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Reviewer #2 (Remarks to the Author):  
 
This manuscript reports how to automatically discover subunit structure in the response 
properties of retinal ganglion cells by analyzing the statistical structure of spike-evoking stimuli 
drawn from a white-noise stimulus set. The authors perform the analysis using nonnegative 
matrix factorization with nonnegative and sparsity constraints on the subunit field values. They 
then go on to show that the discovered units correlate with the receptive fields of experimentally 
measured bipolar cells, and that the responses from the subunit model are significantly better 
than the standard LN model for other stimuli.  
 
I had some questions concerning the analysis. First, it wasn't exactly clear how the STA stimuli 
were processed. The authors state that SVD was used to first decompose the spatiotemporal 
patterns into a spatial filter and temporal filter, presumably using the top rank-1 decomposition. 
Then they say that a weighted average of the spatial patterns is performed, weighted by the 
temporal filter from the SVD. However, the temporal filter contains both positive and negative 
values, so it is not clear how the weighted average is performed. In particular, if the sum of the 
weights is near zero, I would imagine the normalization would be extremely noisy.  
 
I would have also have liked to have seen if more traditional second order analysis of the stimuli 
would yield meaningful results. For example, a spike-triggered covariance analysis could have 
been performed, and the leading eigencomponents could have been compared to the results of 
STNMF. It probably is the case that this analysis would result in non-localized fields, but it 
would still be instructive to compare this spike-triggered Gaussian-based analysis with STNMF.  
 
Also, how did the authors utilize the weights from the NMF analysis? Are those weights used for 
the subunit model, or were the weights in the model after the rectification nonlinearity fixed or 
fit from scratch? It would be nice to ascribe some meaning to the mixing weights of the subunits 
in the analysis.  
 
I appreciate that the subunit model seems to roughly describe the ganglion responses on novel 
natural image stimuli. Another quantitative measure of the performance of the model would have 
been to see how well it performs on a held-out test set from the white-noise stimuli patterns. It 
would be instructive to see how well the subunit model performs relative to the LN model, or 
Gaussian model on such a test set.  
 
 
 
Reviewer #3 (Remarks to the Author):  



 
In their paper, Liu et al. propose a new method based on non-negative matrix factorization to 
decompose the receptive field of a neuron into subunits, which are nonlinearly integrated. They 
demonstrate the power of their approach by applying it to recordings from salamander retinal 
ganglion cells, where the identified subunits correspond to individual bipolar cells, as 
impressively demonstrated through paired recordings from ganglion and bipolar cells. Overall, 
this is an interesting contribution with a potentially clear methodological advance; the new 
method may help to bring functional models of neurons (such as the LN model) and anatomy 
closer together and thus has huge potential in systems neuroscience. The statistical methods used 
are adequate and rigorous (for a few suggestions, see below) and the description of the method is 
provided at sufficient level of detail (yet, code would be helpful, see below).  
 
While of potential wide applicability and interest, the paper lacks in certain aspects in its present 
form. As this is clearly a methodological paper, I would like to see more depth regarding (a) 
evaluation of the robustness of the proposed method, (b) evaluation of the generality of the 
method, (c) comparison with other methods and (c) discussion of potential new findings that can 
only be achieved with this method.  
 
(a) The authors evaluate in Fig. 2 and SFig. 3 some general properties of their model and show 
that it can recover subunits if present in the data and is robust against variations in the temporal 
kernels. I would like to see more exploration of the robustness of the model: How many minutes 
of recordings/spikes does one need to robustly extract subunits? What happens if model 
assumptions are violated, e.g. the true subunits are quadratic ally combined like in STC? Was 
that ever observed in the data? What is the effect of noise level in toy data?  
 
(b) While it is impressive to see that the recovered subunits in the salamander in some cases 
correspond to receptive fields of bipolar cells, it would be nice to see how this method performs 
with data from other species, such as mice. I realize that this may be asking too much, but 
showing subunits of mouse RGCs would be nice, even without the dual recordings, if the authors 
have the data.  
 
