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Abstract 

 

Detailed understanding of the adaptive nature of cardiac cells in health and disease requires 

investigation of proteins and membranes in their native physiological environment, ideally by 

noninvasive optical methods. However, conventional light microscopy does not resolve the 

spatial characteristics of small fluorescently labeled protein or membrane structures in cells. 

Due to diffraction limiting resolution to half the wavelength of light, adjacent fluorescent 

molecules spaced at less than ~250 nm are not separately visualized. This fundamental 

problem has lead to a rapidly growing area of research, superresolution fluorescence 

microscopy, also called nanoscopy. We discuss pioneering applications of superresolution 

microscopy relevant to the heart, emphasizing different nanoscopy strategies towards new 

insight in cardiac cell biology. Here, we focus on molecular and structural readouts from 

subcellular nanodomains and organelles related to Ca2+ signaling during excitation-

contraction (EC) coupling, including live cell imaging strategies. Based on existing data and 

superresolution techniques, we suggest that an important future aim will be subcellular in situ 

structure-function analysis with nanometric resolving power in organotypic cells. 
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1. Introduction 

 

Fluorescence light microscopy is central to elucidate and understand cellular functions. 

Conceptually, it represents a combined strategy to visualize molecules or cells by specific 

labeling with small fluorescent molecules or fluorescent proteins (FPs), subsequently 

characterized by optical image acquisition and analysis. This includes imaging of 

endogenous proteins in the typical membrane environment of living cells, and can be 

extended by certain strategies to single molecules. 

 

Nowadays laser scanning confocal and multiphoton fluorescence microscopes represent the 

standard tools of cell biology research. Compared to wide-field imaging, these strategies 

reduce out-of-focus fluorescence through defined optical sections inside specimens. 

Nevertheless these conventional approaches are significantly limited in resolving power to 

several hundreds of nanometers due to light diffraction. This fundamental resolution limit 

(~250 nm) corresponds roughly to the dimensions of mitochondria (Figure 1A), which is not 

sufficient to characterize the intricate architecture of small organelles inside cardiomyocytes. 

Obviously, microdomains and organelles with sizes smaller than the resolution limit cannot 

be characterized in detail or discriminated at high spatial densities (Figure 1B). This 

important issue has significantly limited a more detailed, molecular understanding of 

subcellular structures and highly localized in situ functions of intact cells by fluorescence 

microscopy. 

 

Recent developments have led to fundamentally new microscopy techniques, which 

effectively overcome the resolution barrier even toward lower nanometer scales [1, 2]. It is 

important to note that light diffraction, the interference of light waves with the optical parts of 

the far-field microscope, cannot be avoided. Therefore, during image acquisition fluorescent 

point emitters are registered as spatially spread out signals (Figure 1B). Accordingly, this 

behavior is characterized by the point spread function (PSF) that depends on the wavelength 

of light (λ) and the optical properties of the microscope objective (numerical aperture, NA). 

The size of the point spread function is typically described by full width at half maximum 

(FWHM) and expands several hundred nanometers laterally (~250 nm in x/y, given by 

FWHM ≈ 0.6•λ / NA) and axially (~600 nm in z, given by FWHM ≈ n•λ / NA²; n, refractive 

index). Since two or more point emitters closer to each other than the PSF width at half 

maximum typically occur in a fluorescently labeled cell, nearby fluorescent markers appear 

as one blurred imaging object, but are not resolved individually. 

 

In contrast, superresolution techniques circumvent the diffraction limit, thereby improving 

resolution by one order of magnitude or more, either by detecting single molecules with high 

localization precision or by reducing the size of the effective PSF [2, 3]. Importantly, both 

approaches use the photo-physical properties of fluorophores to overcome the resolution 

barrier by keeping the majority of molecules within the diffraction-limited volume dark. Since 

both schemes have been successfully applied to cardiac samples recently [4-6], this topical 

review outlines the application of nanoscopy techniques for cardiac cell biology. 

 

While distinct conceptual terms describe the individual superresolution methods, here we 

compare the main working principles of ‘targeted’ versus ‘stochastic’ readouts [1, 3]. A 

targeted readout is based on optically engineered illumination patterns at the nanometric 
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scale, which precisely define where fluorophore light emission occurs (Figure 2A, top). 

Targeted approaches include the first super-resolution concept, stimulated emission 

depletion (STED) [7, 8], the related reversible optically-linear fluorescence transitions 

(RESOLFT) [9], and structured illumination microscopy (SIM, SSIM) [10-12]. In contrast, for 

stochastic readout fluorescent molecules are switched randomly by photomodulation and 

localized individually with nanometer precision. The superresolution image is then 

reconstructed from a sufficiently large set of captured frames containing the fluorophore 

localization data. Stochastic optical reconstruction microscopy (STORM), photo-activation 

localization microscopy (PALM), fluorescence-PALM (F-PALM), and ground-state-depletion 

with individual molecule return (GSDIM) [13, 14] are examples for applications which 

randomly switch fluorophores. 

 

Recently, a targeted readout using STED superresolution microscopy has resolved intact T-

tubule membrane structures deep inside living cardiomyocytes for the first time [4]. 

