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Abstract We propose a parametric test for bimodality based on the likelihood prin-
ciple by using two-component mixtures. The test uses explicit characterizations of
the modal structure of such mixtures in terms of their parameters. Examples include
the univariate and multivariate normal distributions and the von Mises distribution.
We present the asymptotic distribution of the proposed test and analyze its finite sam-
ple performance in a simulation study. To illustrate our method, we use mixtures to
investigate the modal structure of the cross-sectional distribution of per capita log
GDP across EU regions from 1977 to 1993. Although these mixtures clearly have
two components over the whole time period, the resulting distributions evolve from
bimodality toward unimodality at the end of the 1970s.

Keywords Bimodality · Convergence analysis · Cross-sectional income
distribution · Likelihood ratio test · Finite mixture

1 Introduction

Analyzing the modality of a random sample’s distribution is an important problem,
especially for proper graphical visualization of the data. In particular, we must decide
whether modes which are present in a certain fit are merely sampling artifacts or
whether they are actual features of the underlying density.
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Most testing procedures for multimodality suggested in the literature are nonpara-
metric in nature. The arguably most popular method, which is based on kernel esti-
mates with the normal kernel, was suggested by Silverman (1981). He observed that
for fixed observations the number of modes in such an estimate is a monotonically
decreasing function of the bandwidth. Using this fact Silverman (1981) defined the
k-critical bandwidth hk as the minimal bandwidth for which the kernel estimate still
just has k modes. If hk exceeds a critical value, which is constructed from a bootstrap
procedure, then the hypothesis for k modes of the underlying density is rejected. See
also Mammen et al. (1992), Fisher et al. (1994) and Hall and York (2001). A test for
unimodality against multimodality—called the dip test—is based on measuring the
distance between the empirical distribution function and the class of unimodal distri-
bution functions (Hartigan and Hartigan 1985). Müller and Sawitzki (1991) used the
so-called excess mass functional to construct a test for k-modality. For k = 1 their
test is equivalent to the dip test. See also Fisher and Marron (2001).

The notion of multimodality of a population’s distribution is closely related to the
notion of population heterogeneity. A popular way to model population heterogene-
ity parametrically is via mixture models. In particular, the likelihood ratio test for ho-
mogeneity in two-component mixtures has been extensively studied in recent years,
cf. e.g. Chen et al. (2001). However, mixtures with two distinct components need
not be bimodal, and two component mixtures of unimodal component densities can
have more than two modes. Therefore, there is no immediate connection between the
number of components in a mixture and the number of modes of the resulting density.
Nevertheless, the modal structure of two-component mixtures of certain parametric
families, notably the normal distribution (Robertson and Fryer 1969) and the von
Mises distribution (Mardia and Sutton 1975), is completely known in terms of the
parameters of the mixture. For two-component mixtures, for which such an explicit
characterization of the modal structure is available, we construct a likelihood ratio
(LR) test for unimodality against bimodality. The asymptotic distribution of the LR
test for bimodality, though not a standard χ2-distribution, can be deduced from exist-
ing results on the behavior of LR statistics on the boundary of the parameter space,
cf. Chernoff (1954) and Self and Liang (1987).

When compared to the nonparametric methods mentioned above, the LR test has
certain merits as well as certain limitations. Concerning the advantages, the LR test is
more powerful than competing nonparametric methods if the distributional assump-
tions are satisfied. Furthermore, using von Mises mixtures, the LR test can easily
be applied to circular data. Note that for circular data, only a few methods are avail-
able, notably the tests by Fisher and Marron (2001) and by Basu and Jammalamadaka
(2002). Moreover, using recent results by Ray and Lindsay (2005) on the modal struc-
ture of multivariate normal mixtures, it can be extended to the multivariate setting
where no methods seem to be available yet. Concerning limitations, the LR test can
only test for unimodality against bimodality and not for k against more than k modes,
since there are no parametric descriptions for these cases. Furthermore, it loses power
if the mixture component densities are not normally distributed but have heavier tails
(like the t-distribution).

