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Abstract

Spatiotemporal dynamics in cardiac tissue emerging from the coupling of

individual cardiomyocytes underlie the heart’s normal rhythm as well as unde-

sired and possibly life-threatening arrhythmias. While single cells and their

transmembrane currents have been studied extensively, systematically investi-

gating spatiotemporal dynamics is complicated by the nontrivial relationship

between single-cell and emergent tissue properties. Mathematical models have

been employed to bridge this gap and contribute to a deepened understanding

of the onset, development, and termination of arrhythmias. However, no such

tissue-level model currently exists for neonatal mice. Here, we build on a

recent single-cell model of neonatal mouse cardiomyocytes by Wang and

Sobie (Am. J. Physiol. Heart Circ. Physiol. 294:H2565) to predict properties

that are commonly used to gauge arrhythmogenicity of cardiac substrates. We

modify the model to yield well-defined behavior for common experimental

protocols and construct a spatially extended version to study emergent tissue

dynamics. We find a complex action potential duration (APD) restitution

behavior characterized by a nonmonotonic dependence on pacing frequency.

Electrotonic coupling in tissue leads not only to changes in action potential

morphology but can also induce spatially concordant and discordant alternans

not observed in the single-cell model. In two-dimensional tissue, our results

show that the model supports stable functional reentry, whose frequency is in

good agreement with that observed in adult mice. Our results can be used to

further constrain and validate the mathematical model of neonatal mouse car-

diomyocytes with future experiments.

Introduction

In the last two decades, an everincreasing number of

detailed biophysical models of the ionic currents in

ventricular myocytes underlying action potential (AP) gen-

eration have been developed (Fink et al. 2011; Winslow

et al. 2011). Species-specific models have been published

for a number of species including guinea pig (Luo and
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Rudy 1991, 1994), rat (Pandit et al. 2001), mouse (Bon-

darenko et al. 2004; Wang and Sobie 2008; Koivum€aki

et al. 2009; Li et al. 2010), and human (ten Tusscher et al.

2004; Bueno-Orovio et al. 2008) as it was found to be nec-

essary to account for species-specific differences in current

contributions to the AP. More recently, important devel-

opmental changes in cardiac electrophysiology of mouse

myocytes have been identified (Nuss and Marban 1994;

Wang et al. 1996; Wetzel and Klitzner 1996; Wang and

Duff 1997; Sabir et al. 2008; Wang and Sobie 2008; Korho-

nen et al. 2009; Kawamura et al. 2010). Neonatal ventricu-

lar myocytes of mice differ from their adult counterparts

in a number of properties, including smaller size, greater

currents through the Na+/Ca2+ pump reduced outward K+

currents, and reduced role of the SR to calcium release

during a systole. The differences in currents lead to a

longer, less spike-like AP of neonatal cardiomyocytes com-

pared to those of adult mice.

While single-cell models have undoubtedly been a great

success, there remains a gap between the dynamics in a

single cell and tissue-level dynamics in a real heart. Mod-

els of cardiac tissue can be built on top of existing single-

cell models by coupling many such cells with electrotonic

currents dependent on the differences in membrane

potential along the tissue (Clayton et al. 2011). The cou-

pling of cells in tissue can qualitatively change the

dynamic behavior of the cells due to electrotonic currents

in a number of different ways (see References [Bueno-

Orovio et al. 2008; Clayton et al. 2011] and references

therein for examples of the following): First, the AP shape

can be altered. Most notably the action potential ampli-

tude decreases in many tissue models in comparison to

the corresponding single-cell model. Furthermore, prolon-

gations of the action potential duration (APD) have been

reported in the literature for some models. Second, the

restitution properties, that is, the rate adaptation of

dynamical properties such as the APD or ionic concentra-

tions, may change. Third, the existence or onset of alter-

nans, which is a beat-to-beat alternation in AP dynamics,

can be different in tissue compared to a single cell.