(c) The authors show that their method performs better than the LN model in predicting RGC 
spikes. But the LN model is somewhat of a straw man – there is a host of more complex models 
around and it would be instructive to compare the prediction performance to those. At the very 
least models like that of McFarland et al. (2013, ref. 28) and a few other state of the art 
techniques (e.g. Freeman et al. eLife, 2015, ref 29; Theis et al. Plos Comp Bio 2013) with a 
similar spirit should be compared. This would also be a chance clarify whether the authors 
expect this model to yield good prediction performance or whether the advantage of the model is 
rather its interpretability. Also the comparison should include an estimate of the explainable 
variance based on the oracle prediction on the frozen noise, see e.g. ref 26.  
 
(d) The Discussion is a bit thin regarding potential applications – where do the authors think this 
method may be more useful than other methods or enable testing biological theories not 
otherwise testable? I would like to see the authors describing potential applications much more 
explicitly.  
 



 
Other comments  
- Shuffle tests: From the main text, it remains often unclear what exactly was shuffled to test 
which hypothesis (Fig. 4 and 5). Please make this more accessible and transparent.  
 
- Being a methods paper, it could use a little bit more mathematical details/rigor in the main text. 
I sympathize with the authors trying to make the work accessible to non-experts, but the 
descriptions in the main text are often too vague.  
 
- The methods are not explicit about which data the models were fitted and evaluated on for the 
model comparison, i.e whether the evaluation was performed on a real test set.  
 
- There is a note in the methods (p15) about rectifying subunit nonlinearities not being the best. 
Why not replace them by something simple (e.g. piecewise linear)?  
 
- The discussion of the literature with regards to previous papers on subunit models is a bit 
biased. I think Freeman et al. have nicely demonstrated that very likely their extracted subunits 
correspond to BCs sampling from distinct sets of photoreceptors. Also labeling this a method 
with “no prior assumptions” (p. 2) is a bit strong (of course there are inherent assumptions, see 
comment about quadratic features above).  
 
- What is meant by “we quantified the maximal difference in firing rate along this curve” on p. 
3?  
 
- Are there any theoretical considerations why the gain, the nmf weight and the Rf fit should be 
similar?  
 
- I would like to see the examples of where there wasn’t a match of any inferred subunit to a 
patched BC on p 4/Fig 3.  
 
- Fig. 3, BC image: lacks scale bars, any way to reduce blur by deconvolution?  
 
- Fig 3b: What is meant precisely by ganglion cell receptive field?  
 
- Fig. 4b: Given the spikes predicted by the subunit model, I find it hard to believe the better 
numbers, the prediction seems not really better than the prediction of the LN. Maybe the authors 
could show additional examples in the supplement and add rate estimates?  
 
- Fig. 4: For the VE and rank correlation plots, histograms of pairwise differences would also be 
useful.  
 
- The evidence for subunit sharing I don’t find particularly convincing in Fig. 5 – I think the 
authors argue that the histogram is a bit higher than their shuffle curve in the tails… but the 
authors also show 1.5 sigma outlines of the shuffle results, which is not exactly standard (i.e. the 
green lines theoretically contain 86% of the shuffle runs).  
 



- Is it surprising that functionally different RGCs like in Fig. 5 share BCs in light of the 
connectomics data (Helmstaedter 2013 and others; p. 6)?  
 
- A DSI>.25 seems a rather loose criterion for establishing DS. Why not perform a significance 
test instead? Also are there not multiple DS types in the salamander?  
 
- How do the subunit mosaics look for other cell types?  
 
- Figures generally: More subpanel labels would help.  
 
- The paper would benefit tremendously from a software package with data that allows easy 
replication of the findings as well as using it on ones own data. 
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We thank the Reviewers for their helpful and constructive comments. As detailed below, we 
have addressed all points raised by the Reviewers. Most importantly, we added new analyses 
of comparison with alternative methods aimed at resolving the subunit structure of receptive 
fields and of how robust the STNMF method is with respect to the shape of subunit 
nonlinearities, to noise, and to the number of available spikes. Furthermore, we performed 
additional experiments to show that the method is also applicable to mouse retina. Finally, we 
thoroughly revised the text in order to provide a more rigorous as well as more intuitive 
access to the presented method. We believe that the manuscript has strongly benefited from 
these changes. 
 