Section 2 describes the asymptotic distribution of the LR test for bimodality in
two-component mixtures and gives two examples. Section 3 investigates the perfor-
mance of the LR test via a simulation study. As an illustration, Sect. 4—following
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Pittau and Zelli (2005, 2006)—analyzes the cross-sectional distribution of per capita
log GDP across EU regions via mixtures. After excluding the mere urban areas, it
turns out that a two-component mixture model with equal variances for the two com-
ponents adequately describes the data for all years. We further investigate whether the
distribution is actually bimodal, both by using Silverman’s test as well as via the LR
test for bimodality. Silverman’s test can never reject the hypothesis of unimodality. In
contrast, for the years 1977–1979, the LRT rejects unimodality with level 5%, while
in the following years it can no longer reject this hypothesis with increasing p-values.
Thus, while the cross-sectional distribution of per capita log GDP in the EU regions
under investigation remains heterogeneous in the sense of being well-modeled by a
two-component mixture of normal distributions, these components only significantly
result in a bimodal distribution in the years 1977–1979, while in the following years
the two components start to merge and form a unimodal distribution.

2 The likelihood ratio test for bimodality

Let f (x; θ), θ ∈ � ⊂ R
d , x ∈ R

q , be a parametric family of q-dimensional densities,
and consider the two-component mixture family

f (x; θ1, θ2,p) = pf (x; θ1) + (1 − p)f (x; θ2),

where

(θ1, θ2,p) ∈ � × � × [0,1] = �mix ⊂ R
2d+1.

In order to allow for possible joint parameters of the component densities (e.g. equal
variances), we consider a subset Emix ⊂ �mix, where Emix ⊂ R

q for a minimal q ≤
2d+1. Suppose that the mixture density is at most bimodal, so that we can split the set
Emix disjointly into Emix = Eunim ∪ Ebim, the unimodal part Eunim and the bimodal
part Ebim. We will denote the boundary between Ebim and Eunim by ∂Eunim, i.e.
∂Eunim = Eunim ∩ Ebim, where Ebim denotes the closure of Ebim. Given observations
X1, . . . ,Xn from the mixture density, we consider the log-likelihood function

Ln(θ1, θ2,p) =
n∑

k=1

logf (Xk; θ1, θ2,p).

Assumption 1 The partial derivatives of logf (x; θ1, θ2,p) of order 3 with respect
to θ1, θ2 and p exist a.s., at least in a neighborhood N of the true value (θ0

1 , θ0
2 ,p0).

Assumption 2 For (θ1, θ2,p) ∈ N , the first- and second-order partial derivatives of
f (x; θ1, θ2,p) are uniformly bounded in absolute value by a function F(x) ∈ L1(R),
and the third-order partial derivatives of logf (x; θ1, θ2,p) are uniformly bounded in
absolute value by a function H(x) with EH(X1) < ∞.

Assumption 3 The expectation of the matrix of second-order partial derivatives of
logf (x; θ1, θ2,p) is finite and positive definite for (θ1, θ2,p) ∈ N .
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Note that Assumption 3 will not be satisfied in a neighborhood of a single-component
density (i.e. if p = 0 or p = 1 or θ1 = θ2, see e.g. Goffinet et al. 1992). However, for
unimodal component densities such as normal or von Mises densities (see the fol-
lowing examples), a density on the boundary ∂Eunim will be a proper two-component
mixture, so that Assumption 3 is satisfied.

Theorem 1 Suppose that the true parameter vector (θ0
1 , θ0

2 ,p0) of the mixture den-
sity lies on the boundary ∂Eunim, and that locally around (θ0

1 , θ0
2 ,p0), ∂Eunim is a

smooth (q −1)-dimensional surface in R
q . If furthermore Assumptions 1–3 hold true,

then we have that

Rn := 2
(

sup
(θ1,θ2,p)∈Emix

Ln(θ1, θ2,p) − sup
(θ1,θ2,p)∈Eunim

Ln(θ1, θ2,p)
)

D→ (
χ2

0 + χ2
1

)
/2, (1)

where χ2
0 is the measure with mass one at x = 0 and χ2

1 is the chi-square distribution
with 1 degree of freedom.