Furthermore, a stochastic readout has been successfully established for ryanodine receptors 

(RyR2s) at the surface of cardiomyocytes, referred to as ‘peripheral’ clusters [5, 6, 15]. From 

a general perspective, such superresolution techniques will have a major impact on future 

understanding and interpretation of cardiac cell biology, particularly at the level of subcellular 

structures and spatially confined signal processes. We summarize recent super-resolution 

developments, discuss relevant limitations, and highlight existing cardiac or related 

applications. In particular, we focus on organelles and nanodomains associated with EC 

coupling mechanisms, which are not resolved by conventional microscopy techniques. 

 

2.1 Targeted readout: STED, RESOLFT, and SSIM 

 

Targeted fluorescence readout by STED and RESOLFT achieve nanometric image 

resolution by a common principle (Figure 2A top): while fluorescent molecules are excited 

within the focal spot, a second laser is overlaid providing a spatially defined intensity 

distribution, which switches off all peripheral (non-center) fluorophores by a nonlinear photo-

physical depletion process (e.g. STED).  For this, the second laser beam is shaped like an 

axially elongated toroid [3, 7-9, 16] with a central minimum of intensity (<1%) at the focal 

center (resembling a doughnut in the focal plane). If the STED laser intensity is sufficiently 

high, fluorescent signals at the central spot are increasingly confined, while any peripheral 

fluorescence is effectively switched off. As the toroid beam is limited by diffraction, increasing 

the STED laser intensity spreads the region where peripheral fluorophores are switched off, 

both inwards and outwards. Ultimately, the effective spot size is reduced below the diffraction 

limit, which significantly increases lateral resolution down to nanometric sizes (for diffraction 

unlimited resolution). Unless additional strategies to simultaneously improve the axial 

resolution are applied (see below), a pinhole reduces out of focus fluorescence resulting in a 

z-resolution similar to confocal laser scanning microscopes. For STED, laser scanning 

through overlaid beams across a cellular region of interest generates a superresolution 

image as direct readout. Additionally, imaging speed has been increased through parallelized 

multiple foci [17] or through striped illumination patterns in RESOLFT [18]. 

 

In small, isolated cells STED imaging has achieved a lateral resolution of ~20 nm, in 

relatively large cardiac myocytes ~55 nm, and a resolution of ~70 nm was achieved in the 

intact brain of the living mouse [4, 19, 20]. Furthermore, time-gated acquisition in STED 
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microscopy improved the image contrast, resulting in a comparable resolution but at a 

significantly lower STED laser intensity [21]. Considering strategies to further increase 

resolution, the signal to noise (S/N) ratio will be a limiting factor, since increasingly smaller 

amounts of fluorophores are detected from a smaller effective PSF. Furthermore, the 

photostability of the fluorophore and potential light scattering, particularly if imaging occurs 

deep within the sample, will limit effective resolution by the maximally applicable STED laser 

power. Therefore, the resolution achieved by STED imaging will directly benefit from bright 

and photostable dye molecules and a relatively high number of fluorophores detected 

simultaneously. Accordingly, staining strategies which use markers at high concentrations 

result in a high S/N ratio, while detection and discrimination of individual molecules, e.g. 

membrane localized proteins, will benefit from a high labeling ratio (a high number of 

fluorophore markers per target molecule). An apparent advantage, many different organic 

dyes and fluorescent proteins undergo nonlinear fluorophore transitions during saturated 

emission depletion [19, 22-28]. In contrast, RESOLFT is based on reversibly photo-switching 

FPs at several orders of lower light intensity based on long-lived dark states [3, 9]. Therefore, 

RESOLFT will effectively avoid photo-damage and dye bleaching, a clear advantage if 

imaging of particularly sensitive properties or time-lapse imaging of living cells is critical. 

 

A common confocal application, multi-color imaging has also been realized in 

superresolution microscopy. Accordingly, different dual color STED approaches exist that 

differ by number and combination of laser lines for excitation and depletion [25, 29-32]. For 

example, dual color STED approaches used either the same or different laser wavelengths to 

switch the dye fluorescence off by the saturation paradigm. Using different STED laser 

configurations, it was shown that the voltage-dependent anion channel (VDAC) does not co-

localize with the enzyme hexokinase in the mitochondrial outer membrane [32].  

 

While membrane domains can be sufficiently approximated by planar geometries [6], cellular 

structures occur necessarily also in three dimensions. Accordingly, imaging schemes were 

developed to extend STED superresolution along the optical axis (z). For example, using  

two oppositely aligned oil immersion lenses, isoSTED resolved the cristae of the inner 

mitochondrial membrane in 3D at ~30 nm resolution in all directions [30]. Alternatively, the 

intensity distribution can be switched both along the optical axis and laterally using an ‘optical 

bottle beam’ [33, 34], which can be combined with STED microscopy to simultaneously 

improve lateral and axial resolution [28, 35, 36]. Measuring fluorescent beads, a combined 

lateral and axial resolution of 43 nm and 125 nm has been achieved [36]. Furthermore, bottle 

beam configurations work as standalone or in combination with the above described lateral 

toroid to design a resolution scheme targeted at the biological structure of interest, as 

reported for living cell images at ~150 nm axial resolution [28].  

