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Abstract

Background: Animal mitochondrial (mt) genomes are characteristically circular molecules of
~16-20 kb. Medusozoa (Cnidaria excluding Anthozoa) are exceptional in that their mt genomes
are linear and sometimes subdivided into two to presumably four different molecules. In the genus
Hydra, the mt genome comprises one or two mt chromosomes. Here, we present the whole mt
genome sequence from the hydrozoan Hydra magnipapillata, comprising the first sequence of a
fragmented metazoan mt genome encoded on two linear mt chromosomes (mtl and mt2).

Results: The H. magnipapillata mt chromosomes contain the typical metazoan set of |3 genes for
respiratory proteins, the two rRNA genes and two tRNA genes. All genes are unidirectionally
oriented on mtl and mt2, and several genes overlap. The gene arrangement suggests that the two
mt chromosomes originated from one linear molecule that separated between nd5 and rns. Strong
correlations between the AT content of rRNA genes (rns and rnl) and the AT content of protein-
coding genes among 24 cnidarian genomes imply that base composition is mainly determined by mt
genome-wide constraints. We show that identical inverted terminal repeats (ITR) occur on both
chromosomes; these ITR contain a partial copy or part of the 3' end of cox/ (54 bp). Additionally,
both mt chromosomes possess identical oriented sequences (IOS) at the 5' and 3' ends (5' and 3'
IOS) adjacent to the ITR. The 5' IOS contains trnM and non-coding sequences (119 bp), whereas
the 3' IOS comprises a larger part (mt2) with a larger partial copy of cox/ (243 bp).

Conclusion: ITR are also documented in the two other available medusozoan mt genomes (Aurelia
aurita and Hydra oligactis). In H. magnipapillata, the arrangement of ITR and 5' |OS and 3' IOS suggest
that these regions are crucial for mt DNA replication and/or transcription initiation. An analogous
organization occurs in a highly fragmented ichthyosporean mt genome. With our data, we can
reject a model of mt replication that has previously been proposed for Hydra. This raises new
questions regarding replication mechanisms probably employed by all medusozoans, and also has
general implications for the expected organization of fragmented linear mt chromosomes of other
taxa.
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Background

Mitochondria were most likely acquired by the common
ancestor of eukaryotes [1-3]. Presumably, these organelles
originated from incorporated o-proteobacteria and still
carry their own, reduced genome [1]. Mitochondrial (mt)
genomes show very diverse organizations and are of a very
broad range of sizes [3-5]. In comparison to many protists
and plants, metazoans possess an even more reduced set
of mt genes and fewer non-coding regions [6]. Typical
metazoan mt genomes are circular DNA molecules of 16-
20 kb [6,7]. Remarkable exceptions are the linear mt
genomes of medusozoan cnidarians (Cnidaria excluding
Anthozoa). Linear mt genomes have not been found in
other metazoan taxa, but in various other eukaryotes (e.g.,
[8-12]). The linear structure of cnidarian mt genomes is
known from the work of Warrior [13], who separated the
DNA of isolated mitochondria via electrophoresis, as well
as from Bridge et al. [14] and Ender and Schierwater [15],
who applied rnl-probes to electrophoretically separated
DNA extracts. Most of the medusozoan mt genomes from
these studies were encoded on one ~16 kb molecule,
which has been verified by the first two sequences of such
linear metazoan genomes (Aurelia aurita (Scyphozoa)
[16], and Hydra oligactis (Hydrozoa) [17]). However, in
some Hydra species, and apparently in some Cubozoa, the
mt DNA is divided onto at least two different molecules
[13-15]. In the genus Hydra, mt genomes are organized on
one ~16 kb molecule or two ~8 kb molecules [13,14],
making this genus an excellent candidate in which to
examine changes due to fragmentation of mt genomes
from one to two chromosomes. The Hydra oligactis mt
genome, a 16.3 kb linear DNA molecule, was published
recently [17]. Pont-Kingdon et al. [18] sequenced a termi-
nal section (3,232 bp) of one of the two mt chromosomes
from Hydra vulgaris (as Hydra attenuata), and previous
hybridization experiments have shown that in this species
all four termini possess a 150-200 bp identical sequence
with unknown orientation to one another [13]. By provid-
ing the complete mt genome sequence of Hydra magnipap-
illata, encoded on two mt chromosomes, we now present
in detail the organization of such a fragmented linear mt
genome from early diverging Metazoa.