Reviewer #2 (Remarks to the Author): 
 
This manuscript reports how to automatically discover subunit structure in the response 
properties of retinal ganglion cells by analyzing the statistical structure of spike-evoking 
stimuli drawn from a white-noise stimulus set. The authors perform the analysis using 
nonnegative matrix factorization with nonnegative and sparsity constraints on the subunit 
field values. They then go on to show that the discovered units correlate with the receptive 
fields of experimentally measured bipolar cells, and that the responses from the subunit model 
are significantly better than the standard LN model for other stimuli. 
 
I had some questions concerning the analysis. First, it wasn't exactly clear how the STA 
stimuli were processed. The authors state that SVD was used to first decompose the 
spatiotemporal patterns into a spatial filter and temporal filter, presumably using the top 
rank-1 decomposition. Then they say that a weighted average of the spatial patterns is 
performed, weighted by the temporal filter from the SVD. However, the temporal filter 
contains both positive and negative values, so it is not clear how the weighted average is 
performed. In particular, if the sum of the weights is near zero, I would imagine the 
normalization would be extremely noisy. 
 
Indeed, we used to top-rank components from the SVD to obtain the temporal filter and 
spatial receptive field. We’ve added a corresponding note in the Methods section (page 14 
under “Receptive field analysis”). The obtained temporal filter can have positive and negative 
values. For normalization of the temporal filter, the Euclidean norm (L-2 norm) is used so that 
the sum of squares of the filter elements equals unity after normalization, not the integral. 
Thus, the normalization is robust even if the sum of filter elements is near zero. We have 
revised the explanation of the normalization to make this clearer (page 14). Note that the 
normalization of the filter is performed before it is applied to compute the weighted average 
of stimuli. This weighted average is essentially a scalar product between the filter and a 
temporal sequence of contrast values for a given image pixel. Both the filter and the stimulus 
sequence typically contain positive and negative values, and the scalar product can be positive 
or negative. Values near zero here mean that the considered pixel is expected to neither 
enhance nor suppress activity of the considered ganglion cell. In the revision, we have 
extended the explanation of the temporal weighting along these lines (page 3 and page 16). 
 
I would have also have liked to have seen if more traditional second order analysis of the 
stimuli would yield meaningful results. For example, a spike-triggered covariance analysis 
could have been performed, and the leading eigencomponents could have been compared to 
the results of STNMF. It probably is the case that this analysis would result in non-localized 
fields, but it would still be instructive to compare this spike-triggered Gaussian-based 
analysis with STNMF. 
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We thank the Reviewer for this suggestion. Indeed, it is instructive to compare our results 
with a spike-triggered covariance (STC) analysis. As suggested, we have performed STC 
analysis to extract sets of spatial filters for comparison with the subunits obtained by our 
STNMF method. The results are shown in a new supplementary figure (Suppl. Fig. 3) and 
discussed in the text (page 4f.). The analysis indicates that, for the purpose of extracting 
physiologically relevant subunits, the STNMF method is superior to the STC method in two 
respects: First, STC analysis is more sensitive to the high dimensionality of the analyzed 
stimulus space (which must include many pixels in order to provide for sufficient spatial 
resolution) so that often relevant stimulus features do not stand out by their eigenvalues from 
the broad distribution of non-relevant eigenvalues and the extracted features are 
correspondingly noisy. Second, when features are extracted from the STC analysis, they are 
typically, as expected by the Reviewer, non-localized, rather corresponding to Fourier modes 
of the receptive field than to potential presynaptic circuit elements. The comparison thus 
underscores the power of the STNMF analysis for the specific purpose of extracting localized 
subunits as candidates for presynaptic receptive fields. 
 
Also, how did the authors utilize the weights from the NMF analysis? Are those weights used 
for the subunit model, or were the weights in the model after the rectification nonlinearity 
fixed or fit from scratch? It would be nice to ascribe some meaning to the mixing weights of 
the subunits in the analysis. 
 
The weights obtained from the NMF analysis are not the weights that we apply in the subunit 
model. In this model, subunit weights were obtained from the parameters needed to fit the 
receptive field by a linear combination of the subunits. This was done to ensure that the 
overall contribution of each pixel best matched its contribution in the standard LN model. As 
shown in Supplementary Fig. 2, however, these receptive field fitting weights are similar to 
the average weights from the NMF analysis (“mixing weights”), which could thus here have 
equally been used as weights for the subunit model. We have expanded the discussion of 
these different weight measures to clarify their relation (page 4). The individual mixing 
weights of the NMF analysis only signify how much a given subunit contributed to the 
generation of a given spike. 
 