 

In contrast to STED and RESOLFT, saturated structured illumination microscopy (SSIM) 

combines widefield imaging with patterned excitation light resulting in ~50 nm lateral 

resolution [12]. SSIM is an extension of structured illumination microscopy (SIM), which uses 

a diffraction-limited illumination pattern, varied in space to confine the size of the fluorescent 

focal spots. Using repetitive imaging and image reconstruction, SIM improved the lateral 

resolution ~2-fold up to ~100 nm laterally and ~300 nm axially [10, 37]. To achieve SSIM-

type superresolution, analogous to STED a saturable fluorescent process is modulated by 

light intensity in addition to the above mentioned SIM scheme [11]. In summary, a variety of 
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commercial and custom-designed strategies and validated applications exist, which provide 

abundant opportunities for targeted superresolution studies. 

 

2.2 Stochastic readout: superresolution by single molecule imaging 

 

In contrast to targeted readouts, image generation from stochastic readouts occurs through a 

multistep procedure. To detect individual fluorescent molecules during wide-field illumination, 

the majority of fluorophores is switched off by a photomodulation process. Ideally, the result 

is a sufficiently sparse population of randomly blinking single molecules, where individual 

signals are captured by a sufficiently large number of frames (1000-100000), each 

representing a subset of randomly blinking individual fluorophores. For each frame, position 

histograms determine the exact localization of all individual fluorophores, and reconstruction 

yields the final superresolution image (Figure 2B top). Superresolution strategies to modulate 

fluorescent emission for stochastic readout include photo-switching, photo-activation or 

reversible photo-bleaching which depend on the dye properties. Accordingly, several 

approaches based on different photomodulation schemes and for different dyes have been 

established: STORM [38], PALM [39], FPALM [40], PALMIRA [41], GSDIM [13, 14] and 

BALM [42]. [PALMIRA: PALM with independently running acquisition; BALM: 

bleaching/blinking assisted localization microscopy; see also table of non-standard 

abbreviations]. Notably, both synchronized and asynchronous photo-activation strategies 

have been realized [38-41]. While stochastic approaches are generally less equipment 

intense compared to targeted readout strategies, they require additional analytical expertise 

and multiple readout steps leading to an overall increased image acquisition time. 

 

Importantly, precise localization of individual fluorophores in densely labeled samples is only 

possible when photo-modulation switches off a sufficiently high number of molecules (Figure 

2B top). Only then will randomly distributed individual fluorophores occur with sufficiently high 

spacing to be identified considering diffraction limitations. Accordingly, stochastic approaches 

have achieved a lateral image resolution of up to ~20 nm [38]. Both the precision of single-

molecule localization and the number of localised signals within a given structure (the 

labelling or localisation density) affect the final image resolution and accuracy [43]. 

Localization precision depends on the fluorophore brightness and exposure time, since 

fluorophore positions can be determined approximately n  times more precise than the 

diffraction limit, where n  is the number of photons detected by one acquisition frame. For 

object reconstruction with highest resolution (20 nm), labelling densities of up to 104 

fluorophores per µm2 may be necessary, which further depend on the geometry of the target 

structure [1], to avoid spatial under-sampling. Vice versa, for high labeling densities the 

possibility of imaging artifacts has been considered if the fluorescent markers are not 

completely switched-off into the dark state, resulting in insufficient switching-contrast [1]. One 

concern of denser, non-random fluorophore emissions is that high-precision localization is 

prevented by diffraction. It has been pointed out, that single-molecule imaging approaches 

might be particularly advantageous for small or filamentous objects rather than dense and 

bulky structures [2], although possible limitations should be determined empirically.  

Meanwhile single-molecule based approaches are routinely used for 3D imaging. Among the 

imaging schemes applied are astigmatism, two-focal-plane imaging, and a phase ramp 

approach [1, 44]. These strategies resulted in localization accuracies of ~50 nm in z-direction 

[1, 45], within the focal depth of a few hundred nm. As a general rule, 3D imaging with single-
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molecule strategies is relatively slow and therefore particularly sensitive to any form of 

sample drift. Initial 3D imaging with PALM showed the molecular architecture of the focal 

adhesion core region connected to integrin and actin [46]. Imaging objects several microns 

deep in primary cardiomyocytes or tissue slices may suffer from a decreased S/N ratio and 

increased light scattering limiting localization accuracy. Nevertheless, stochastic 

superresolution images from cardiac tissue slices have been achieved, including RyR2, 

calsequestrin and microtubule protein structures [15, 44]. 

  

While most superresolution microscopy studies to date have been conducted in chemically 

fixed cells, some groups have recently extended imaging efforts to live cells, discussed 

further below. Among the stochastic strategies, STORM mainly used photo-chromic 

(rhodamine or diarylethene) and photo-switchable (cyanine) dyes, whereas PALM and 

FPALM employed photo-inactivatable fluorescent proteins (e.g. Eos2, Dronpa and PS-

CFP2). Dual and even multi-color imaging for stochastic readout is well established and is 

promising to elucidate cardiac microdomain architectures and compositions. If multiple 

fluorophores are used, their relative positions can be determined through spectral separation 

of the different emission colors [47, 48] or through sequential photo-activation or deactivation 

[49-51]. Furthermore, new multi-color applications are continuously developed and improved 

[52, 53]. Important examples of single and dual-color approaches from cardiac samples will 

be discussed under 2.4 and after further consideration of fluorescent probe strategies. 