Methods

We assembled the two mt chromosomes by using publicly
available sequences from the Hydra magnipapillata whole-
genome shotgun sequencing project by conducting BLAST
searches [19] of several mt protein-coding genes against
the traces of H. magnipapillata (available via GenBank
[20]). Hits were used to initiate local genome assembly in
a bioinformatical pipeline (applying the cap3 assembler
[21]) to obtain the two mt chromosome sequences. The
chromosomes will be referred to as mtl (containing the
rnl gene; available at [EMBL: BN001179]) and mt2 (con-
taining the rns gene; available at [EMBL: BN001180]) (see
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also Additional file 1 for the list of trace IDs). mtl and
mt2 of Hydra share almost identical but inverted
sequences of 191-196 bp at each 5' and 3' end (inverted
terminal repeats (ITR), Figs. 1A, B, see below). Warrior
[13] previously reported that about 200 bp were identical
(with unknown orientation to one another) at the ends of
the mt chromosomes of Hydra vulgaris, and the 5' end of
one chromosome (corresponding to mt1) of this species
was sequenced by Pont-Kingdon et al. [18]. By comparing
our sequences with the experimentally verified 5' end of
mtl from H. vulgaris [18], we were able to infer the ends
of the H. magnipapillata mt chromosomes and found that
these predicted ends coincide with an abrupt decrease in
coverage in our assemblies (Additional file 2). This in
combination with the reported sizes of one (H. magnipap-
illata [18]) or both (H. magnipapillata and H. vulgaris [13])
mt chromosomes from the same or a closely related Hydra
species suggests that the excess sequences are artifacts, and
consequently they were omitted.

To exclude the possibility that other observations in our
assemblies originated from methodological artifacts, we
conducted additional experimental procedures and tests
as follows:

I. PCR experiments

PCR experiments were done with a closely related Hydra
species. We obtained specimens of Hydra sp. from the
Schulbiologie-Zentrum Hannover. DNA from one polyp
was prepared with the Chelex method (protocol as
described in [22]), 1 pl of the undiluted supernatant or 1
pl of a 1:10 dilution was used as template. Phylogenetic
analysis with partial cox1 data verified that our Hydra sp.
specimen is very closely related to Hydra magnipapillata
(see Results).

Primers (Additional file 3) were designed to confirm our
bioinformatically derived observations via PCR. The frag-
ments shown in Fig. 1 were amplified and sequenced
(some in two overlapping parts, see Additional file 3 for
details). Sequences have been submitted to GenBank
[GenBank: EU683621-EU683624].

2. Additional local genome assembly experiments

To exclude the possibility that we had amplified a nuclear
mt pseudogene (NUMT) of the nd5 and partial cox1 frag-
ment, we started different assemblies with the pipeline
originating from blast hits of a 200 bp fragment (100 bp
both down- and up-stream of the connection of nd5 and
cox1 in the assembly), as well as two assemblies starting
from the last 100 bp 3' of nd5, and the first 100 bp of the
incomplete copy of cox1. In the first two cases, only one
assembly was received, each time consistent with our
former assemblies. By starting with 100 bp of the partial
cox1, we recovered different assemblies, which were com-
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Organization of the H. magnipapillata mt chromosomes (mtl and mt2). A: In comparison to the linear mt genome
of H. oligactis (Hydrozoa) and Aurelia aurita (Scyphozoa), drawn to scale. Arrows indicate orientation of genes in Aurelia. Num-
bered black bars above H. magnipapillata mt chromosomes correspond to the PCR fragments amplified from Hydra sp. (Addi-
tional file 3). Arrows in grey indicate the proposed duplications of terminal sequences in the mt chromosome separation
process. B: Organization at the 5' and 3' ends of mtl and mt2 in H. magnipapillata. Arrows in the inverted terminal repeats
(ITR) are drawn according to the orientation of the cox/ fragment. C: Alignment of the ends of the ITR from H. oligactis, H. vul-
garis (mtl) and H. magnipapillata (mtl and mt2). * = sequence displayed as reverse complement.
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patible with one chromosomal assembly or the other. In
no case did we observe any inconsistencies or any pres-
ence of nuclear genes, which would have indicated that
the nd5-cox1 arrangement is part of a NUMT.

