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broblasts of sgk1 –/–  mice. In conclusion, angiotensin II stimu-
lates the expression of SGK1, which is in turn required for the 
stimulating effect of angiotensin II on the expression of 
CTGF. Thus, SGK1 presumably contributes to the profibrotic 
effect of angiotensin II.  Copyright © 2008 S. Karger AG, Basel 

 Introduction 

 The pleotropic actions of angiotensin II include the 
stimulation of matrix protein formation and deposition 
leading to fibrosis in a variety of tissues including heart 
 [1, 2] , vascular tissue  [3–6] , kidney  [7–13] , liver  [14, 15] , 
lung  [16]  and retina  [17] . The effect of angiotensin II is 
mediated by upregulation of connective tissue growth 
factor (CTGF)  [15, 18–27] . Moreover, angiotensin II and 
CTGF have been shown to mediate the mitogenic effect 
of advanced glycation end products  [28] .

  A candidate kinase linking the angiotensin receptors 
with CTGF expression is the serum- and glucocorticoid-
inducible kinase SGK1  [29] , a kinase originally cloned as 
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 Abstract 

 Angiotensin II has previously been shown to trigger fibrosis, 
an effect involving connective tissue growth factor (CTGF). 
The signaling pathways linking angiotensin II to CTGF forma-
tion are, however, incompletely understood. A gene highly 
expressed in fibrosing tissue is the serum- and glucocorti-
coid-inducible kinase SGK1. The present study explored 
whether SGK1 is transcriptionally regulated by angiotensin 
II and participates in the angiotensin II-dependent regula-
tion of CTGF expression. To this end, experiments have been 
performed in human kidney fibroblasts and mouse lung fi-
broblasts from gene-targeted mice lacking SGK1 (sgk1 –/– ) 
and their wild-type littermates (sgk1 +/+ ). In human renal fi-
broblasts, SGK1 and CTGF protein expression were enhanced 
by angiotensin II (10 n M ) within 4 h. In sgk1 +/+  mouse fibro-
blasts, SGK1 transcript levels were significantly increased af-
ter 4 h of angiotensin II treatment. Angiotensin II stimulated 
both transcript and protein abundance of CTGF in fibro-
blasts from sgk1 +/+  mice, effects significantly blunted in fi-
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a glucocorticoid-inducible gene  [30]  and subsequently 
shown to be strongly upregulated by a variety of triggers 
 [31, 32]  including mineralocorticoids  [33, 34] . SGK1 is ex-
pressed in a variety of fibrosing tissues such as those af-
fected by diabetic nephropathy  [35–37] , glomerulone-
phritis  [38] , cardiac fibrosis  [39] , lung fibrosis  [40] , liver 
cirrhosis  [41] , Crohn’s disease  [42] , and fibrosing pancre-
atitis  [43] .

  The present study aimed to elucidate the possible par-
ticipation of SGK1 in the stimulation of CTGF expression 
by angiotensin II.

  Materials and Methods 

 Preparation of Fibroblasts 
 Human fibroblast cell lines derived from normal kidney (TK 

173) were cultured as described previously  [44, 45] . Briefly, the 
cells were cultivated in culture flasks at 37   °   C in 5% CO 2  atmo-
sphere in DMEM, containing 5.6 m M  glucose supplemented with 
10% fetal calf serum, 20 m M   L -glutamine and 100 U/ml penicil-
lin/100 mg/ml streptomycin and passaged every week.

  To determine the role of SGK1 in angiotensin II-induced 
CTGF expression, fibroblasts were collected from SGK1 knockout 
mice ( sgk1  –/– ) and their wild-type littermates ( sgk1  +/+ )  [46] . Sev-
eral fibroblast preparations have been used. The yield required for 
Western blotting was achieved with lung fibroblasts. To harvest 
primary lung fibroblasts from sgk1 –/–  and sgk1 +/+  mice, whole 
lungs were removed under anesthesia from 8- to 14-week-old an-
imals and transferred to 90-mm cell culture dishes containing
2 ml of DMEM supplemented with 10% fetal calf serum, 100 U/ml 
penicillin, 100 mg/ml streptomycin and 2 m M   L -glutamine (Gib-
co-Invitrogen, Karlsruhe, Germany). The tissue was cut into 
small pieces and cultured under standard cell culture conditions 
(37   °   C, 5% CO 2 ). Cell growth was observed 2–4 days after initial 
plating. Fibroblasts were identified by positive staining for fibro-
nectin and used in experiments between passages 2 and 6. Animal 
experiments were conducted according to the guidelines of the 
German Animal Welfare Law and were approved by local author-
ities.