 
2.3 Fluorescent probes and subcellular protein targeting for superresolution imaging 

 

As outlined above, superresolution imaging is intricately linked to photo-physical dye 

properties, but also to the subcellular environment of the proteins and membranes which are 

marked by fluorophores. Live cell imaging and multi-color applications depend critically on 

the availability of suitable combinations of dye and laser properties as well as efficient 

labeling strategies. Comprehensive reviews of suitable dye systems for superresolution have 

been presented [1, 54]. Of note, commonly used IF protocols in fixed samples benefit from a 

large choice of established organic fluorophores linked to secondary antibodies. Many 

organic dyes show sufficiently high photon emission and photostability for superresolution. 

However, IF labeling with antibodies (150-160 kDa) can be inefficient due to high background 

signals, invasive protocols and inherent ‘linkage errors’. Linkage errors of 20 nm and more 

result from the displacement of fluorophores from the actual epitope inherent to 1ary/2nry 

antibody complexes with individual steric sizes of 10–15 nm (Figure 1A) [55]. Alternatively, 

labeled Fab-fragments (~50 kDa) can help to minimize linkage errors, if trade-offs such as 

higher costs and additional technical challenges are acceptable. 

 

In contrast, genetic targeting of FPs is occur directly and in live cells. Ongoing progress 

includes the development and optimization of photo-activatable and photo-switchable 

proteins [54]. Genetic targeting is by nature specific and provides a defined molecular 

labeling ratio of FPs relative to the protein of interest. Yet, relatively low molecular labeling 

ratios compared to standard IF approaches may limit the sample brightness and labeling 

density. Alternatively, genetic labeling has been combined with organic dyes. Target proteins 

have been genetically fused to small affinity tags or enzymes that bind modified fluorophores 

at the surface or after intracellular delivery of the probes, e.g. SNAP or CLIP [54]. Recently, 

anti-GFP single-domain antibody fragments, nanobodies (12-15 kDa) less than 3 nm in 

dimension, have been shown to label GFP-fused proteins with linkage errors below 5 nm [55]. 
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This approach also confirms the potential of directly labeled small Fab-fragments. For studies 

of primary cells like cardiomyocytes, however, genetic targeting requires either transgenic 

mouse strategies or extended cell culture for viral gene transfer. Another strategy used 

exogenous application of the recombinant, fluorescently labeled FKBP protein in 

permeabilized cells as an affinity probe for the RyR2 channel complex [56]. 

  

Using small organic dyes, specific membranes or organelles can be labeled in cells. Among 

a variety of established dyes which are commercially available, several photo-switchable 

compounds have been established. The membrane probe di-8-ANEPPS, which partitions 

into the outer membrane leaflet, was successfully used for STED superresolution microscopy 

of intact membranes (see below) [4]. Additionally, membrane and organelle markers were 

used with STORM for dynamic imaging in live cells with 30–60 nm spatial and 1–10 sec 

temporal resolution of [57]. In summary, available organic and genetically encoded 

fluorophores allow for superresolution imaging of cells including dual-color applications.  

 

Given sufficient labeling density, the fluorophore location and spacing represent the structure 

of interest and ideally match in scale with the superresolution approach. For STED, the 

optimal labeling density has been established empirically to image centrioles with a known 

molecular structure [58]. While under-labeling resulted in incomplete detection of centrioles, 

over-labeling resulted in blurred substructures, falsely suggesting non-existing image 

information. Similar over- and under-labeling artifacts may occur during stochastic readout 

superresolution (as discussed in 2.2). Interestingly, defined subcellular imaging volumes (e.g. 

organelles, dendrites) marked with FPs at high densities will favor an improved S/N ratio and 

image accuracy, yet at the same time may be limited during repetitive stochastic sampling 

due to inadvertent movement or unresolved fluorophore aggregates. Moreover it is not clear 

whether all epitopes within a cell’s nanodomain or a multimeric protein complex are equally 

accessible to antibody based markers. Remarkably, nanoparticles with over 3 nm size 

applied in immunogold labeling of permeabilized cardiomyocytes showed limited access to 

the dyadic subspace, the nanodomain gap between the T-tubule membrane and the 

junctional SR [59]. Consequently, inadvertent heterogeneity of labeling due to size limited 

access to subcellular compartments is defined by specific cell architectures and is a concern 

for superresolution imaging. In practice, the accuracy of the image information will depend on 

opto-physical parameters of the imaging scheme, the labeling efficiency and density, and the 

correct subcellular targeting of stable bright fluorophores. 

  

2.4 Microscopy studies with immediate implications for cardiac nanophysiology 

 

EM studies have assessed the architecture of key intracellular membrane compartments like 

the Ca2+ release unit (CRU) and T-tubules (TTs) based on invasive protocols as a necessary 

prerequisite sample preparation [60-62]. In parallel, the partitioning and spatial relations of 

different membrane proteins in the cardiac CRU has been limited to confocal image 

resolution in the context of IF studies based on membrane permeabilization protocols [63-67]. 