Phylogenetic analyses

The H. magnipapillata and Hydra. sp cox1 sequences from
our assembly and sequencing were manually aligned with
additional sequences from other Hydra and outgroup spe-
cies available from GenBank in the SeaView editor [23].
The final dataset contained 560 characters. A maximum
likelihood analysis was carried out in PAUP* 4.0b10 [24]
under a model of nucleotide evolution suggested by the
hierarchical likelihood ratio test in Modeltest 3.7 [25]; for
the bootstrap analysis (1,000 replicates) we applied the
same model. The dataset was also analyzed with MrBayes
v3.1.2 [26,27] (six substitution rates with a proportion of
invariant sites, two runs with eight chains each for 2 mil-
lion generations with a sample frequency of 100 genera-
tions, and a burn-in of 50,000 generations). Parameter
stabilization of the chains in MrBayes was monitored with
Tracer 1.4 [28], and convergence of chains was examined
with the diagnostics provided by the AWTY server [29,30].

Base compositions of cnidarian mt genomes

Sequences of 23 additional cnidarian genomes were
downloaded from GenBank [20] (see Additional file 4 for
taxa and accession numbers). The sequences of the 13 res-
piratory chain protein genes shared between all 24 mt
genomes and the sequences of rns and rnl were extracted
from the GenBank format using the Artemis software v.9
[31]. In some mt genomes the TRNA genes were not
entirely annotated in their full length. We therefore con-
sidered the non-coding regions around the apparently too
small genes as rRNAs. The corresponding taxa and posi-
tions in each sequence were: Nematostella sp. [GenBank:
NC _008164] (rns: 5054..6171; rnl: 10342..12484); Mussa
angulosa [GenBank: NC_008163] (rns: 6901..8038; rnl:
15327..17170); Astrangia sp. [GenBank: NC 008161]
(rns: 6899..7797; rnl: 12982..14681). The AT contents of
rRNAs and protein codon positions of the mt genomes are
shown in Additional file 4.

Results

Genes, base composition and codon usage

The two chromosomes of the H. magnipapillata mt
genome each carry one rRNA gene (mtl:rnl; mt2: rns).
Each of the assembled contigs of mtl and mt 2 is repre-
sented by > 7,000 single sequence reads from the trace
archive (Additional file 1). Our consensus sequence for
mtl is 8,194 bp long. This matches the length reported by
Bridge et al. [14] for this H. magnipapillata mt chromo-
some. The sequence of mt2 is shorter (7,686 bp).

http://www.biomedcentral.com/1471-2164/9/350

The H. magnipapillata mt genome includes 13 protein-
coding genes of the respiratory chain usually found in
other Metazoa. mt1 contains 6 protein-coding genes, rnl
and two tRNA genes; mt2 contains 7 protein-coding
genes, ns and one tRNA gene (Fig. 1A). All genes are uni-
directionally encoded on each of the two molecules and
densely arranged along the chromosomes. As in H. oligac-
tis, the longest non-coding intergenic region is 52 bp
between cox3 and nd2 [17]. Otherwise, subsequent genes
are separated by 0-5 bp or overlap for up to 10 bp (in nd6-
nd3 and nd1-nd4).

Like many other Cnidaria [16,17,32-34], the H. magnipap-
illata mt genome possesses only the two tRNA genes for
methionine (trnM; CAU) and tryptophan (&rnW; UCA).
trnW is only found on mtl, whereas identical copies of
trnM are present on both chromosomes (Fig. 1B).