  Western Blotting 
 For Western blotting, human renal fibroblasts or  sgk1  +/+  and 

 sgk1  –/–  mouse lung fibroblasts were grown in 60-mm culture dish-
es for 32 h. Serum was removed for 18 h and cells were thereafter 
treated with angiotensin II, 10 n M , for 4 h. After treatment, cells 
were lysed and whole cell lysates (50  � g) were subjected to 10% 
SDS-PAGE in 10% Tris-glycine buffer. The proteins were trans-
ferred to nitrocellulose membranes and the membrane incubated 
for 1 h in PBS containing 5% fat-free milk and 0.1% Tween (block-
ing buffer) to block unspecific binding sites. The membranes were 
incubated overnight at 4   °   C with a goat polyclonal CTGF primary 
antibody (from Santa Cruz, Heidelberg, Germany, diluted 1:   400 
in blocking buffer, or from R&D Systems, Wiesbaden, Germany, 
at a concentration of 0.1  � g/ml) or with a rabbit polyclonal SGK1 
primary antibody (from Upstate Biotechnology, Dundee, UK, di-
luted 1:   1,000, or from Pineda, Berlin, Germany, 1:   100). The CTGF 

antibody from R&D Systems recognizes two isoforms of about 36 
and 40 kDa. The 36-kDa band was chosen for analysis. After in-
cubation with HRP-conjugated anti-goat or anti-rabbit second-
ary antibodies (Santa Cruz) for CTGF and SGK1, respectively, 
proteins binding the antibodies were visualized with enhanced 
chemiluminescence according to the manufacture’s instructions 
(Amersham, Freiburg, Germany). Membranes were probed with 
GAPDH antibody (Santa Cruz) to control loaded and transferred 
amounts of protein. Densitometric analysis of CTGF protein 
bands was performed using Scion Image (Scion, Frederick, Md., 
USA). The specific bands were referred to the staining of GAPDH 
or of non-specific bands. Due to differences of the exposure times 
of different Western blots, the densities of the bands were normal-
ized to the values of the respective non-treated controls or wild-
types.

  Quantification of mRNA by Real-Time RT/PCR 
 For real-time PCR total RNA was isolated from cultured fibro-

blasts of  sgk1  +/+  and  sgk1  –/–  mice using the Qiagen RNeasy Fibrous 
Tissue Midi Kit (Qiagen, Hilden, Germany). SGK1 or CTGF 
mRNA were transcribed using Taq polymerase (Roche Diagnos-
tics GmbH, Mannheim, Germany) and quantified by PCR using 
a light cycler system (Roche Diagnostics GmbH, Roche Applied 
Science, Mannheim, Germany). For the detection of mouse CTGF 
mRNA the specific primers used were: sense: 5 � -ACG ACG CCA 
AGG ACC GCA-3 � ; antisense: 5 � -TTG TAA TGG CAG GCA 
CAG-3 � . For detection of SGK1 transcript levels the specific prim-
ers used were: sense: 5 � -TGTCTTGGGGCTGTCCTGTATG-3 � ; 
antisense: 5 � -GCTTCTGCTGCTTCCTTCACAC-3 � . The tran-
script levels of the housekeeping gene GAPDH were also deter-
mined for each sample using a commercial primer kit (Search LC, 
Heidelberg, Germany). Amplification of the target DNA was per-
formed during 35 cycles, each 10 s at 95   °   C, 10 s at 68   °   C and 16 s 
at 72   °   C. Melting curve analysis confirmed the specificity of am-
plified products, which were then separated on 1.5% agarose gels 
to verify the size of the PCR product. Results were calculated as a 
ratio of the target vs. housekeeping gene transcripts. 

  Statistical Analysis 
 Data are provided as means  8  SEM, n represents the number 

of independent experiments. All data were tested for significance 
using ANOVA or t-test, as appropriate, and only results with p  !  
0.05 were considered statistically significant.