Tissue models furthermore allow the study of emergent

properties and dynamics (Clayton et al. 2011). The propa-

gation of an AP is characterized by the conduction velocity

(CV) of the tissue, and is dependent on both the diffusivity

and the steepness of the AP upstroke. In tissue, alternans

can be spatially concordant or discordant (De Diego et al.

2008), that is, the whole tissue alternating in phase or dif-

ferent regions alternating out-of-phase, respectively. Car-

diac reentry, which occurs when a propagating pulse

reexcites the heart after the refractory period has ended, is

a mechanism producing cardiac arrhythmias. Spiral waves

of electrical activity are hypothesized to explain cardiac

reentry (Davidenko et al. 1992) and can only be directly

studied in tissue models (Fenton and Karma 1998). The

richness in dynamical behavior, not all of which can be

seen in single cells, makes the study of tissue models essen-

tial for a detailed understanding of abnormal heart

rhythms. The development of tissue models from single-

cell models, although, has not always yielded sensible

results. The difference between the electrotonic currents in

tissue and the stimulus current used in single-cell models

may cause unphysiological change in transmembrane cur-

rents (Cherry and Fenton 2007; Clayton et al. 2011). A

careful analysis of the dependence of the AP and its under-

lying currents on the kind of stimulation is thus necessary

for the validation of tissue models.

Despite the use of neonatal mice as an experimental

model system, to our knowledge, no computational stud-

ies of cardiac tissue of developing mice have been reported

in the literature. The current work thus presents a model

of neonatal mouse ventricular tissue and characterizes its

dynamical properties. Our model for the ventricular tissue

of neonatal mice builds on a single-cell model published

recently (Wang and Sobie 2008). The model was the first

to incorporate data on developmental changes in mice

and was built as a modification of an earlier model of

adult mouse cardiomyocytes (Bondarenko et al. 2004). It

was fit to match data from day 1 neonatal cells (especially

(Wang and Duff 1997; Wang et al. 1996)) and includes a

wide range of ionic channels, pumps, and exchangers as

well as detailed intracellular calcium cycling (Fig. 1). A

computational model of neonatal mouse ventricular tissue

will be able to make predictions for the dynamics that

occur in the actual mouse heart, as well as in artificial

multicellular substrates (Ralphe and de Lange 2013), for

example, monolayers of cultured neonatal mouse myo-

cytes. Cell cultures with different artificially imposed

geometries are important experimental systems for

research on cardiac electrophysiology and have been used

for neonatal cardiomyocytes from a number of species

including rat (De Diego et al. 2008; Majumder et al. 2016)

and mouse (Thomas et al. 2000; Richter 2011). Another

reason why mice are important model animals is the pos-

sibility of using genetically modified mice to study the

effects of, for example, ion channel mutations (Thomas

et al. 2003). Therefore, a tissue-level model of neonatal

mouse ventricular tissue might enable predicting the influ-

ence of genetic modifications on the spatiotemporal

dynamics in tissue or corresponding culture systems.

Methods

Model development

To enable the model cardiomyocytes to reach stable limit

cycle oscillations and maintain homeostasis during
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prolonged periods of external stimulation, we introduced

two modifications to the original single-cell model. First,

the stimulus current was attributed to the influx of potas-

sium ions. Second, the calcium-activated chloride current

ICl,Ca was removed as it prevented homeostasis through a

net outward flux of ions at every AP. Both changes are

discussed in detail in Section III A. The description of the

other channels and of the intracellular calcium handling

was left unchanged.

Using a continuum approximation of isotropic cardiac

tissue, we described the coupling of cells by the mon-

odomain equation of cardiac tissue (Clayton et al.

2011).