I appreciate that the subunit model seems to roughly describe the ganglion responses on 
novel natural image stimuli. Another quantitative measure of the performance of the model 
would have been to see how well it performs on a held-out test set from the white-noise 
stimuli patterns. It would be instructive to see how well the subunit model performs relative to 
the LN model, or Gaussian model on such a test set. 
 
The results of Fig. 4b are, in fact, from an analysis of held-out stimulus segments from the 
spatiotemporal white-noise experiments. The results show that the subunit model outperforms 
the LN model in a similar fashion as for the natural images (Fig. 4c). We have revised the text 
to more clearly point to this analysis of held-out stimulus segments (page 7 and page 20). 
 
Reviewer #3 (Remarks to the Author): 
 
In their paper, Liu et al. propose a new method based on non-negative matrix factorization to 
decompose the receptive field of a neuron into subunits, which are nonlinearly integrated. 
They demonstrate the power of their approach by applying it to recordings from salamander 
retinal ganglion cells, where the identified subunits correspond to individual bipolar cells, as 
impressively demonstrated through paired recordings from ganglion and bipolar cells. 
Overall, this is an interesting contribution with a potentially clear methodological advance; 
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the new method may help to bring functional models of neurons (such as the LN model) and 
anatomy closer together and thus has huge potential in systems neuroscience. The statistical 
methods used are adequate and rigorous (for a few suggestions, see below) and the 
description of the method is provided at sufficient level of detail (yet, code would be helpful, 
see below). 
 
While of potential wide applicability and interest, the paper lacks in certain aspects in its 
present form. As this is clearly a methodological paper, I would like to see more depth 
regarding (a) evaluation of the robustness of the proposed method, (b) evaluation of the 
generality of the method, (c) comparison with other methods and (c) discussion of potential 
new findings that can only be achieved with this method.  
 
(a) The authors evaluate in Fig. 2 and SFig. 3 some general properties of their model and 
show that it can recover subunits if present in the data and is robust against variations in the 
temporal kernels. I would like to see more exploration of the robustness of the model: How 
many minutes of recordings/spikes does one need to robustly extract subunits? What happens 
if model assumptions are violated, e.g. the true subunits are quadratic ally combined like in 
STC? Was that ever observed in the data? What is the effect of noise level in toy data? 
 
We agree that an analysis of robustness of the model is an important addition. In the revision, 
we have tackled this issue in the following ways. First, we have checked that the assumed 
monotonic, threshold-like shape of the subunit nonlinearity is not a prerequisite for the 
extraction of subunits. For a model with quadratic subunit nonlinearities, as suggested by the 
Reviewer, the method works equally well; see the new Supplementary Fig. 4. (But no, we 
have not encountered any symmetric subunit nonlinearities in our data.) Note that, in this 
process, we have also extended the analysis of the model with different temporal filters for 
different subunits to now contain five overlapping subunits (Suppl. Fig. 5), and we corrected 
the display of the original model (Fig. 2) to show the threshold-quadratic subunit 
nonlinearities that we had used here. (Although the method also works, of course, with the 
threshold-linear subunit nonlinearities that had originally been displayed.) 
 
Second, we used model simulations to check how the extraction of subunits depends on the 
number of spikes used for the analysis and on the level of added noise. These analyses 
provided two important insights. First, the subunit estimation is relatively robust to noise and 
spike deletions up to a certain point after which performance drops steeply. Second, when 
subunit detection starts to fail, it does so primarily by losing individual subunits to noise while 
other subunits are still faithfully retained. We have checked that a similar dependence on 
noise and spike numbers also holds for actual experimental data. The results of this robustness 
analysis with respect to noise and spike number are shown in the new Supplementary Fig. 6 
and discussed in the text (page 5f.). 
 
(b) While it is impressive to see that the recovered subunits in the salamander in some cases 
correspond to receptive fields of bipolar cells, it would be nice to see how this method 
performs with data from other species, such as mice. I realize that this may be asking too 
much, but showing subunits of mouse RGCs would be nice, even without the dual recordings, 
if the authors have the data. 
 