  Results 

 SGK1 and CTGF Expression Is Stimulated by 
Angiotensin II in a Fibroblast Cell Line 
 To explore whether the serum- and glucocorticoid-in-

ducible kinase SGK1 is a transcriptional target of angio-
tensin II in human tissues, experiments were performed 
with fibroblast cell lines derived from normal kidneys. As 
illustrated in  figure 1 , after exposure to angiotensin II (10 
n M ) for 4 h the SGK1 protein abundance was significant-
ly increased in the fibroblasts. Next, the expression of 
CTGF was analyzed ( fig. 2 ). Incubation of the cells with 
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angiotensin II for 4 h significantly increased the expres-
sion of CTGF. These observations indicate that angioten-
sin II upregulates the expression of SGK1 and CTGF.

  Angiotensin II Increased the Expression of SGK1 in 
Primary Mouse Fibroblasts 
 To test whether SGK1 is functionally relevant for the 

stimulation of CTGF expression by angiotensin II, ex-
periments have been performed in lung fibroblasts from 
SGK1 knockout mice ( sgk1  –/– ) and their wild-type litter-
mates ( sgk1  +/+ ). First, the effect of angiotensin II on SGK1 
expression was analyzed in lung fibroblasts from wild-
type mice. After exposure of primary lung fibroblasts to 
angiotensin II (10 n M ), SGK1 mRNA was significantly 
increased within a 2-hour treatment ( fig. 3 ).

  CTGF Expression Is Not Stimulated by Angiotensin II 
in the Absence of SGK1 
 CTGF transcript levels were then analyzed in primary 

lung fibroblasts from both wild-type and sgk1 –/–  mice. As 
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  Fig. 1.  Angiotensin II (AII) stimulates SGK1 
expression in human fibroblasts.  a  Repre-
sentative Western blot demonstrating SGK1 
protein abundance after a 4-hour incuba-
tion in the absence or presence of 10 n M  AII. 
A non-specific band served as loading con-
trol.  b  Arithmetic means  8  SEM (n = 6) of 
SGK1 over GAPDH protein abundance or 
normalized to a non-specific band in fi-
broblasts from normal human kidneys af-
ter a 4-hour incubation in the absence (left 
bar) or presence (right bar) of 10 n M  AII. 
 *  Significant (p  !  0.05) difference from 
control. 
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  Fig. 2.  Angiotensin II (AII) increases 
CTGF protein expression in human fibro-
blasts.  a  Representative Western blot dem-
onstrating CTGF and GAPDH protein 
levels in human renal fibroblasts after a 4-
hour treatment with 10 n M  AII.  b  Arith-
metic means  8  SEM (n = 6–7) of CTGF 
over GAPDH protein abundance or nor-
malized to a non-specific band in fibro-
blasts from normal human kidney fibro-
blasts after a 4-hour incubation in the ab-
sence (left bar) and presence (right bar) of 
10 n M  AII.  *  Significant (p  !  0.05) differ-
ence between AII and control. 
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  Fig. 3.  Angiotensin II (AII) increases SGK1 transcript levels in 
lung fibroblast from wild-type mice. Arithmetic means        8  SEM 
(n = 3) of SGK1 transcript levels in relation to GAPDH transcript 
levels of the same preparations of primary mouse lung fibroblasts 
prior to and after 2- and 4-hour treatment with 10 n M  AII.  *  Sig-
nificant difference from control.   
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illustrated in  figure 4 , basal CTGF transcript levels were 
not different between  sgk1  –/–  and  sgk1  +/+  fibroblasts. An-
giotensin II, 10 n M , however, increased CTGF transcript 
levels in wild-type but not in  sgk1  –/–  mice fibroblasts. 
These observations indicate that transcriptional upregu-
lation of CTGF requires the participation of SGK1.

  When CTGF protein was quantified by Western blot-
ting the upregulation in wild-type cells by angiotensin II 
was indeed mirrored by an increased amount of CTGF 
protein in these cells. In  sgk1  –/–  mouse fibroblasts, in con-
trast, CTGF protein levels were not significantly in-
creased by angiotensin II ( fig. 5 ). These results strongly 
indicate that the stimulation of CTGF protein expression 
by angiotensin II depends on the presence of SGK1.

  Discussion 

 The present observations demonstrate that the serum- 
and glucocorticoid-inducible kinase SGK1 is a transcrip-
tional target of angiotensin II. Thus, angiotensin II
upregulates SGK1 expression not only by increasing al-
dosterone release and subsequent mineralocorticoid 
stimulation of SGK1 transcription  [33, 34] , but as well by 
a more direct stimulation of SGK1 transcription.