@tVðt; x!Þ ¼ Dr2Vðt; x!Þ � Iionðt; x!Þ (1)

where V (t, �x) is the membrane potential at time t and

position �x, D is a diffusivity describing the electrical

conductivity of the tissue, and Iion(t, �x) is the sum of all

sarcolemmal currents, which are calculated from the sin-

gle-cell model. Note that we express all ionic currents as

current per membrane capacitance in units of pA/pF. As

potassium is by far the most abundant ion species inside

cardiomyocytes, we assumed that the electrotonic current

is carried by potassium ions. This assumption has also

been made in other models of cardiac tissue (ten Tuss-

cher et al. 2004; Bueno-Orovio et al. 2008). The diffusiv-

ity D was set to 1 cm2/s to reproduce the CVs, which

were observed in strands of cultured neonatal mouse car-

diomyocytes (Thomas et al. 2000). The diffusivity can

also be estimated from the surface-to-volume ratio SV,

the specific membrane capacitance Cm, and the resistivity

q of a cardiomyocyte as (Bueno-Orovio et al. 2008)

D = 1/(SV qCm). A lumped resistivity taking into account

both cytoplasmic and junctional effects of q = 203 O cm

has been reported for cultured neonatal mouse cardiomy-

ocytes (Thomas et al. 2003). Inserting this resistivity and

the specific capacitance and cell geometry assumed in the

single-cell model into this equation yields a diffusivity

(D = 1.01 cm2/s) in good agreement with the value cho-

sen above. Note that the choice of diffusivity does not

affect the type of behavior observable in tissue, but only

acts to rescale the spatial length scale.

The complete set of equations, parameters and initial

conditions defining the model can be found in

Appendix S1.

Numerical methods

Sequential splitting was used to decompose the time step-

ping into integrating the single-cell dynamics and solving

the spatial diffusive coupling (Csom�os et al. 2005; Press

et al. 2007). For solving the diffusive coupling of cells in

tissue, the spatial domain was discretized uniformly with a

grid spacing h = 0.015 cm. On this grid, the diffusion was

calculated using a forward time-entered space finite differ-

ence method with a standard Laplace kernel (Press et al.

2007). In all simulations, no-flux boundary conditions were

used, that is, the normal derivative of the membrane poten-

tial at the boundaries was assumed to be zero. The system

of ordinary differential equations describing a single cell

was time stepped with the adaptive Runge–Kutta (Bon-

darenko et al. 2004; Bueno-Orovio et al. 2008) method

Figure 1. Sketch of the components of the Wang–Sobie model. The model distinguishes 14 sarcolemmal currents and describes intracellular

calcium cycling between different model compartments (myoplasm, subspace, junctional sarcoplasmic reticulum [JSR], network sarcoplasmic

reticulum [NSR]). The calcium concentrations are buffered by troponin, calmodulin, and calsequestrin [CSQN].

ª 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
The Physiological Society and the American Physiological Society.

2017 | Vol. 5 | Iss. 19 | e13449
Page 3

A. Mayer et al. Dynamics in Cardiac Tissue Model for Neonatal Mice

 2051817x, 2017, 19, D
ow

nloaded from
 https://physoc.onlinelibrary.w

iley.com
/doi/10.14814/phy2.13449 by G

eorg-A
ugust-U

niversitaet G
oet, W

iley O
nline L

ibrary on [10/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



from the GNU Scientific Library (Galassi et al. 2002). The

adaptive time stepping used relative and absolute error tol-

erances of 10�6 and 10�16, respectively, with a maximal

step-size of 0.01 ms. The correctness of the implementation

was checked by comparing the time course of all dynamical

variables during a simulated action potentials with a refer-

ence implementation by (Wang and Sobie 2008). To assess

the influence of the discretization, propagation of a travel-

ing pulse was analyzed with doubled spatial resolution and

quadrupled temporal resolution. The conduction velocity

differed by <5%, which is commonly considered acceptable

convergence (Clayton et al. 2011).