This result follows from the theory of the likelihood ratio test for parameter vectors
which lie on the boundary of the parameter space, cf. Chernoff (1954) and Self and
Liang (1987). Note that if the true parameter vector lies in the interior of Eunim, then
due to consistency, the unrestricted maximum likelihood estimator will asymptoti-
cally lie in a neighborhood U of θ0 with U ⊂ Eunim, so that Rn → 0 in probability.
Therefore the test will also asymptotically keep the level in this case.

Example 1 (Normal distribution) For the normal density f (x;μ,σ) = 1√
2πσ

·
e
(− (x−μ)2

2σ2 ) we obtain the general two-component mixture as follows:

f (x;p,μ1,μ2, σ1, σ2) = p f (x;μ1, σ1) + (1 − p)f (x;μ2, σ2), (2)

where 0 ≤ p ≤ 1 and without loss of generality, μ2 ≥ μ1. Introducing the parameters
r = σ1/σ2 and d = (μ2 −μ1)/(2

√
σ1σ2), one easily sees that f (x;p,μ1,μ2, σ1, σ2)

has the same number of modes as f (x;p,−d, d, r,1/r), cf. Behboodian (1970).
Thus, bimodality solely depends on the three parameters (p, d, r). Let us mention that
such an argument can be made for general location-scale families (e.g. also for the t-
distribution with fixed degrees of freedom). In case of equal variances, σ1 = σ2 = σ ,
one obtains r = 1, and the conditions read as follows: f (x;p,μ1,μ2, σ ) is unimodal
if and only if d ≤ 1 or if

d > 1 and
∣∣log(1 − p) − logp

∣∣ ≥ 2 log
(
d −

√
d2 − 1

) + 2d
√

d2 − 1, (3)

otherwise, it is bimodal. In Fig. 1, the region of bimodality is depicted, where for
r �= 1 we used the characterization in Robertson and Fryer (1969).

If we assume that the variances σ1 = σ2 = σ are equal (though possibly unknown)
and that p is known and fixed, then the smoothness assumption on the boundary of
the unimodal parameter domain is satisfied everywhere, and thus Theorem 1 holds
true.
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Fig. 1 Regions of bimodality of
the normal distribution, where
d = (μ2 − μ1)/(2

√
σ1σ2) and

r = σ1/σ2. On the right side of
the curves are those parameter
constellations of p and d for
which, given fixed r , the
resulting mixture is bimodal

This is obvious, e.g., for the case p = 1/2, in which case the mixture is unimodal
with mode at (μ1 + μ2)/2 if and only if μ2 − μ1 ≤ 2σ . For other values of p it
follows from (3). However, in case of variable p and equal variances, the boundary
has a singularity for d = 1 and p = 1/2, which follows from (3) by taking equality
there and the limit d → 1.

If d = 1 and p = 1/2, the likelihood ratio statistic will be asymptotically stochas-
tically smaller than the limit distribution in (1). This is because the angle between the
tangents to the bimodal region at these points is less than π , so that the unrestricted
ML estimator will in more than 50% of all cases fall into the unimodal region, and
the LR statistic will be zero. See also Fig. 1. In summary, a test based on the critical
value of the 1/2 (χ2

0 +χ2
1 ) distribution will asymptotically keep the level everywhere

in the unimodal parameter space. Extensions to the characterization of the number of
modes of higher dimensional normal distributions were obtained by Ray and Lindsay
(2005).

