several

unknowns in this study. The solubilities of oxide compo-

nents in the highly saline fluid are not known and therefore

it is not clear, whether aqueous fluid and hydrous melt

behave supercritical under the conditions of synthesis. In

the case of subcritical behaviour, partition coefficients

between aqueous saline fluid and hydrous melt are not

known either. The pure system SiO2–H2O would behave

supercritical (Kennedy et al. 1962) under the final synthesis

conditions (i.e. 25 kbar, 1,150�C), and approximately

40 wt% silica would be soluble in the fluid (Manning

1994). However, addition of salt at high pressure reduces

the silica content of the fluid (Newton and Manning 2000)

and may open the miscibility gap between aqueous fluid

and hydrous melt. From the results of the experimental

work of Newton and Manning (2000) it can be estimated

that an increase of XNaCl by 0.1 results in a decrease of

silica molality in the fluid of 0.2 log units. Furthermore, as

silica is mainly dissolved as dimer (H6Si2O7) in high

pressure fluid phases (Zotov and Keppler 2002; Newton

and Manning 2003), the mole fraction of H2O would for all

experimental runs be only moderately shifted towards

lower values. Therefore, only H2O and the amount of NaCl

(or KCl) added to the system was considered for calcu-

lating the H2O mole fraction. The strong initial decline in

hydrogen incorporation (Fig. 4) with increasing salinity

(decreasing water mole fraction) is independent on the

added salt, supporting the above made conclusion that Na-

incorporation has only very limited influence on hydrogen

incorporation in enstatite (at least in the studied system,

where no trivalent cations are present). From H2O

mole fractions, water activities were calculated by two
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models: (1) H2O activity is equal to the square of its

mole fraction (Aranovich and Newton 1997), and (2) the

ideal-fused-salt model involving fully dissociated NaCl

and ideal mixing of Na+ and Cl- ions with H2O molecules

(Bradley 1962; Newton and Manning 2006), where

aH2O ¼ ð1� XNaClÞ= 1þ XNaClð Þ:The latter model has been

modified taking into account varying degree of ionization

a of NaCl, leading to aH2O ¼ ð1� XNaClÞ=ð1þ aXNaClÞ
(Aranovich and Newton 1996), where the degree of ioni-

zation depends on the density of water under run

conditions. qH2O was obtained by extrapolation from

Halbach and Chatterjee (1982). For 25 kbar and 1,150�C

we obtain qH2O = 1.075 g/m3, leading to a = 1.46. Using

this parameter we obtain—except for the most water-rich

samples—a fair accordance to the experimental data points

(Fig. 4). The mismatch of the most water-poor data point

may be due to its location above the salt saturation level

(salt inclusions have been detected during laser ablation

analysis, Fig. 2), and its actual H2O mole fraction of may

be higher. It may also be possible that a changes with mole

fraction from initially high values at pure water towards

smaller values at higher salt concentrations, which would

both explain the sudden decrease of water in enstatite at

low NaCl mole fractions and the positive deviation of the

data point at high NaCl mole fraction.

Element partitioning

It is not known, whether at synthesis conditions a hydrous

melt coexists with an aqueous fluid or whether one

homogeneous fluid exists. Therefore, there are several

ways to estimate the partitioning behaviour of Na and H. A

lower estimate for the partition coefficient DNa
En/Fl can be

obtained, if it is considered that a highly saline aqueous

fluid, which contains most of the Na and Cl in the system,

is coexisting with a silicate melt. The partitioning of Na

between enstatite and fluid can then be calculated, con-

sidering the silica content dissolved in the aqueous fluid at

25 kbar and 1,150�C (Table 1) based on the experimental

results of Manning (1994) and Newton and Manning

(2000). The obtained value DNa
En/Fl = 0.0013 (Fig. 5) is

significantly higher than DH
En/Fl = 0.0003 (1889 H/106Si

corresponding to 170 wt ppm H2O in enstatite, divided by

60 wt% H2O in the fluid). An upper estimate for element

partitioning can be performed, if the bulk starting compo-

sition of each run is compared to Na and H content of the

synthesized crystals. In this case slightly higher partition

coefficients (i.e. DNa
En/Startmix = 0.0027, DH

En/Startmix =

0.0006) are obtained (Fig. 5), but the ratio of the two

coefficients stays the same. This means that Na is much

more compatible in enstatite than H, which substantiates

the above made conclusion that—at its best—only a small

fraction of the incorporated Na+-ions actually compensate

OH-defects in the enstatite lattice and by far most of

the Na+ has to be incorporated by another substitution
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mechanism. It can, however, be excluded that Na is

incorporated as NaCl or NaCl-fluid inclusions, since there

is no apparent correlation between the Na- and the

Cl-content of the enstatite crystals.

An upper limit for Cl-partitioning can also be estimated

from the results of the most Cl-rich run RS122. Consi-

dering electron microprobe results (Table 1) as upper limit

for the real Cl incorporated into the enstatite lattice, DCl
En/Fl

is at least one order of magnitude lower than DNa
En/Fl. This

means that Cl is the most incompatible volatile in our

study, in good agreement to estimates based on natural

systems (Saal et al. 2002; Straub and Layne 2003).

Implications for the Earth’s mantle

Estimates for the total concentration of chlorine in the

upper mantle range from 1 ppm for depleted MORB

mantle (Saal et al. 2002) to 17 ppm for pyrolite (McDon-

ough and Sun 1995), where a large proportion of the

subducted chlorine is transferred to the mantle reservoir

(Philippot et al. 1998). Models for the global chlorine cycle

suggest a balance between input through subduction and

output through magmatism (Ito et al. 1983; Straub and

Layne 2003). With respect to chlorine, the results of our

study are somewhat speculative. However, the most salt-

rich experimental run of our experiments (RS122), where

solid NaCl-inclusions have been inferred, sets an upper

estimate (i.e. 30 ppm) for Cl-incorporation in enstatite at

25 kbar and 1,150�C. This value is similar to the Cl-con-

tent of an orthopyroxene from a high pressure metamorphic

([700�C, 18 kbar) harzburgite converted from an antig-

orite serpentinite during subduction metamorphism

(Scambelluri et al. 2004), where 25 ppm Cl were detected.

Considering the limited Cl incorporation in our experi-

ments even at salt saturation, orthopyroxene does not seem

to be a major host for Cl in the mantle, unless Cl is

incorporated as fluid inclusions (Philippot et al. 1998).

On the other hand, the results of our study imply that H

incorporation in nominally anhydrous minerals in NaCl-

rich portions of the mantle (e.g. subduction settings) may

be more limited than previously thought. Low water con-

tents in pyroxenes from the sub-arc mantle wedge have

previously been interpreted to be controlled by the redox

state of the mantle rock (Peslier et al. 2002), since a nega-

tive correlation between oxygen fugacity and water content

of the pyroxenes could be established. On the basis of our

experimental results the salinity of the fluid phase could be

an alternative explanation. This aspect has so far not been

investigated in natural samples and deserves further scru-

tiny. Furthermore, it has to be taken into consideration that

water incorporation in orthopyroxene is strongly enhanced

by the presence of trivalent cations, such as Al3+ (Stalder,

2004; Mierdel et al. 2007). For natural orthopyroxenes, in

which these cations usually reach high concentrations (e.g.

typically up to several wt% Al2O3), the presence of

monovalent cations, such as Na+, may have a negative

effect on the water storage capacity.
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