In contrast, the morphology of the TT membrane structures at the level of individual 

membrane sheets or tubule cross-sections is not accessible to conventional optical imaging. 

Nevertheless, indirect TT network analysis based on cell-specific periodic signal patterns 

(striations) and changes in disease resulted in important insight [68]. Common membrane 

labelling methods include live cell staining (ANEP dyes), indirect (negative) staining based on 
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the TT contained diffusion space filled with fluorescent dextran conjugates, fluorescent WGA 

surface conjugates, or anti-Cav3 antibodies to mark the membrane space in fixed cells [63, 

67, 69-71]. We will extend this topic in section 3.1. 

 

A direct physiological readout, the subcellular Ca2+ release events known as ‘elemental’ Ca2+ 

sparks have revolutionized our understanding about CRU function both in health and disease. 

Ca2+ spark measurements are based on millisec fast confocal measurements of highly 

localized release events [72], further combined with negative TT staining for structure-

function analysis [73], and recently combined with intraluminal Ca2+ release dynamics inside 

the junctional sarcoplasmic reticulum (jSR) [74]. Furthermore, intracellular voltage imaging in 

live cells was extended through novel voltage-sensitive dyes and fast random-access 

microscopy to sample from multiple TT membrane positions for voltage signals [69, 75]. 

Although we can consider only on a limited number of studies here, it is apparent that 

detailed investigation of nanodomains at the scale of cardiac CRU structures is an important 

area for superresolution studies. 

 

2.5 Superresolution imaging in living cells 

 

Live cell superresolution imaging allows to directly gain structural and/or dynamic information 

from the intact subcellular environment. This includes monitoring of the structural plasticity or 

dynamic signaling events confined to the nanoscale. Due to the live cell paradigm the 

potential for artifacts from sample fixation, permeabilization, dehydration, sectioning, and/or 

cell-fractionation protocols are avoided altogether. Compared to standard microscopy, live 

cell imaging for super-resolution faces three general challenges: 1) common to all 

superresolution schemes, a majority of fluorophores within the diffraction limited volume are 

kept in a dark state, therefore increasing acquisition time; 2) nanometric resolution demands 

finer sampling, either by finer steps during scanning or by a higher number of fluorophore 

localizations to fulfill spatial sampling requirements; 3) on the other hand, nanometric 

resolution demands faster image acquisition to minimize an increased risk of motion artifacts 

at nanometric scales. An important concern, when visualizing smallest objects at nanometric 

scales, the higher sensitivity will also amplify any inadvertent object movement. 

 

In order to minimize artifacts from inadvertent sample movements or during repeated 

sampling of dynamic events over time, temporal resolution has to be optimized using a trade-

off with spatial resolution. For stochastic readout this trade-off is defined by the molecular 

photon count related to the frame exposure time and fluorophore brightness, by labeling 

density, and by dye switching rates (see also 2.2). For targeted readout with STED and 

RESOLFT the field of view can be negotiated against the frame rate of image acquisition to 

achieve a higher temporal resolution. Notably, for point-scanning techniques, the relevant 

time-scale for blurring due to motion artifacts is the line, but not the frame acquisition time, 

the former being significantly shorter. In practice, possible photo-damage in sensitive living 

samples by high-intensity photo-switching laser light, effects of light scattering deep inside 

cells, the brightness of fluorophores, and the labeling density all require empirical in situ 

testing, and if feasible the application of calibration tools. 

  

Notably, STED imaging was recently significantly extended by measurements deep inside 

living cells and tissues [4, 20], where the spatial and temporal resolution increasingly 
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depends on the brightness and size of the imaged objects. Importantly, video rate STED 

imaging with 28 frames/sec at 62 nm spatial resolution has been demonstrated during 

trafficking of synaptic vesicles with bright labeling through endocytosed antibodies [76]. 

Slower time-lapse imaging with STED and RESOLFT was accomplished with FP based 

volume stains of the ER or dendritic spine at resolutions below 70 nm [24, 77, 78], frame 

acquisition times of 200 ms [24], or 10-15 µm below the brain surface [77]. Furthermore, live 

STED dual-color applications with ~80 nm lateral resolution has been reported based on 

advanced labeling strategies with photo-chromic FPs, combinations of YFP and GFP, and 

hybrid labeling using SNAP and CLIP [79, 80]. 

 

For stochastic superresolution readout, image acquisition times from seconds to minutes 

have been reported. The read-out time for single-molecule approaches depends critically on 

the switching and emission rates of the dye molecule. As a consequence macromolecular 

structures with a relatively slow molecular turnover have been successful substrates for 

single-molecule based approaches, for example focal adhesion molecules or microtubules. 