Example 2 (Von Mises distribution) The von Mises distribution is given by the den-
sity

f (x;μ,κ) = 1

2πI0(κ)
exp

(
κ cos(x − μ)

)
, 0 ≤ x < 2π,

where μ ∈ [0,2π), κ > 0 and I0(κ) is a norming factor given by the modified Bessel
function of the second kind. The two-component mixture of von Mises distributions
will be denoted by

f (x;p,μ1,μ2, κ1, κ2) = pf (x;μ1, κ1) + (1 − p)f (x;μ2, κ2),

where w.l.o.g. μ2 − μ1 =: d ∈ [0,π] (since the maximal distance on the circle of
two points along the arc is π ). Mardia and Sutton (1975) gave precise conditions for
bimodality for general parameters constellations. Here we review only their results
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for the case of equal concentration parameters, i.e. κ1 = κ2 = κ . In this case, the
mixture is unimodal if and only if either d = 0 or

• d = π and 0 ≤ p ≤ (1 + exp(2κ))−1 or (1 + exp(−2κ))−1 ≤ p ≤ 1 or
• 0 < d < π and either

– sind < 2κ sin3(d/2), 0 ≤ p ≤ 1, or
– sind ≥ 2κ sin3(d/2) and 0 ≤ p ≤ −t (δ)/(1 − t (δ)) or 1/(1 − t (δ)) ≤ p ≤ 1,

where δ is the solution of

2κ cos3 δ − κ(1 + cosd) cos δ − 2 cos(d/2) = 0, 0 < δ < d/2, (4)

and

t (δ) = − sin(d/2 + δ)

sin(d/2 − δ)
exp

(−2κ sin(d/2) sin δ
)

The conditions for von Mises mixtures are more complicated than those for nor-
mal mixtures, since it is not a simple location-scale family (this notion is not de-
fined for circular distributions). Still, although one has to distinguish several cases,
these cases merge continuously. For example, for sind = 2κ sin3(d/2), the mix-
ture is still unimodal for all 0 ≤ p ≤ 1. Furthermore, for d → π , one has that
−t (δ)/(1 − t (δ)) → (1 + exp(2κ))−1 (and similarly on the other side). In Fig. 2,
the region of bimodality is displayed.

For fixed p, Theorem 1 is again generally applicable. However, for p variable and
equal concentration parameters, there occurs a singularity on the boundary of the set
of unimodal parameter constellations for p = 0.5 if sind = 2κ sin3(d/2). Again, the
test will nevertheless asymptotically keep the critical value.

Fig. 2 Regions of bimodality of
the von Mises distribution,
where μ = μ2 − μ1 and
κ1 = κ2 = κ . On the right side
of the curves are those
parameter constellations of p

and μ for which, given fixed κ ,
the resulting mixture is bimodal
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3 Simulations

In this section we conduct a simulation study in order to analyze the practical feasi-
bility of the LR test for bimodality.

First let us investigate the quality of the approximation by the asymptotic distrib-
ution as given in Theorem 1. To this end, for certain parameter constellations on the
boundary of the unimodal region we simulate the actual level of the test when using
asymptotic critical values. Here we use 104 samples of various sizes. Furthermore,
we employ direct numerical maximization of the log-likelihood function and, for the
constrained estimate, we reparametrize the problem in order to use unconstrained
maximization. The results for the normal distribution are displayed in Table 1; sim-
ulations for the von Mises distribution led to similar results. It turns out that the test
keeps the nominal level quite well even for moderate sample sizes, both for normal
and von Mises mixtures, as long as either equal variances (or concentration parame-
ters) are employed or if the variances are assumed to be known. However, further
simulations indicated that if both variances are allowed to vary, the approximation is
rather inaccurate and should not be used.

Now let us investigate the power properties of the LR test for bimodality. For
simplicity we restrict ourselves to normal mixtures, and we compare the performance
with Silverman’s (1981) test and with the dip test by Hartigan and Hartigan (1985).
When implementing Silverman’s (1981) test we use 1000 bootstrap replications to
estimate the critical value for the bandwidth. We also use the R library’s “Diptest”

Table 1 Simulated level of Rn on the boundary for normal mixtures, using asymptotic critical values