  The present observations further reveal the participa-
tion of SGK1 in the signaling mediating the stimulating 
effect of angiotensin II on the transcription and protein 
expression of CTGF  [15, 18–27] . CTGF, a member of the 
CCN (ctgf/cyr61/nov) gene family  [47] , is a key mediator 
of matrix protein formation  [48, 49] . Loss of function mu-
tations of CTGF are lethal partly due to major skeletal 
defects as a result of impaired matrix remodeling  [50] . 
CTGF is upregulated in several fibrotic diseases such as 
scleroderma  [51] , cardiac fibrosis  [26, 27] , hepatic fibrosis 
 [52]  and diabetic nephropathy  [53] . CTGF has been dem-
onstrated to upregulate several profibrotic factors such as 
collagen, integrin  � 5 and fibronectin  [54] . SGK1-depen-
dent upregulation of CTGF may participate in those fi-
brosing diseases where excessive SGK1 transcription has 
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  Fig. 4.  Angiotensin II (AII) increases CTGF transcript levels in 
lung fibroblast from  sgk1  +/+  but not from  sgk1  –/–  mice. Arithmetic 
means        8  SEM (n = 3) of CTGF transcript levels over GAPDH 
levels in primary mouse lung fibroblasts from mice lacking SGK1 
( sgk1  –/– , closed bars) and their wild-type littermates ( sgk1  +/+ , open 
bars) prior to (control) and after 2- and 4-hour treatment with 10 
n M  AII.  *  Significant difference from control.  #  Significant differ-
ence from  sgk1  +/+  at the same condition.   

  Fig. 5.  Angiotensin II (AII) increases CTGF protein expression in 
fibroblasts from  sgk1  +/+  but not from  sgk1  –/–  mice.  a  Representa-
tive Western blots demonstrating CTGF and GAPDH protein lev-
els in primary mouse lung fibroblasts from mice lacking SGK1 
(sgk1         –/– , KO, right panel) and their wild-type littermates (sgk1 +/+ , 
WT, left panel) prior to (Co) and after 4-hour treatment with
10 n     M  AII.  b  Arithmetic means  8  SEM (n = 4) of CTGF over 
GAPDH protein abundance in fibroblasts from sgk1   –/–  (closed 
bars) and sgk1 +/+  (open bars) mice prior to (control) and after 4-
hour treatment with 10 n M  AII.  *  Significant difference from the 
respective untreated cells.    #  Significant difference between sgk1 +/+  
and sgk1 –/–  mice in the presence of AII.   
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been observed, such as diabetic nephropathy  [35–37] , 
glomerulonephritis  [38] , cardiac fibrosis  [39] , lung fibro-
sis  [40] , liver cirrhosis  [41] , Crohn’s disease  [42]  and fi-
brosing pancreatitis  [43] .

  To the extent that SGK1 is upregulated by mineralo-
corticoids, it could similarly participate in the stimula-
tion of fibrosis by mineralocorticoid excess, which, for 
instance, has been shown to induce cardiac fibrosis  [55, 
56]  in a pressure-independent manner via   cardiac miner-
alocorticoid receptors  [57, 58] . Inhibition of those recep-
tors would abrogate the aldosterone-induced fibrosis but 
favor increase of angiotensin II release and thus promote 
angiotensin II-induced fibrosis. SGK1 has indeed been 
shown to participate in the stimulation of cardiac CTGF 
formation during mineralocorticoid excess  [39] . More-
over, SGK1 has been shown to potentiate the stimulating 
effect of hyperglycemia on matrix protein formation 
 [35] .

  Mechanisms linking SGK1 with CTGF expression 
could at least in theory involve nuclear factor NF � B  [31] . 
SGK1 associates with and activates I � B kinase  �  (IKK � ), 

which in turn phosphorylates I � B � , leading to degrada-
tion of I � B �  and thus activation of NF � B  [59] . The stim-
ulating effect of the mineralocorticoid DOCA on cardiac 
CTGF indeed requires both, SGK1 and NF � B  [39] . An-
giotensin II similarly signals through NF � B  [60–62] , but 
may not require NF � B for stimulation of fibrosis  [63] . 
SGK1 further phosphorylates glycogen synthase kinase 
3 � , an effect, however, apparently not critical for cardiac 
fibrosis  [64] . Moreover, SGK1 may be effective through 
its well-known role in the regulation of channels and 
transporters  [31, 65–67] . In any case, additional experi-
mentation will be necessary to elucidate whether the 
SGK1-dependent pathway stimulated by angiotensin II 
involves more than NF � B.
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