Six amino acid codons are not used in the 13 protein-cod-
ing genes (Table 1), and all genes are terminated by TAA.
Apparently synonymous codons that posses an A or T,
instead of a G or C, at the third codon position are pre-
ferred in H. magnipapillata. To test whether this observa-
tion is caused by mechanisms that affect base
composition in the whole mt genome, we analyzed codon
usage in the 13 respiratory protein-coding genes in 24 mt
genomes of Cnidaria. We plotted the AT content at each of
the three codon positions against the AT contents of the
rRNA genes for every genome, as rRNA coding genes rep-
resent a different part of the mt genomes in terms of func-
tional constraints compared to protein-coding genes.
Remarkably, H. magnipapillata showed the highest values
for AT content at the third codon positions (89.8%) and
in the rRNA genes (78.1%; Fig. 2, black filled symbols).
Moreover, a high AT content in TRNA genes generally cor-
relates with the usage of A and T at third codon positions
in all Cnidaria (significant at p = 0.001), suggesting that
codon usage might be the result of a general selection for
base composition on the mt genome caused by interac-
tion of mutational, repair, replication and translational
mechanisms [35]. The AT content at the first and second
codon positions also correlates with that of the rRNA
genes (significant at p = 0.001), but here AT content rise at
a lower rate than the increasing AT content of the rRNAs
(regression line slopes: first codon position: 0.46; second:
0.33; third: 1.18). This is likely the result of selection on
certain amino acids. Cnidarians posses a lower AT content
at the first codon position than at the second (Fig. 2), with
H. magnipapillata and H. oligactis being the only excep-
tions (73.1% vs. 70.9% for H. magnipapillata, filled sym-
bols in Fig. 2).

Gene arrangement and inverted terminal repeats
Compared to the gene arrangement of A. aurita and H. oli-
gactis, only a few changes can be observed in H. magnipap-
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Base composition in cnidarian mt genomes. Correla-
tions of AT content (%) of mt rRNAs and the AT content (%)
in the codon positions |, 2 and 3 calculated from |3 protein-
coding genes of 24 cnidarian mt genomes (Additional file 4).
Black filled symbols = H. magnipapillata; grey filled symbols =
H. oligactis.

illata. Neglecting the positions of tRNAs, two blocks (cox2,
atp8, atp6, cox3, nd2, nd5 and rns; nd6, nd3, nd4L, nd1, nd4,
cob) of genes are identical across the three genomes, occur-
ring on mt1 or mt2, respectively, in H. magnipapillata (Fig.
1A). The mt genomes of H. oligactis and of H. magnipapil-

Table I: Codon usage.
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lata are entirely alignable and display a sequence diver-
gence of 12.3% (excluding the terminal chromosome
structures; see below).

As mentioned before, we found 191-196 bp of ITR at
both ends of mt1 and mt2. In the linear mt genomes of H.
oligactis and A. aurita, ITR were also present but were
longer (H. oligactis: 1,488 bp; A. aurita: 471 bp, [16,17]
assuming symmetry for unsequenced ends). Unlike ITR in
Aurelia [16], ITR in H. magnipapillata have a higher GC
content than the rest of the molecule (52.2% GC in ITR vs.
25.2% GC in 5' 10OS [see below], 27.6% GC in 3' IOS [see
below] and a mean of 22.5% GC for all remaining
regions). We found that a smaller part of 3' coxI (54 bp)
is included in all ITR of H. magnipapillata. Probably
because the 3' end of cox1 is not very conserved, Pont-
Kingdon et al. [18] missed this feature in their mt1 frag-
ment of H. vulgaris. The ITR regions of H. oligactis contain
a larger cox1 fragment (one non-functional copy at the 5'
end, functional coxI at 3' end, Fig. 1A). The remaining
sequenced 3' region of ITR in H. oligactis is very similar to
those found in H. magnipapillata and H. vulgaris (Fig. 1C),
but longer. Between H. magnipapillata and H. vulgaris, the
major difference is that a stretch of Gs (31 in H. vulgaris)
is significantly shorter in H. magnipapillata (11-16 at the
homologous region).