Simulation protocols and analysis methods

To induce cardiac excitation in our simulations, we use a

stimulus current Istim = �80 pA/pF for a duration of

0.5 ms. The strength of the stimulus current corresponds

to approximately two times the stimulation threshold of a

quiescent cell. To simulate the adaptation of the cells to

different pacing frequencies, we applied a long series of

stimuli at fixed time intervals, the basic cycle length

(BCL). As a measure of the length of an AP, we calcu-

lated APDs as the time interval between crossings of a

threshold voltage of �70 mV. This definition of APD

corresponds to the APD at about 90% repolarization for

1 Hz pacing.

We simulated the dynamics of the tissue model in an

one-dimensional cable of 5 cm length and in a two-

dimensional sheet of tissue 5 9 5 cm in size. In the cable,

propagating action potentials were started by applying the

same stimulus current as in single-cell simulations to the

first 0.1 cm of the cable. To study reentry dynamics in

the two-dimensional sheet of tissue, all dynamical

variables were initially set to a value obtained upon

steady-state pacing in a single cell except for the inhibi-

tory gating variables (h and j) of the Na+-channel, which

were set to zero in the upper half of the simulation

domain. The single-cell stimulus current was then applied

to the right half of the domain to excite activation. This

method initiates spiral waves encircling a functional

obstacle near the center of the simulated area.

The periodicity of the initiated spiral wave was studied

by determining the time intervals between subsequent

crossings of the threshold voltage �70 mV for each cell.

The time intervals were calculated for all computational

cells and then plotted as a histogram. To assess spiral

wave meander, the movement spiral wave core was ana-

lyzed. The position of the spiral wave tip was defined by

the intersection of the V = �50 mV isopotential line and

the @tV = 0 contour line (Fenton and Karma 1998). The

partial derivative was approximated by finite differences

with Δt = 0.5 ms.

Results

Effects of long-term pacing

Long-term pacing at a fixed frequency is a part of many

experimental protocols and is commonly used to deter-

mine steady-state initial conditions in computational

models (Bondarenko et al. 2004; Wang and Sobie 2008).

Models which explicitly track the changing intracellular

ionic concentrations as does the Wang–Sobie model, pos-

sess a great amount of memory, that is, their dynamical

behavior is dependent on the series of previous excita-

tions. Due to the effects of such memory on dynamical

behavior, a proper choice of initial conditions is particu-

larly important for these models to ensure that the model

output does not depend on some unphysiological initial

condition.

For the Wang–Sobie model, Wang and Sobie (2008)

have given initial conditions, which are described as

steady-state values for a pacing frequency of 0.5 Hz. In

trying to obtain steady-state values for other frequencies,

we discovered, however, that the dynamical variables drift

during pacing at a fixed BCL and no steady state can be

reached (Fig. 2, solid red line). The overall change in

intracellular ion concentrations due to this drift can be

substantial, as demonstrated by the about 10 mm drift in

intracellular potassium concentration during simulated

60 min of long-term pacing at 1 Hz. While Figure 2

shows results for a pacing frequency of 1 Hz, we note

that similar results were obtained at other pacing frequen-

cies including the pacing frequency of 0.5 Hz used in the

original study (Fig. S3). The drift is even more pro-

nounced for faster pacing frequencies (Fig. S4).

Figure 2. Effects of long-term pacing: The original model drift

upon pacing at 1 Hz is eliminated by conservative stimulation and

removal of ICl,Ca. The time course of the intracellular potassium

concentration (solid lines) and of an aggregate measure of drift Δtot

(dotted lines) is shown.
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We found two origins to this drift: first, a nonconser-

vative pacing is used that only changes the membrane

potential without being attributed to any current; second,

an outward chloride current is included in the model

without any balancing inward chloride ion currents. To

eliminate the drift, we modified the single-cell model by

attributing the pacing to a potassium current (Hund et al.

2001) and by eliminating the outward chloride current.