To address potential artifacts due to sample drift during longer acquisition times, imaging 

routines which correct for sample drift have been implemented [38]. Recently, live imaging 

for stochastic readout has taken advantage of higher switching rates for organelle 

investigation [57] (see also 2.3). Life imaging with STORM uses different strategies based on 

organic dyes, e.g. clathrin-coated pits were labeled indirectly with Alexa647-transferrin 

conjugates and composite images were obtained at 0.5 sec acquisition time and 25 nm 

lateral resolution [45]. Compared to video rate STED, this corresponds to ~10-times slower 

acquisition rates. Notably, STORM in live cells was extended to dual-color labeling with 

transferrin-conjugates and SNAP-tag labeling of clathrin by electroporation [45]. Alternatively, 

a growing number of photo-switchable and inactivatable FPs may facilitate live cell labeling 

for stochastic readout. Live cell imaging with PALM achieved acquisition times of 25 secs at 

60 nm resolution for adhesion molecules using photon-resistant secondary cell lines [43], 

and clustering of a viral membrane protein was assessed with 40 nm resolution [81]. 

Furthermore, dual-color superresolution imaging of FPs was initially shown in fixed samples 

for adhesion complexes at 20-30 nm resolution using acquisition times of 5-30 mins [82].  

 

3.1 STED imaging of remodeled T-tubule membrane structures 

 

We have recently demonstrated STED microscopy for intact T-tubule (TT) membrane 

structures, which included hollow sections of membrane structures deep inside living cardiac 

myocytes [4], clearly beyond the reach of conventional imaging techniques. Previous studies 

have extended the analysis of TTs to different levels including network analysis in 3D [70, 71] 

or 2D [63, 68], and to average TT parameters like diameters [83]. Intuitively, the most reliable 

quantitative assessment of complex membrane structures can be expected when the 

physiological cell conditions are well preserved during imaging. For this, live staining with 

membrane localized dyes has universal appeal and offers clear advantages for structure 

localization and dye access [57, 63, 67, 69-71]. Considering ultrastructural EM analysis of 

cardiac couplons, thin cryosection are a necessary prerequisite [61, 62]. Notably, EM studies 

reported somewhat variable TT cross-section sizes of 150–200 nm in cat heart which depend 

on fixation methods, which is clearly below the resolution limit of conventional light 

microscopy (Figure 1A)[83]. Accordingly, confocal studies of small structural TT changes in 

heart disease were likely limited by the resolution barrier. On the other hand, microscale 
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spatial network reorganization has been identified as a potential excitation-contraction 

uncoupling mechanism in heart disease [68]. Subsequently, indirect analysis of cell-wide TT 

striation patterns [63, 68] has become a common and reliable strategy to characterize 

disease changes. A pioneering study based on two-photon excitation even visualized the 3D 

morphology of the TT network and analyzed TT sizes based on volume labeling and 

mathematical processing of diffraction-limited data [71]. 

 

Applying STED superresolution microscopy to living cardiomyocytes, we identified previously 

not recognized architectural details using quantitative analysis strategies each for individual 

TT elements and the cell-wide membrane network, and identified differential changes early 

post-MI [4]. Cardiac myocytes from post-MI mouse hearts were stained with the membrane 

probe di-8-ANEPPS and imaged up to 8 µm deep intracellular from the surface (Figure 2A 

center). Using STED, sharper TT membrane images with a significantly smaller cross-section 

area (~40% reduced) were obtained when directly compared to confocal images (Figure 2A 

center left). Apparently, STED resolved hollow membrane rings (cross section) and tubes 

(long section) depending on the orientation of the optical plane relative to individual TT 

elements. Furthermore, analysis of individual TT cross-sections identified proliferative 

changes (Figure 2A center), which at the level of the TT network increased the total length 

and the branching complexity early during the development of heart failure [4]. STED 

detected frequent, abnormally shaped TT components with grossly enlarged morphologies at 

network intersections post-MI (Figure 2A center left), further suggesting proliferative 

membrane remodeling as the cause of increased network complexity early during HF 

development. Notably, post-MI grossly enlarged TT membrane structures were not resolved 

by confocal imaging.  Furthermore, confocal line scan imaging for combined Ca2+ and TT 

structure-function analysis showed that the spatial TT changes have important functional 

consequences as evidenced by spatially dyssynchronous Ca2+ release [4]. In summary, the 

observed membrane staining and brightness of di-8-ANEPPS proofed to be compatible with 

deep intracellular STED imaging in cardiomyocytes. This strategy using a directly 

intercalated membrane dye for STED superresolution microscopy can be readily extended to 

other live organotypic cells or further questions about intact membranes. 

  

3.2 Single-molecule imaging of the RyR2 super-complex in fixed cardiomyocytes 

 

Superresolution microscopy has significantly contributed to our understanding of the 

organization of cardiac ryanodine receptors (RyR2s) and associated proteins [6]. RyR2 

functions as the main intracellular Ca2+ release channel, occurring in clusters located at the 