In H. magnipapillata mtl and mt2, we found additional
identical sequences at the 5' and 3' ends following (at the
5'ends) and preceding (at the 3' ends) the ITR. We refer to
those regions as identically oriented sequences (5' and 3'
IOS, Fig. 1B). After the ITR, the 5' IOS of both molecules
contain identical copies of non-coding DNA and trnM. At
the 3' IOS we found a larger partial copy of the 5' region
of cox1 on mtl. As a consequence of this arrangement,

Codon n Codon n Codon n Codon n
Phe TTT 406 Ser TCT 150 Tyr TAT 169 Cys TGT 39
TTC 32 TCC 15 TAC 14 TGC 2
Leu TTA 456 TCA 95 TER TAA 13 Trp TGA 74
TTG 33 TCG 2 TAG 0 TGG 3
Leu CTT 48 Pro CCT 6l His CAT 72 Arg CGT 6
CTC 4 CCC 9 CAC 8 CGC 0
CTA 55 CCA 53 Gln CAA 56 CGA 0
CTG 3 CCG 2 CAG 3 CGG 0
lle ATT 304 Thr ACT 92 Asn AAT 217 Ser AGT 79
ATC 36 ACC I AAC 43 AGC 16
ATA 298 ACA 51 Lys AAA 19 Arg AGA 51
Met ATG 86 ACG 0 AAG I AGG 0
Val GTT 77 Ala GCT 90 Asp GAT 67 Gly GGT 65
GTC 7 GCC 7 GAC 14 GGC 9
GTA 84 GCA 42 Glu GAA 82 GGA I
GTG 6 GCG 0 GAG 3 GGG 26
Codon frequency among the 3,987 codons of the |3 protein-coding genes in H. magnipapillata.
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mtl and mt2 share 310 bp (ITR+5' IOS) at the 5' end and
436 bp (3' IOS+ITR) at the 3' end, giving both molecules
a specific orientation.

Using PCR experiments with the closely related Hydra sp.,
we verified the following arrangements initially observed
in the H. magnipapillata sequences (compare Fig. 1A): (i)
the presence and orientation of the ITR at all four chromo-
some ends could be shown, as well as the presence of par-
tial cox1 sequences in the ITR; (ii) identical regions are
shared at the 5' and 3' end, respectively, between mt1 and
mt2 adjacent to the ITR; and (iii) within the latter regions,
the 5' motif contains trnM, which therefore appears in two
copies in the genome, and a larger sequence of cox1 forms
the shared 3' motif of mt1 and mt2.

Phylogenetic analysis

The tree topology derived from our phylogenetic analysis
of cox1 shows the close relationship of Hydra sp. and H.
magnipapillata (Fig. 3), thus ensuring that we used an
appropriate taxon to test our results. H. vulgaris (Two
sequences from GenBank) is paraphyletic, which reflects
the difficult taxonomy of the genus [36]. The presented
phylogeny, in combination with the mt genome organiza-
tion, supports the view that the ancestral state of mt
genome organization in the genus Hydra was a single lin-
ear mt chromosome.

Discussion

Linear mt genomes and fragmentation of mt chromosomes
in Cnidaria

Linearity of mt genomes seems to have evolved once after
the divergence of Medusozoa from Anthozoa. Fig. 3A
summarizes the results of different studies [13,15-17],
mapped on a cnidarian phylogeny [37]. A fragmentation
of mt genomes has been reported from several Hydra spe-
cies (Hydrozoa) [13,14] and Cubozoa [15]. Uncertainties
remain for Cubozoa: Bridge et al. [14] studied the same
cubozoan species Carybdea marsupialis as Ender and Schi-
erwater [15], but reported a single ~16 kb linear mt
genome, while in the more recent work, a ~4 kb fragment
was shown to carry the rnl gene. Because Ender and Schi-
erwater [15] were able to repeat the experiments with dif-
ferent DNA isolates of C. marsupialis and obtained
concordant results from an additional cubozoan species
(Tripedalia cystophora), an experimental error seems
unlikely. However, their conclusion of four equally-sized
mt chromosomes in Cubozoa is not directly supported by
their identification of a 4 kb chromosome carrying rnl.
Alternatively, one could assume the presence of a single
~12 kb mt counterpart, as indicated in Fig. 3A. Such an
arrangement is possible, e.g., if rnl and cox1, the two genes
that are encoded in different orientation to the other mt
genes in A. aurita [16], were encoded in one chromosome
in Cubozoa, and the remaining genes on a second chro-
mosome.

http://www.biomedcentral.com/1471-2164/9/350
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Figure 3

Evolution of cnidarian mt organization. A. Summary of
relationships of higher cnidarian taxa according to nc Small
and Large Subunit rRNA data [37], and the organization of
mt genomes. Note that in [15] only the size of mt chromo-
some carrying rnl was examined. B. Summary of relationships
within the genus Hydra based upon our ML and Bayesian
analyses of partial cox/ data, rooted with other hydrozoan
sequences from GenBank (accession numbers are given after
each species name). Support values >50 are shown above
branches (ML bootstraps/Bayesian posterior probability, * =
100 in both analyses). Sequences from this study are bold.
Expected mt genome organization is shown in grey.