We agree that showing data from a mammalian retina could strengthen the presentation of 
STNMF as a generally applicable method. We therefore performed recordings from mouse 
retina under spatiotemporal white noise at high spatial resolution (pixel size down to 15 µm). 
We find that STNMF yields localized subunits in a very similar fashion as for the salamander 
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data. This underscores that STNMF is readily applicable to other systems. We have included a 
new supplementary figure (Suppl. Fig. 10) to show data from mouse retina. 
 
(c) The authors show that their method performs better than the LN model in predicting RGC 
spikes. But the LN model is somewhat of a straw man – there is a host of more complex 
models around and it would be instructive to compare the prediction performance to those. At 
the very least models like that of McFarland et al. (2013, ref. 28) and a few other state of the 
art techniques (e.g. Freeman et al. eLife, 2015, ref 29; Theis et al. Plos Comp Bio 2013) with 
a similar spirit should be compared. This would also be a chance clarify whether the authors 
expect this model to yield good prediction performance or whether the advantage of the 
model is rather its interpretability. Also the comparison should include an estimate of the 
explainable variance based on the oracle prediction on the frozen noise, see e.g. ref 26. 
 
We now clarify in the text that the main purpose of the present work is to extract 
physiologically interpretable subunits, rather than to optimize response predictions (page 8). 
Nonetheless, as suggested, we now relate our method of identifying subunits to alternative 
methods. First, we explored how STNMF compares to spike-triggered covariance analysis in 
terms of identifying localized subunits (new Suppl. Fig. 3; see also response to comment by 
Reviewer #2). Furthermore, we also added a comparison of our method and the corresponding 
model predictions to the Nonlinear Input Model (NIM) introduced by McFarland et al. (2013). 
The results are shown in a new supplementary figure (Suppl. Fig. 9) and discussed in the text 
at the end of the section on response predictions (page 8). 
 
We also looked at the other suggested methods by Freeman et al. and Theis et al. We found, 
however, that adjusting these different methods to our data is not as straightforward as it may 
seem at first sight, primarily because of the high dimensionality of the relevant stimulus 
space. Note that our experiments applied (by necessity) spatiotemporal white-noise stimuli 
with a much higher spatial resolution than typically used in receptive field analyses, yielding a 
stimulus space of typically several hundred dimensions (considering only spatial stimulus 
components). We found that – at least in our hands – the suggested alternative methods 
struggled with this high dimensionality both in terms of computer runtime and of getting 
stuck in local minima. For example, fitting a full NIM to the data of a single ganglion cell 
from our recorded data set had still not converged after more than 30 days of runtime on a 12-
core/128-GB-RAM machine. Thus, making these models fully compatible with the data at 
hand would require adjustments of modeling parameters and exploration of fitting strategies 
that we consider well beyond the scope of this work. 
 
We therefore settled for an investigation of a reduced version of the NIM. We reduced model 
complexity by integrating out time (as we did for our STNMF analysis) and by not 
considering any post-spike filter. This furthermore allowed us to directly compare model 
performance without the need to resample time. For this reduced NIM, we found that the 
obtained filters do not show the localized structure observed for the subunits of the STNMF 
method and that it does not yield better response predictions than the STNMF-derived subunit 
model. With respect to these results, we added a cautionary note that our approach certainly 
did not explore the full potential of this model (page 8). Nonetheless, these investigations 
underscore the merit of methods that do not require fitting of entire input-output models. 
 
Finally, we estimated the explainable variance for each cell in the analysis of response 
predictions on frozen noise by separating the data into even and odd trials and computing the 
variance explained between them. As expected, because of the large number of trials that 
went into computing the PSTHs (more than 200 trials), the explainable variance is very close 
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to unity (0.97±0.04, mean±SD). Thus, noise in the PSTHs does not limit the measure of 
variance explained. We therefore kept the measure of variance explained in the figures, but 
now explain the considerations and results regarding the explainable variance in the Methods 
section under “Response predictions” (page 21).   
 
(d) The Discussion is a bit thin regarding potential applications – where do the authors think 
this method may be more useful than other methods or enable testing biological theories not 
otherwise testable? I would like to see the authors describing potential applications much 
more explicitly. 
 
As suggested, we have added a new paragraph (at the end of the Discussion; page 11) where 
we highlight potential applications of the method. 
 