CRUs. While the exact nature of RyR2 channel organization inside clusters remains unclear, 

highly ordered cluster architectures were previously suggested based on in vitro EM studies 

showing lattice formations, consistent with EM model extrapolations from cryosection data of 

cardiomyocytes [61, 84]. Notably, coupled gating of small numbers of RyR2 channels was 

identified by lipid bilayer recording, suggesting an important control mechanism of channel 

clustering for Ca2+ release [85]. Analysis of thin EM cryosections and of confocal imaging 

data led to estimates of 80-140 RyR2s per cluster assuming a model of orderly filled, 

symmetric cluster architectures [61, 86]. In contrast, 3D electron microscopy provided a 

different model where approximately two thirds of the dyadic subspace contained clusters 

with 15 or more RyR2 channels [62]. 
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However, the prevailing model of relatively large and symmetric RyR2 super-clusters has 

been challenged recently by superresolution images based on stochastic readout. Baddeley 

et al. reported that RyR2 clusters show a near exponential size distribution with an average 

cluster size of ~14 channels [6]. These clusters resembled irregular, elongated or partly 

circular shapes (Figure 2B lower) [6]. Baddeley et al. concluded that the observed cluster 

size distribution may reflect a stochastic assembly process which includes super-clusters. In 

this study single-molecule localization microscopy at ~30 nm lateral resolution was based on 

an approach termed reversible photobleaching (RPM), which is analogous to GSDIM [13, 14] 

and also called dSTORM [87, 88]. Due to total internal reflection (TIRF) illumination, the 

imaging was limited to RyR2 proteins at the cell surface of fixed cardiomyocytes. Recently, 

this strategy was extended to dual-color imaging based on near-infrared Alexa-fluor dyes for 

reversible photochemical conversion using a reducing mounting medium [15]. While confocal 

studies have suggested physical interactions of RyR2 and junctophilin-2 (JPH2), the exact in 

situ distribution of the proteins was not known [89]. Superresolution analysis of RyR2 and 

JPH2 showed the relative distributions in the junctional space (Figure 2B lower right) [5]. 

Importantly, decreased levels of the JPH2 protein have been shown to destabilize the dyadic 

CRU architecture and Ca2+ release [90]. JPH2 is downregulated in heart failure, which we 

have recently confirmed  in a myocardial infarct model [4]. In addition, only a small fraction 

(5%) of caveolin-3 was colocalized with RyR2 clusters in superresolution images, while 

confocal studies overestimated the degree of colocalization by ~6-fold due to optical blurring 

of these paralocalized proteins [15]. In summary, while IF studies of protein super-clusters 

and specialized subcellular structures will necessarily experience limitations (see also 2.1), 

these strategies will continue to contribute to superresolution insight. 

3.3 Future cardiac superresolution questions 

 

Our cardiac superresolution survey showed that intact cell membranes and protein clusters 

are important areas for superresolution imaging. This reflects genuine questions about 

cardiac cell biology, where distinct membrane nanodomains or compartments exist, and 

often at a high spatial density in a given cell. Superresolution microscopy has already led to a 

new interpretation of the organization of CRUs [5, 6, 15, 44]. Yet, the precise molecular 

organization of RyR2 receptors within super-clusters containing a high density of channel 

proteins still has to be resolved. Furthermore, we consider functional correlations of Ca2+ 

signals important to reach new insight about the physiological CRU architecture and changes 

in disease. Notably, instructive analytical examples about protein clusters exist outside the 

cardiac field including the organization of synaptotagmin and syntaxin-1 clusters [45, 91, 92], 

or the organization membrane domains containing a high density of ion channels like 

nicotinic acetylcholine and AMPA receptors [93, 94]. 

 

Furthermore, superresolution microscopy is ideally positioned to resolve local membrane 

structures and their relation with organelles, e.g. parts of the SR/ER membranes in close 

proximity with mitochondria in cardiomyocytes and potential reciprocal signaling mechanisms 

[95, 96]. Accordingly, established superresolution strategies for mitochondria and lipid 

nanodomains are of relevance [29, 32, 39, 46, 83, 97, 98]. Recent developments further 

support 3D superresolution insight which can be applied to study complex architectures of 

surface structures like T-tubule orifices or the nanodomain organization of the SR/ER 

membrane network and organelles [4, 57]. In addition, the intercalated disc is an important 
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structure harboring a dense molecular organization of intercellular contact zones. 

Accordingly, superresolution studies of adhesion complexes in fixed and living cells [39, 43, 

46, 82] have clearly outlined the potential for analogous approaches to study cardiac 

intercalated disc complexes. Furthermore, cytoskeletal filament structures have been 

successfully imaged by superresolution [19, 35, 44, 82], which can be extended to the 

organization of cellular nanodomains and their dynamic control during cell stretch. 

 

4 Summary and Outlook 

 

Studying intricate physiological architectures and pathological changes of membrane 

nanodomains is an important and intrinsically motivated topic of research. Clearly, 

fluorescence superresolution microscopy has already started to transform cardiac research. 

Limitations from confocal blurring can be avoided, and superresolution strategies improve the 

imaging of detailed and heterogeneous molecular signal patterns by several-fold increased 

resolution in cells. Apart from the apparent qualitative improvement provided by 

superresolution imaging, it appears timely to reassess previous diffraction limited results by 

existing state-of-the-art superresolution approaches including advantageous new labeling 

techniques. Physiologically relevant, complex membrane structures like T-tubules with 

functionally important substructures motivate important questions, which include the vast 

area of membrane associated proteins, the organization of super-complexes and organelles. 