Isyn.: Hydra viridis; H. viridissima.

However, given the available data it seems reasonable to
assume that fragmented linear genomes occur in both
Cubozoa and Hydrozoa (in some members of the genus
Hydra). This suggests from an evolutionary perspective
that the mt genome in the common ancestor of Meduso-
zoa was linear and then independently split into different
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chromosomes in Hydra (Fig. 3B), and in at least some
Cubozoa (compare Fig. 3A).

A possible mechanism for the origin of linear chromo-
somes from a circular molecule is the integration of one or
more resolution elements [4]. The circular DNA molecule
would be split into one or more linear molecules with
identical ends. In Medusozoa, the processes of lineariza-
tion and the split of one linear into two linear chromo-
somes were obviously different processes as shown in the
phylogenetic trees (Fig. 3). The linearization, possibly
occurring in the last common ancestor of medusozoans,
seems to have preceded the splitting of the chromosomes
by a long time. If the ancestral linear mt chromosome of
Medusozoa originated by introduction of a resolution ele-
ment, one probably would not expect to observe its origi-
nal motifs, which would occur as identical repeats at the
two ends of the linear molecule [4]. Indeed, the ends of
linear medusozoan mt chromosomes have inverted termi-
nal motifs (the ITR), instead of direct repeats. The splitting
of ancestral linear mt chromosomes as in H. magnipapil-
lata (and possibly Cubozoa) happened much later in evo-
lutionary history, contradicting the view that the two or
more linear mt chromosomes in Medusozoa directly orig-
inated from one circular DNA molecule.

Fragmented mt genomes are present in various eukaryotic
taxa, e.g., in dinoflagellates [38,39], Ichthyosporea [12]
and Fungi [40]. In Metazoa, fragmented mt genomes are
known from the genera Globodera (Nematoda [41-43]),
Dicyema (Mesozoa [44]) and the rotifer Brachionus plicati-
lis [45], but unlike in H. magnipapillata, in these taxa the
genomes are encoded on several small circular molecules.
The mt chromosomal organization observed in H. magni-
papillata supports the hypothesis of an ancestral, linear
chromosome in Hydra (Fig. 3B), as represented by the mt
genome of H. oligactis [17], which has been split in two
between nd5 and rns.

Function of ITR and IOS

Warrior [13] already suggested the presence of identical
terminal sequences on both chromosomes of H. vulgaris.
We now show that these ends are arranged as ITR on mt1
and mt2, as in other medusozoans [16,17]. In H. oligactis,
which in the phylogenetic tree branches off before Hydra
species carrying two mt DNA molecules (Fig. 3B), the sin-
gle linear mt chromosome has ITR containing a large copy
of the 5' end of cox1. Only the ITR at the 3' end has been
completely sequenced [17]. Based on our findings in H.
magnipapillata, we predict that the unsequenced 5' end is
almost identical to the 3' motif (Fig. 1), and we expect that
about 150 bp remain unsequenced on the 5' end (in con-
trast to the 65 bp that have been proposed [17]). In Hydra,
partial copies of coxl play a crucial role as part in ITR
regions at the chromosome ends (Fig. 1, [17]). The ITR in
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H. magnipapillata contains only a short sequence of the 3'
end of cox1 (54 bp, compared to the 1,284 bp in H. oligac-
tis), suggesting that large parts of the cox1 copies were lost.
A simultaneous duplication of 5' ITR (containing the
already shortened partial coxI copy) and the 5' IOS motif
seems likely to have occurred in the process of chromo-
some splitting. In this case, the longer cox1 copy (contain-
ing additional 240 bp of cox1) is a duplication of the
functional cox1 of the original 5' end of a single mt chro-
mosome (Fig. 1A).