Other comments 
- Shuffle tests: From the main text, it remains often unclear what exactly was shuffled to test 
which hypothesis (Fig. 4 and 5). Please make this more accessible and transparent. 
 
Agreed. We have reworked these text passages and expanded the explanations around the 
shuffling analyses (page 7 regarding the shuffle analysis of bipolar cell/subunit overlap and 
page 9 regarding the shuffle analysis of subunit overlap for populations of ganglion cells). 
 
- Being a methods paper, it could use a little bit more mathematical details/rigor in the main 
text. I sympathize with the authors trying to make the work accessible to non-experts, but the 
descriptions in the main text are often too vague. 
 
We have substantially reworked the presentation of the method in the main text, aiming at 
providing more rigor and conceptual details, yet still trying to keep it generally accessible by 
referring to the Methods section for technical details and formulas. 
 
- The methods are not explicit about which data the models were fitted and evaluated on for 
the model comparison, i.e whether the evaluation was performed on a real test set. 
 
We have now clarified, both in the main text (page 7) and in the Methods section (page 20), 
that the model evaluations are performed on real test sets. The model parameters (i.e., 
receptive field, subunits, nonlinearities) were obtained from the non-repeated segments of the 
spatiotemporal white-noise experiments. For the predictions in response to spatiotemporal 
white noise, the evaluation was performed on inserted, repeated frozen-noise segments, which 
thus represent held-out data. For the predictions to natural images, the images were only used 
for model evaluations; the model parameters are again taken from the non-repeated white-
noise segments. The only exception was the gain of the final output nonlinearity for the 
analysis of natural images at slightly different position (Suppl. Fig. 8), which was fitted for 
each analyzed model to the test data. 
 
- There is a note in the methods (p15) about rectifying subunit nonlinearities not being the 
best. Why not replace them by something simple (e.g. piecewise linear)? 
 
We now more clearly state that the main interest in the models in this work is to show that the 
STNMF method extracts meaningful and useful subunit layouts, not to optimize response 
predictions (page 8). The simple rectifying subunit nonlinearities already allow us to see a 
strong improvement over the LN model without introducing further free parameters to model 
the nonlinearities. We tried out different simple subunit nonlinearities, such as threshold-
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quadratic and exponential, but did not find substantial differences in model performance. Note 
that parameterizing the subunit nonlinearities would require a simultaneous optimization with 
the output nonlinearity, which would introduce considerable additional complexity. Thus, 
although we agree that trying to optimize the subunit nonlinearities will be an interesting 
direction, we feel that this is beyond the scope of this work and might rather distract from the 
main point. We have aimed at better clarifying the purpose of using a fixed subunit 
nonlinearity in the Methods section (page 20). 
 
- The discussion of the literature with regards to previous papers on subunit models is a bit 
biased. I think Freeman et al. have nicely demonstrated that very likely their extracted 
subunits correspond to BCs sampling from distinct sets of photoreceptors. Also labeling this a 
method with “no prior assumptions” (p. 2) is a bit strong (of course there are inherent 
assumptions, see comment about quadratic features above). 
 
Yes, agreed. We have rephrased the statement in the introduction, specifying that connecting 
inferred subunits to circuit elements is a general challenge and pointing out the progress made 
by Freeman et al. (page 2). Regarding the second point, we did not mean to imply that the 
STNMF method contains no prior assumptions, but rather that methods without prior 
assumptions are desirable and that the STNMF method does not require a prior constraints on 
the spatial compactness of subunits. However, we agree that the formulation was misleading, 
and we have changed it to say that methods with “minimal” prior assumptions are desirable 
and that the STNMF method does not require explicit prior specification of subunit size, 
shape, number, or nonlinearity (page 2). 
 
- What is meant by “we quantified the maximal difference in firing rate along this curve” on 
p. 3? 
 
We apologize for the lack of clarity here. We rephrased and expanded this (now page 4) to 
clarify that we simply took the histogram of filter outputs versus firing rates and computed the 
difference between the maximum and minimum of the histogram. 
 
- Are there any theoretical considerations why the gain, the nmf weight and the Rf fit should 
be similar? 
 