Additional improvements in FPs hold great promise for further advances in superresolution 

imaging, both through targeted and stochastic readouts in living cells. Furthermore, 

previously unattainable superresolution information and mathematical modeling of local 

subcellular structure-function relations are just starting to complement and invigorate entirely 

new approaches in cardiac cell biology. 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Kohl: cardiac nanoscopy  JMCC-S-12-00545 

14 

Non-standard Abbreviations and Acronyms 
 

BALM  Bleaching/Blinking Assisted Localization Microscopy 

CRU  Calcium Release Unit 

FPALM Fluorescence Photoactivation Localization microscopy 

GSDIM Ground-State-Depletion with Individual Molecule Return microscopy 

PALM  Photo-Activation Localization Microscopy 

PALMIRA PALM with Independently Running Acquisition 

RESOLFT Reversible Optically-Linear Fluorescence Transitions microscopy 

RyR1  Ryanodine receptor isoform 1, skeletal muscle type 

RyR2  Ryanodine receptor isoform 2, cardiac muscle type 

SIM  Structured Illumination Microscopy 

SSIM  Saturated Structured Illumination Microscopy 

STED  Stimulated Emission Depletion microscopy 

STORM Stochastic Optical Reconstruction Microscopy 

TT  Transverse tubule or T-tubule 

FP  Fluorescent Protein 

IF  Immunofluorescence 
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Figure 1 

 

Essential membrane structures and Ca2+ transport proteins of cardiomyocytes in 

relation to optical resolution scales 

A) The cellular organization of membrane structures, Ca2+ binding proteins, and 

targeting of fluorescent probes occurs at different scales in a ventricular myocyte 

(VM). The diffraction limit of resolution (indicated by vertical orange bar) highlights examples 

of cellular structures that benefit from superresolution microscopy through detailed image 

information. From left to right: VM, confocal image of a VM cell showing the typical 

transversal striation pattern; TT network, confocal image of the TT membrane network 

labelled with di-8-ANEPPS [4]; RyR2 cluster, individual channel shapes (green) fitted into a 

reconstructed superresolution image (RPM; not shown) compared to the diffraction limited 

signal (red) [6]; mito, cartoon of cross-sectioned mitochondrial organelle showing cristae 

structures of the inner membrane (yellow) [99]; TT, individual hollow TT membrane cross-

section resolved by STED [4]; RyR1, cryoEM domain model for RyR1 channel tetramer 

showing a ~30x30 nm sized cytosolic surface structure [100]; IgG, immunoglobulin G ribbon 

representation (PDB-1IGT); GFP, molecular β-barrel structure [101]; nanobody, an anti-GFP 

based superresolution marker strategy [55]; ordered according to approximate scale size. 

B) Optical resolution is limited by light diffraction. The optical resolution depends on the 

size of the effective point spread function (PSF) as shown in the imaging plane (x/y). Due to 

light diffraction, two sufficiently close point emitters are detected as ensemble (blurred) signal 

of two combined PSF signal distributions (right case). Only point emitters spaced at a 

sufficient distance can be discriminated due to light diffraction (left case). Note: the optical 

resolution principles discussed here differ from the single-molecule localization principles 

discussed in section 2.2. 
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Figure 2 

Strategies and applications for superresolution microscopy in cell imaging 

A) Targeted readout. Top: Saturated photo-switching with STED or RESOLFT is targeted to 

the spot of focused excitation light (green). A torroid shaped laser beam (red) spatially 

confines the central signal, thereby reducing the effective PSF size below the diffraction limit. 

Right box: In targeted readout, laser scanning of the sample by the overlaid excitation and 

photo-switching laser beams directly produces the superresolution image from the given 

cellular imaging plane. Center: Using STED, important details of individual TT membrane 

cross-sections as well as the cell-wide membrane network were resolved in living 

cardiomyocytes, which facilitated identification of early changes of intact membranes 4 

weeks post-MI (4pMI) compared to sham hearts [4]. Lower: dual-color STED resolved the 

separation of the indicated mitochondrial proteins in cultured cells [32] and 3D 

superresolution isoSTED identified christae structures at the inner mitochondrial membrane 

[99].  

B) Stochastic readout. Top: Photo-switching results in stochastic behaviors defined by 

groups of inactive (blue) and active (red) single-molecule fluorophores. For random single 

molecule emissions to be detected as individual diffraction-limited signals (effective PSF), a 

relatively high number (up to 105) of sequential wide-field imaging frames are captured. 

Individual molecule localizations are determined by signal fitting for each subdiffraction frame 

and reconstruction of the final superresolution image. Lower: The examples show the 

distribution and morphology of peripheral RyR2 clusters at the cardiomyocyte surface (left); 

complex RyR2 super-cluster shapes and heterogeneous signal patterns (center); and the 

colocalized distribution of RyR2 and JPH2 proteins within clusters [5, 6].  
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Figure 1 
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Figure 2 
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Highlights 

 Conventional fluorescence microscopy is limited in resolution by diffraction. 

 Rapidly evolving nanoscale imaging techniques overcome the resolution barrier. 

 We discuss recent cardiac applications of superresolution techniques. 

 Targeted readout versus stochastic readout are major superresolution principles. 

 Subcellular Ca2+ signaling nanodomains and organelles are highlights of nanoscopy. 