Scenario Free parameters Sample size Nominal level Simulated level

μ1 = 0, μ2 = 3 μ1,μ2,p 100 0.10 0.12

σ1 = σ2 = σ = 1.3 0.05 0.059

p = 0.442 0.01 0.015

250 0.10 0.11

0.05 0.057

0.01 0.012

μ1,μ2,p,σ 250 0.10 0.14

0.05 0.072

0.01 0.016

500 0.10 0.13

0.05 0.066

0.01 0.014

μ1 = 0, μ2 = 2.5 μ1,μ2,p 100 0.10 0.16

σ1 = 1.1, σ2 = 0.8 0.05 0.086

0.01 0.019

250 0.10 0.10

0.05 0.052

0.01 0.011
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Fig. 3 Density of normal
mixture f1(x) = f (x,0.5,

−1.5,1.5,1,1) (solid line),
together with unrestricted fit to
sample of size 500 from f1
(dashed line) and restricted
unimodal fit (dotted line)

Table 2 Power under the first alternative, the normal mixture f1 = f (x,0.5,−1.5,1.5,1,1)

Sample size Nominal level LR Silverman’s Dip

200 0.10 0.89 0.77 0.30

0.05 0.80 0.63 0.20

0.01 0.53 0.35 0.06

500 0.10 0.99 0.97 0.60

0.05 0.98 0.92 0.47

0.01 0.93 0.75 0.24

for the dip test by Hartigan and Hartigan (1985). We consider several alternative
scenarios. In each scenario 1000 samples of various sizes are generated.

(a) First alternative: a normal mixture f1(x) = f (x,0.5,−1.5,1.5,1,1). The density
is symmetric and clearly bimodal, cf. Fig. 3. where also the unrestricted ML
fit and the ML fit restricted to the unimodal region are displayed for a sample
from f1. Here we use only equal variances, and σ is allowed to vary. The LR test
performs slightly superior to Silverman’s test, and both outperform the dip test.
See Table 2 for the simulation results.

(b) Second alternative: a normal mixture f2(x) = f (x,0.3,−1.5,1,0.75,0.75). The
density is asymmetric but bimodal, cf. Fig. 4. Again we use only equal variances
for the fit, and σ is allowed to vary. The results are displayed in Table 3. The dip
test has no significant power exceeding the level for this hypothesis for sample
sizes up to n = 500, and the LR test strongly outperforms Silverman’s test.

(c) Third alternative: a normal mixture f3(x) = f (x,0.6,−1.5,1.4,0.6,1.4). The
density is asymmetric but bimodal, cf. Fig. 4. Here we use distinct variances
which are assumed to be known. Only the LR test has a reasonable power against
this alternative, and therefore we do not present a table for this simulation setting.
In fact, the comparison is not really fair since the LR test uses the exact values of
the variances, which are hardly available in practice.

(d) We also investigated the behavior of the LR test for bimodality if the distribu-
tional assumption of normal mixtures is not satisfied, and briefly report the re-
sults. We simulated 1000 samples of sizes 200 and 500 from a mixture of two
t-distributions with five degrees of freedom. One component has location para-
meter 0 and the other 3. Both have a unit scaling parameter, and a weight of
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Fig. 4 Densities of normal
mixtures f2(x) = f (x,0.3,

−1.5,1,0.75,0.75) (solid line)
and f3(x) = f (x,0.6,−1.5,

1.4,0.6,1.4) (dashed line)

Table 3 Power under the second alternative, the normal mixture f2 = f (x,0.3,−1.5,1,0.75,0.75)

Sample size Nominal level LR Silverman’s

200 0.10 0.80 0.57

0.05 0.70 0.39

0.01 0.45 0.11

500 0.10 0.99 0.97

0.05 0.98 0.92

0.01 0.93 0.75

p = 0.4 for the first component is used. The density is clearly bimodal. How-
ever, due to the heavy tails of the t-distribution, the variance in the normal fit
is typically too large. Therefore the modes in the normal mixture are much less
distinctive than in the t mixture, and the LR test loses power. In fact, the LR test
loses a great deal of power in comparison to Silverman’s test, while the LR test
and the dip test perform similarly Silverman’s test.