These modifications allow the model to reach a stable

steady state upon prolonged pacing (Fig. 2, solid green

line). The larger contribution to the drift comes from the

nonconservative pacing (Fig. 2, solid blue line) but both

modifications are necessary to eliminate drift entirely. The

removal of the chloride current ICl,Ca resulted in a very

small change in the AP (Fig. S1). Using these modifica-

tions, steady-state conditions could be obtained for every

BCL used in a simulation.

Judging convergence from a visual inspection of

changes in ion concentrations over time is difficult as

shown by the near leveling off of potassium concentration

with conservative pacing but without removal of the chlo-

ride current (Fig. 2, solid blue line). Therefore, we pro-

pose a more powerful numerical measure for

convergence. Assessing convergence is particularly compli-

cated by the fact that we do not know the final steady-

state value a priori. To get around this problem, we can

instead look at what amounts effectively to a first deriva-

tive: the difference in each dynamical variable

qi(t + s) � qi(t) between two snapshots of the system at

stroboscobic intervals s, which are a multiple of the BCL

with which the system is driven. As the time constants of

convergence along different directions in state space

might be considerably different ideally, we should look at

convergence for the different state variables. To define a

scalar measure Δtot of overall drift, we combine all the

differences across the N state variables,

Dtot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

qiðt þ sÞ � qiðtÞ
�qi

� �2

vuut (2)

where we have rescaled the dynamical variables by their

mean values �qi such that they all fall within a common

range. As we get closer to steady state, Δtot should

approach zero exponentially as the largest time constant

will dominate. Acceptable convergence can then be

defined using some cut-off on Δtot. In practice, we used

Δtot < 10�7 to ensure the convergence to steady state in

the simulations presented in the following. The usefulness

of this measure is demonstrated by how clearly it distin-

guishes between the nonconverging model with conserva-

tive pacing only and the converging model with

conservative pacing and without the chloride current

(blue and green dotted line in Fig. 2).

Action potentials in single cells and tissue

Due to the influence of electrotonic currents, the AP and

its underlying currents are known to differ between a

stimulated single cell and a cell in tissue. To investigate

these changes, we compared the single-cell AP to the AP

in a 5 cm one-dimensional cable which was stimulated at

one end. In the cable, we analyzed the AP in a cell in the

middle of the cable, far away from the boundary, to avoid

distortions of the membrane potential, and subsequently,

the dynamics of all local variables, by electrotonic loading

effects (Cherry and Fenton 2011).

A one-dimensional cable provides a computationally

efficient model system for the propagation of APs. Propa-

gation of APs in a cable is equivalent to the propagation

of planar waves in isotropic three-dimensional media,

because no diffusion transversal to the direction of propa-

gation takes place for a planar wave. The quiescent steady

state of an unpaced cell was used as the initial condition

for the single cell and the cells in the cable. The quiescent

steady state is the same in tissue and in single cells, which

helps to clearly delineate differences directly due to elec-

trotonic currents. During prolonged stimulation, further

differences between single cells and tissue will emerge as a

consequence of the different steady-state values of the

dynamical variables arising from the difference between

stimulus and electrotonic current. Secondary differences

due to coupling in tissue will turn out to play an impor-

tant role for the emergence of alternans below.

While the overall AP shape is similar in tissue and sin-

gle cells, some differences were observed (Fig. 3A). The

most visible difference is the reduction in APA from

109 mV to 98 mV (�10%). The maximal upstroke veloc-

ity dV
dt

��
max

also decreases markedly from 213 mV/ms to

146 mV/ms (�32%). In contrast, the APD is only pro-

longed by 3% from 82 to 85 ms.

The changes in the AP can be understood by contrasting

the stimulus current used in single-cell simulations with

the electrotonic current (Fig. 3B). The electrotonic current

has a complex, biphasic time course that originates from

the passage of the sharp action potential upstroke, while its

contribution during comparatively slow repolarization is

small. In contrast, the stimulus current is a simple step

function to �80 pA/pF hold for 0.5 ms (see Section II C).