The consideration behind this is that these three measures all capture how strong the influence 
of a subunit on the spiking activity of the ganglion cell is, that is, what the connection strength 
is. The fact that they are similar (apart from a scaling factor) corroborates this interpretation, 
though we do not have a formal reason of whether they should be linearly related to each 
other. In the revised text, we have aimed at clarifying our interpretation of these measures 
(page 4). 
 
- I would like to see the examples of where there wasn’t a match of any inferred subunit to a 
patched BC on p 4/Fig 3.  
 
We now include a new supplementary figure (Suppl. Fig. 7) with more examples of recorded 
bipolar cells and subunit layouts, some with good matches, others where there was no match 
found. Also note that we have meanwhile increased the number of recorded bipolar cells to 17 
and have adjusted the text accordingly (page 6). 
 
- Fig. 3, BC image: lacks scale bars, any way to reduce blur by deconvolution? 
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We added a scale bar and performed deconvolution of the image, based on a measurement of 
the point-spread function by imaging fluorescent beads. Note, however, that image quality is 
compromised by the fact that images were obtained from retinas that, after several hours of 
recording, had to be peeled off a perforated MEA, to which it had been tightly attached by 
suction. Yet, the characteristic morphology of a bipolar cell is clearly discernable. 
 
- Fig 3b: What is meant precisely by ganglion cell receptive field? 
 
The receptive field here refers to the spatial component of the spike-triggered average under 
spatiotemporal white noise, represented in a pixel-by-pixel fashion. We have clarified this 
now in the legend of Fig. 3. 
 
- Fig. 4b: Given the spikes predicted by the subunit model, I find it hard to believe the better 
numbers, the prediction seems not really better than the prediction of the LN. Maybe the 
authors could show additional examples in the supplement and add rate estimates? 
 
Yes, the example in the previous manuscript version was not really representative of the 
differences we observe between the subunit model and the LN model and was thus not well 
chosen. We have replaced this now with a more typical example, which also better reflects 
that some of the spiking events in the data are reproduced by the subunit model, but not by the 
LN model. 
 
- Fig. 4: For the VE and rank correlation plots, histograms of pairwise differences would also 
be useful.  
 
Histograms of pairwise differences have been added to the plots. 
 
- The evidence for subunit sharing I don’t find particularly convincing in Fig. 5 – I think the 
authors argue that the histogram is a bit higher than their shuffle curve in the tails… but the 
authors also show 1.5 sigma outlines of the shuffle results, which is not exactly standard (i.e. 
the green lines theoretically contain 86% of the shuffle runs).  
 
The excess of large overlaps in the data compared to shuffled receptive fields may not look 
impressive. However, this impression partly comes from the large numbers in the histogram 
from small overlap values, which naturally occur much more frequently. Note that, for 
example regarding the fast-Off-versus-DS-cell data, there are several tens of subunit pairs 
with strong overlap (relative overlap > 0.5), amounting to about threefold the number 
expected by chance. In the revised manuscript, we have expanded the discussion of these 
results and added quantification of the number of strongly overlapping subunits to more 
clearly point out the conclusions (page 9). Also, please note that the green shaded region of 
the shuffle data correspond to the one-sigma region. The 1.5-sigma value referred to the size 
of the subunits that was used for the overlap calculation, which is now stated in the main text 
(page 7). 
 
- Is it surprising that functionally different RGCs like in Fig. 5 share BCs in light of the 
connectomics data (Helmstaedter 2013 and others; p. 6)? 
 
Indeed, sharing of BC inputs by functionally distinct RGCs can be expected based on 
anatomical grounds, and Helmstaedter et al. (2013) provide the nice example of local edge 
detectors and ON-OFF DS cells, which both appear to be strongly connected to bipolar cells 
of the type called CBC5R. We now point out this relation to anatomical data and clarify that 
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the analysis of shared subunits provides for a functional complement to these studies (now 
moved to the Discussion, page 10). 
 
- A DSI>.25 seems a rather loose criterion for establishing DS. Why not perform a 
significance test instead? Also are there not multiple DS types in the salamander? 
 