ITR of linear mt molecules are present in other taxa
besides medusozoans, e.g., in yeasts (e.g., [9]) and in the
green algae Chlamydomonas reinhardtii [10]. Furthermore,
in the green algae Polytomella parva, identical ITR are
present at all ends of the two linear mt chromosomes [11],
similar to what we observe in H. magnipapillata. We report
5'and 3' IOS as an additional shared feature of the two mt
chromosomes. Interestingly, such an arrangement of ITR
and 5' and 3' IOS is also seen in another, highly frag-
mented eukaryotic mt genome. In the ichthyosporean
Amoebidium parasiticum, mt genes are distributed over sev-
eral hundred different chromosomes, each of which also
possesses ITR and 5' and 3' 1OS [12].

Pont-Kingdon et al. [18] speculated that there may be a
role for transcription initiation at the 240 bp 5' of trnM,
which they found in their H. vulgaris (as H. attenuata) par-
tial mtl sequence. Considering that transcription initia-
tion within the ITR would result in energetically expensive
nonsense transcripts (since all genes are encoded on only
one strand), transcription is more likely to start in the
adjacent, non-coding regions of the 5' 10S. In H. magni-
papillata and H. vulgaris this region within the 5' 1OS is 40
bp long and lies between the cox1 copy and trnM (Fig. 1B).
In H. oligactis, the non-coding region between the ITR and
trnM is only 6 bp. However, a striking sequence similarity
can be observed near trnM between H. oligactis and H. vul-
garis (with the same sequence in this region as H. magni-
papillata) [17]. There is a 14-bp motif (TTATTTRRTCTTCT)
that is shared between the species and differs by the last 3
bp from the 3' ITR+3 bp counterpart in H. oligactis. This
motif might be involved in transcription initiation. If so,
the difference in the very last 3 bp between the 5' end and
its counterpart on the reverse strand in the ITR of H. oligac-
tis prevents a functional transcription signal on the non-
coding strand in this species. A crucial function for tran-
scription initiation would explain selective pressure for
maintaining the 5' IOS of both molecules after the ITR in
H. magnipapillata. All mt chromosomes from Amoebidium
parasiticum that contain coding genes are transcribed from
5'10S to 3' 108, as in H. magnipapillata [12]. This observa-
tion led Burger et al. [12] to the conclusion that the IOS in
Amoebidium are responsible for transcription initiation (5'
IOS) and termination (3' I0S). While in H. magnipapillata
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we expect the same function for 5' I0S, the role of the
additional partial cox1 copy within the 3' IOS of mt1 and
mt2, if any, remains unknown; considering that the end of
cox1 is part of the ITR, transcription can only be termi-
nated in ITR and not in the 3' IOS. The sequence homol-
ogies of ITR and 10S within or between mt1 and mt2 are
probably not the result of a relatively recent origin from
ancestral sequences, as a first duplication of partial cox1 is
already observed in H. oligactis and therefore predates the
separation process. The substitutions between ITR (partial
cox1) of the two species are found in all ITR copies in each
mt genome. Considering this and the fact that similar
arrangements are found in other eukaryotes [8-12,16], it
seems more likely that concerted evolution maintains the
almost identical sequences, probably caused or influ-
enced by the yet unknown mt genome replication mecha-
nism. Terminal sequences of linear DNA molecules play a
crucial role in mt replication [4]. The main problem in the
process of linear chromosome replication is the mainte-
nance of the 5' ends. In nuclear (nc) chromosomes this is
normally achieved by telomerase, an enzyme that adds
short sequence motifs in tandem repeats at the end of
each molecule to compensate for loss at the 5' end that
occurs in each replication cycle [46]. Consequently, in
Hydra as in most Metazoa, the motif (TTAGGG),, is found
at the end of nc chromosomes [47]. The termini of Hydra
mt chromosomes are much more complex, and their
maintenance during replication is not yet understood but
is most likely telomerase independent [13]. Warrior [13]
suggested an mt replication mechanism for the two H. vul-
garis mt chromosomes similar to that of T7 bacteri-
ophages. His conclusion was based upon observations
from hybridization experiments, which showed the pres-
ence of identical terminal sequences that he assumed to
have the same orientation at the 5' and 3' ends. According
to this model, intermediate concatamers are formed, and
via ligation, site-specific nicking and elongation, the 5'
ends are finally filled. Based on our data we can reject this
model, because we showed that the terminal sequences in
H. magnipapillata are inverted (ITR) and therefore do not
allow the necessary concatamerization in the proposed
way. Similarly, ephemeral circularization as in the phage
lambda is not possible when terminal sequences are not
direct repeats, but inverted.