The APA and dV
dt

��
max

decrease, which can be explained as a

consequence of the inversion of the electrotonic current

from an inward to an outward current.

The alterations to the AP in tissue influence the

dynamics of the voltage-gated channels (Fig. S5). The

most notable difference is INa, which inactivates markedly

slower. This increases the integrated flux through this

channel by 30% from �0.064 pC/pF to �0.083 pC/pF,

ª 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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counteracting the effect of the increased outward electro-

tonic current.

Restitution and alternans

As the spatiotemporal dynamics in tissue is known to be

dependent on the BCL, we studied the effect of changing

it in cells and in tissue.

We started by determining the APD restitution curve

of the single-cell model, as no description of restitution

properties of the Wang–Sobie model can be found in the

literature. Steep restitution curves have been linked to the

genesis of alternans (Nolasco and Dahlen 1968; Cherry

and Fenton 2004).

Due to memory effects, the APD is not only dependent

on the preceding DI, but also on the pacing history. For

determining restitution curves, a long series of pulses was

thus first applied at a BCL S1 until convergence to a

steady state was reached. The cell, which now had a well-

defined pacing history, was then stimulated after a time

interval S2 and the resulting APD was measured. Two dif-

ferent types of restitution curves, S1–S2 restitution and

dynamic restitution, were determined. The S1–S2 restitu-

tion curves describe the change in APD resulting from

varying S2 for a fixed S1, whereas the dynamic restitution

curve describes the relationship between BCL and APD at

steady-state conditions.

The model displays a complex restitution behavior

(Fig. 4A). The dynamic restitution curve shows a non-

monotonic dependence on BCL. It has a positive slope

for short BCLs, which then changes into a small negative

one from 180 ms up until a local minimum at 300 ms.

The three examples of S1–S2 restitution curve are similar

in that they all show APD shortening at small S2. The

curve at a S1 interval of 1000 ms, however, differs in

shape from the curves for S1 intervals of 100 ms and

250 ms in that it is monotonic with respect to S2. The

biggest absolute differences in APDs between the S1–S2
curves are displayed at large BCLs. The AP at these BCLs

is longer for S1 = 1000 ms compared to S1 = 250 ms.

Surprisingly, this trend is reversed when increasing the

pacing frequency further by going to S1 = 100 ms, where

the APD even exceeds the APD for S1 = 1000 ms for

most BCLs. Only the slope of the S1 = 1000 ms restitu-

tion curve did exceed 1, which is a commonly used pre-

dictor for alternans (Nolasco and Dahlen 1968). In line

with the shallow dynamic restitution curve, no alternans

was observed in single cells at steady state.

The pacing frequency also has a big influence on intra-

cellular ion concentrations (Fig. 4B), the AP shapes

(Fig. 4C), calcium transients (Fig. 4D) and the relative

contribution of different transmembrane currents to the

AP (Fig. S6). The diastolic intracellular calcium and

sodium concentrations are higher during pacing than at

rest, reaching a maximum at a pacing frequency of 6 Hz

and 9 Hz, respectively. The APA decreases steadily with

pacing frequency from 101 mV at 1 Hz to 77 mV at

10 Hz (�24%). Calcium transient amplitudes increase

with pacing frequency up to S1 = 250 ms, but then

decrease again for shorter S1 intervals.

To characterize the dynamics in the tissue model, we

also conducted a restitution study in a cable. After initial-

izing the cable with single-cell steady-state values for a

pacing frequency of 0.5 Hz, it was continuously stimu-

lated at one end at a fixed BCL. Subsequently, the proper-

ties of the 45th and 46th AP were analyzed. Steady state

A B

Figure 3. (A) Action potential (AP) in a single cell and in tissue. Time t = 0 ms was defined as the time point, when the upstroke surpasses

�60 mV to align the two APs. (B) Time course of the stimulus current (single cell) and the electrotonic current (tissue). The upper inset shows a

magnified view of the fast dynamics at the start of the action potential (AP), whereas the lower inset shows the small amplitude electrotonic

currents during repolarization.
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has not been reached by this time, and the restitution

curve is thus not a dynamical restitution curve for tissue,

but rather mimics some experimental restitution proto-

cols without full adaptation to the S1 BCL.