4 Application to the cross-sectional regional income distribution in the EU

The convergence hypothesis states that poorer economies are growing faster than
richer ones and, hence, catching up so that eventually there will be no differences
between real average per capita income across countries. This would imply a uni-
modal cross-national or even cross-regional distribution of income which should be-
come constantly less dispersed. The literature distinguishes between two types of
convergence, β-convergence and σ -convergence (Sala-i-Martin 1996). By definition,
β-convergence occurs if the coefficient on initial income is negative when regressed
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on the change of log real income or, in other words, if initially poorer economies
grow on average faster than the initially rich. Moreover, σ -convergence is defined as
the decrease of the dispersion of the entire income distribution measured by the stan-
dard deviation of log incomes. If there are no other control variables in the growth
regression, we speak of absolute β-convergence, which would be a necessary but
not a sufficient condition for σ -convergence. Thus, for the convergence hypothesis
to hold we need absolute β-convergence and σ -convergence such that the income
distribution converges to one common mode.

However, the extended Solow growth model, given its assumptions, only implies
a restricted type of conditional β-convergence. Indeed, if two groups of countries are
governed by different parameters, but display within-group homogeneity of parame-
ters, it would imply a divergence of the two groups, but a within-group convergence
of economies to their respective group steady state. Quah (1997) developed a theoret-
ical and empirical framework for so-called club convergence from the viewpoint of
income distribution dynamics, implying an emerging twin peaks phenomenon for the
global cross-country income distribution. Bianchi (1997) found empirical evidence
for a bimodal cross-country income distribution occurring in the 1970s for all sub-
sequent years. For regions in the European Union, however, this picture is less clear
(cf. Quah 1996; Le Gallo 2004).

The framework of EU regions is of special interest, since cohesion among EU re-
gions has been a major priority of all EU treaties so far. The European Development
Fund (EDF) has been in operation since the very beginning in 1959. Starting with
3.4 million Euro, it went up to 244.7 million Euro in 1977 and 1353.6 million Euro
in 1993. Other relevant policy outcomes are the European Agricultural Guidance and
Guarantee Fund (EAGGF), established in 1962, and the European Regional Develop-
ment Fund (ERDF), created in 1975. The EAGGF started with 28.7 million Euro in
1975, increasing to 6587.1 million Euro in 1977 and 34935.8 million Euro in 1993.
The EDF started with 150 million Euro and increased to 400 million Euro in 1977
and 5382.6 million Euro in 1993.1 Hence, one should expect that policy interven-
tions assimilate the parameters of the extended Solow growth model in the European
Union over time, implying absolute convergence in the long run. Furthermore, Barro
and Sala-i-Martin (1991) argued that convergence of incomes between regions is in
general supported and accelerated by an economic environment without restrictions
on the free movement of capital, labor and tradeable goods, which is the case in the
European Union.

We use a data set on regional GDP in the European Union available from
CRENoS,2 covering the period from 1977 to 1993 and including administrative re-
gions defined by the Nomenclature of the Territorial Units for Statistics (NUTS) es-
tablished by Eurostat. The GDP figures are given in 1990 constant prices and are
converted to Purchasing Power Standard (PPS). The data set includes regions from
all EU-12 member countries at that time. Following Pittau and Zelli (2005, 2006)
we use the territorial units as follows: NUTS-0 (countries) for Denmark, Luxem-
bourg and Ireland; NUTS-1 for Belgium (3 Régions), West Germany (11 Länder),

1See European Commission (2000), The Community Budget: The Facts in Figures.
2Center for North South Economic Research, http://www.crenos.it.
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Table 4 Model selection criteria for mixtures models fitted to the cross-sectional log-income distribution
in of European regions