Regarding the chosen threshold of the DSI, please note that we define the DSI via the vector 
sum of the firing rates, not the difference between preferred and null direction. While the 
latter might be more commonly used, the former yields a more robust measure of DS (at least 
in our hands), but also typically produces smaller values. (See, e.g., Rivlin-Etzion, Wei, 
Feller, Neuron 2012, where a threshold of 0.3 is used for the index obtained from the 
preferred minus null response, but a threshold of 0.2 for the vector sum). Yet, we agree that 
including a significance analysis may improve the detection of DS cells, and we now include 
only those cells that have a DSI>0.25 and a significant tuning as determined by a shuffle 
analysis. (Basing DS cell detection only on significance analysis also appeared too loose a 
criterion as it yielded cells with very weak tuning as potentially DS.) The significance 
analysis is now explained in the Methods section (page 14). The effects of including the 
significance analysis on the population analysis of Fig. 5 were minor; only three cells had to 
be discarded from the group of DS cells. 
 
Regarding multiple DS types in salamander, indeed, we recently showed that DS cells exist in 
salamander and that one can distinguish two types (Kühn, Gollisch, J Neurosci 2016). We 
now clarify this in the Methods section and explain that the current set of DS cells likely 
contains primarily one of the two types, though not exclusively (page 14; see also new note in 
Results about this on page 8). 
 
- How do the subunit mosaics look for other cell types?  
 
Our clustering did not aim at separating out different cell types, but focused on extracting the 
particular cell type of “fast Off” cells. This group is by far the most homogeneous and most 
commonly encountered in our recordings, and the corresponding cluster is the only one that 
shows clear tiling at present. This is consistent with previous clustering analyses of 
salamander ganglion cells from the group of Michael Berry. Other clusters in our analyses 
most likely do not represent specific ganglion cell types, and we therefore do not consider 
them further at this point. We added explanations along these lines in the Methods section 
under “Cell-type classification” (page 15). 
 
- Figures generally: More subpanel labels would help.  
 
As suggested, we have added more subpanel labels in several of the figures. 
 
- The paper would benefit tremendously from a software package with data that allows easy 
replication of the findings as well as using it on ones own data.  
 
Agreed. We have made our code for applying the STNMF method available via a public 
repository and added the link to the manuscript (page 22). In addition, we provide sample data 
and explanatory notes in the repository, aimed at helping users apply the methods to their own 
data. 
 



Reviewers’ Comments: 

 

Reviewer #2 (Remarks to the Author):  
 
I am satisfied with the revised manuscript containing clarifications and new analyses that address 
my previous concerns.  
 
 
Reviewer #3 (Remarks to the Author):  
 
The authors have addressed all my comments. I think the paper will a big impact on sensory 
neuroscience given the rising interest in linking structure of neural circuits and function.  
 
The only remaining suggestion I have is that I think the authors should discuss more directly how 
their proposed method is different from the one proposed by a partially overlapping set of 
authors recently (Real et al, ref 30) and why this method could not be used here.  
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We would like to thank the Editor and the Reviewers for their thoughtful handling of our 
manuscript and for the valuable and constructive comments. We believe that our manuscript 
has strongly profited from their suggestions. We have addressed the remaining points as 
detailed below. 
 
Reviewer #2 (Remarks to the Author): 
 
I am satisfied with the revised manuscript containing clarifications and new analyses that 
address my previous concerns. 
 
Reviewer #3 (Remarks to the Author): 
 
The authors have addressed all my comments. I think the paper will a big impact on sensory 
neuroscience given the rising interest in linking structure of neural circuits and function. 
 
The only remaining suggestion I have is that I think the authors should discuss more directly 
how their proposed method is different from the one proposed by a partially overlapping set 
of authors recently (Real et al, ref 30) and why this method could not be used here. 
 
The STNMF method presented here aims at extracting subunits without detailed constraints 
on the subunit shape and without the need to refer to an explicit encoding model. By contrast, 
the paper by Real et al. applied a full parameter optimization for a parameterized subunit 
model, including temporal dynamics of the subunit filters and feedback components. To 
handle the nonlinear and high-dimensional parameter optimization, Real et al. therefore 
restrained the subunits to have identical shapes and restricted the stimuli to be only one-
dimensional in space, i.e., composed of stripes. The methodology of Real et al. was thus not 
designed for subunit identification in two spatial dimensions and with potential variability of 
subunit shapes. We now explain these differences between the present approach and the paper 
by Real et al. in the Discussion (page 11, second-to-last paragraph of Discussion). 
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