Different replication mechanisms for linear chromo-
somes have been reported or proposed (for review, see
[48]). Solutions for maintaining the terminal structure in
sequences with ITR include (a) covalently bound proteins,
which also could serve as primers for a 'racket frame' rep-
lication (e.g., in linear mt chromosomes of plants and
fungi or adenoviruses [48,49]), (b) 5' and 3' ends of chro-
mosomes that are connected by a hairpin-loop (e.g., in
some yeasts [9,48]) and (c) single-stranded 3' overhangs
(e.g., in Chlamydomonas reinhardtii [10]). Warrior [13]
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showed that the first two possibilities are not realized in
H. wvulgaris. The mtreplication mechanism in
Chlamydomonas requires an internal repeat of the single-
stranded 3' overhangs [10]. We cannot entirely rule out
the existence of short single-stranded 3' overhangs, as it is
possible they might have been missed due to our meth-
ods. The outermost sequence at least cannot be part of a
repeat motif, as our PCR amplification of Hydra sp. did
not yield fragments of different sizes. Furthermore, nei-
ther in mt1 of H. vulgaris nor in the mt genome of H. oli-
gactis were additional sequences or repeats found [13,17].
Therefore, although a similarity to the mt replication of C.
reinhardtii cannot be excluded, we find that mechanisms
for linear mt chromosome replication are too diverse and
that too many details are still unknown [4,48] for us to
draw further conclusions about the replication process in
H. magnipapillata from the presence of the ITR alone. Con-
sidering that ITR are a shared feature among all three
available sequences of medusozoan mt genomes (H. oli-
gactis [16,17], A. aurita [16,17] and H. magnipapillata), it is
very likely that the mechanisms for mt replication are sim-
ilar in all medusozoans and are still the same after the
fragmentation of the mt genome. Keeping in mind that
similar arrangements of ITR and 10S are found in Amoe-
bidium parasiticum, the mt replication mechanisms of H.
magnipapillata and Medusozoa are probably not unique
among eukaryotes.

Conclusion

The H. magnipapillata mt genome represents the first com-
plete sequence of a linear metazoan mt genome that con-
sists of two separate molecules. The gene arrangements
and our phylogenetic analysis suggest that mtl and mt2
originated from an ancestral linear mt genome, as found
in H. oligactis, that at some point divided in two between
nd5 and rns (Figs. 1 and 3). Of most interest is the organ-
ization at the ends of the two mt chromosomes (Fig. 1).
We show that H. magnipapillata has ITR, which include a
part of cox1 (at the 3' ITR of mt2) or partial copies of the
5' end of cox1 (all other ITR). We conclude that mecha-
nisms for mt replication in Hydra species are different
from the previously proposed ones and probably are
shared among all medusozoans. In addition to ITR, both
mt chromosomes of H. magnipapillata have identical
motifs on their 5' and 3' ends, called respectively the 5'
I0S and 3' IOS (Fig. 1). The 5' I10S includes trnM and a
non-coding region, including a motif that may play a role
in transcription initiation. The 5' IOS is probably the
result of a duplication during the separation process of a
single ancestral mt chromosome. The organization of the
ITR and 5' and 3' IOS is not unique among eukaryotes
with fragmented linear mt genomes. ITR most likely play
arole in mt replication, while the duplication of the 5' end
of an single ancestral linear and unidirectionally-encoded
mt chromosome (with the presence of 5' IOS) and its con-
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certed evolution ensure that transcription of all mt genes
is maintained after fragmentation of linear mt chromo-
somes. A similar arrangement of ITR and 10S regions can
therefore be expected in the apparently fragmented mt
genomes of Cubozoa and other eukaryotes with two or
more linear mt DNA molecules.
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