Comp. Variances No. param. AIC 1977 BIC 1977 AIC 1990 BIC 1990

1 – 2 −131.70 −126.39 −133.96 −128.66

2 equal 4 −160.99 −150.38 − 145.47 −134.85

distinct 5 −159.56 −146.29 −144.26 −130.97

3 equal 6 −156.99 −141.07 −141.47 −125.55

distinct 8 −154.09 −132.86 −144.14 −122.91

the Netherlands (4 Landsdelen) and UK (9 Government Office Regions and 3 Coun-
tries); NUTS-2 for Italy (20 Regioni), France (22 Régions), Spain (17 Communitades
Autonomas), Portugal (5 Comissaoes de Coordenacao Regional), and Greece (13 De-
velopment Regions). Though not equally sized, these regions are, due to adminis-
trative structure of the different countries, the best units available for comparisons
below the national level. Urban regions usually have their own economic structure
and are not comparable to regions covering both urban and rural parts. Therefore we
decided to exclude the mainly urban regions from our analysis (Brüssel B3, Bremen
D4, Hamburg D5, Ile de France F1 and Luxembourg LU).

Pittau and Zelli (2005, 2006) analyzed a similar data set (without the exclusion
of the urban regions) by using finite mixtures of normal distributions. For our more
homogeneous data set, in a first step we determine the number of components in the
mixture as well as the structure of the mixture (in particular equal or unequal vari-
ances for the components of the mixture). To this end we use the model selection
criteria AIC and BIC. Table 4 shows the results for the years 1977 and 1990. Both
model selection criteria select the two-component mixture model with equal vari-
ances for the components. This is in fact true for all years from 1977–1993, thus, it is
the model of choice for this period.

Pittau and Zelli (2005, 2006) also tested the number of components by using a
bootstrap version of the likelihood ratio test. Here, in order to confirm that two com-
ponents are indeed present in the data, we use the modified likelihood ratio test for
homogeneity (cf. Chen et al. 2001). In contrast to the usual LRT for homogeneity, this
test retains a comparatively simple limit theory, thus a parametric bootstrap (with the
resulting loss in power) is not necessary. We test the hypothesis of a single normal
distribution against a two-component mixture with equal (but unknown) variance,
and to this end use a version of the modified LRT with a structural parameter as in-
vestigated by Chen and Kalbfleisch (2005). They showed that the χ2

2 -distribution is
an asymptotic upper bound for the distribution of the modified LRT statistic in this
case. Based on this bound we find p-values of less than 0.001 for all years in the
period 1977–1993, thus, there is strong statistical evidence of two components in the
distribution.

Nevertheless, as discussed in the introduction, this does not necessarily imply that
the distribution is bimodal, so that the components are strongly pronounced. There-
fore, we test for unimodality against bimodality, both by using the LRT for bimodality
in a two-component normal mixture with equal variances, as well as using Silver-
man’s test. The results are displayed in Table 5. While Silverman’s test never rejects
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Table 5 P-values for tests for
unimodality for the distribution
of log GDP PPS per capita in
European regions

Year p-val LRT p-val Silverman

1977 0.006 0.14

1978 0.009 0.23

1979 0.042 0.29

1980 0.105 0.28

1985 0.222 0.98

1990 0.214 0.69

1993 0.347 0.54

Fig. 5 Unrestricted (solid lines) and restricted unimodal (dashed lines) fits to the cross-sectional distrib-
ution of log GDP PPS per capita for European regions in the years 1977 (left) and 1993 (right)

the hypothesis of a single mode, the LRT rejects in favor of bimodality in 1977–1979.
Afterward, the hypothesis can no longer be rejected, indicating that the two groups,
though still present, start to merge. Figure 5 shows the restricted unimodal and the
unrestricted fit for the years 1977 and 1993, respectively.

Conclusions can be drawn both from an economical and a statistical point of view.
Economically the empirical results indicate that the two-component mixture describ-
ing the cross-regional income distribution in the European Union became less and
less dispersed, meaning that well-separated clusters of poor and rich regions in the
EU moved closer together and might tend to converge to a single group in the long
run. However, further research is necessary to evaluate the long-run impact of EU
cohesion policy on regional GDP. Of special interest would be an analysis of the
distribution dynamics following the more recent EU enlargements. From a statistical
point of view, we find that the LRT is able to detect a second mode in a real-data
application, while Silverman’s test is not able to do so.
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