The APD reduces steadily for the BCLs which were

studied (Fig. 5A), except for a region between a BCL of

110 ms and 140 ms, where alternans in APD were

observed. The amplitude of the alternans was largest for a

BCL of 120 ms, where the difference in APD amounted

to 16 ms.

In tissue, the pacing frequency also has an influence on

the CV (Fig. 4B). While the CV remained fairly constant

up to a BCL of 200 ms, it then started to decline eventually

reaching 38.5 cm/s at a BCL of 80 ms, which represents a

decrease of �19% in comparison to the value at 300 ms.

The dynamics at two BCLs, at which alternans were

observed, was analyzed more closely by calculating the

APDs for every cell in the cable (Fig. 5C,D). At a BCL of

140 ms, all cells in tissue alternated in unison. After

lowering the BCL by 10 ms, the alternans became spa-

tially discordant, with two regions of the cable alternating

out-of-phase.

Spiral wave reentry

Stable spiral waves exist in our model of neonatal

mouse cardiac tissue. Spiral waves could be initiated

with a cross-field method in a tissue, which was initial-

ized with single-cell steady-state values obtained at

0.5 Hz pacing. During a simulation of 5 s length, the

spiral wave rotated steadily without breaking up or visi-

bly changing shape (Fig. 6A). To assess the properties

of the spiral wave, its periodicity (Fig. 6B) and the

movement of its tip were analyzed (Fig. 6C). The mean

period of the membrane potential changes between sec-

ond 1 and 2 after initiation of the spiral wave was

77.9 ms corresponding to a frequency of 12.8 Hz. There

is a small dispersion in the periods on the order of a

A B

C D

Figure 4. (A) action potential duration (APD) as a function of basic cycle length (BCL). Three examples of S1–S2 restitution curves (fixed S1,

varying S2) and the dynamic restitution curve (S1 = S2) is shown. (B) Diastolic sodium and calcium concentration at steady state as a function

of the pacing frequency. (C,D) Membrane potential and intracellular calcium concentration, respectively, during different steady-state action

potentials (APs).
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few milliseconds (Fig. 6B). The dispersion might par-

tially be due to the meandering of the spiral core. The

meander pattern is relatively irregular at the beginning

of the simulation (Fig. 6C). After some time, however,

the movement becomes increasingly regular (Fig. 6D).

The meander pattern consists of outward petals

arranged around a circular structure of about 0.15 cm

in diameter.

Discussion

Model development

Models describing the discrete nature of the propagation

of cardiac action potentials through gap junctions have

been developed, but the usage of a continuum approxi-

mation of cardiac tissue remains widespread (Sneyd and

Keener 2001; Clayton et al. 2011). A common continuum

representation of cardiac tissue is the monodomain equa-

tion. The monodomain equation can be derived under

the assumption of equal anisotropy of intra- and extracel-

lular space from the bidomain equations, which describe

tissue as being comprised of overlapping and continuous

intra- and extracellular domains separated by the cell

membrane.

We have developed a model of neonatal mouse ventric-

ular tissue based on a single-cell model and a description

of electrotonic coupling of cells through the monodomain

equation.

During the development of the tissue model, we noted

deficiencies in the single-cell model causing a drift of the

model during repetitive stimulation. We have identified

two reasons for this drift: Nonconservative stimulus cur-

rents and an inadequate description of transmembrane

chloride currents. We note that generally in models which

track intracellular ion concentrations homeostasis is only

attainable if all changes to the membrane voltage are

accounted for by fluxes of these ions. As the dynamical

equations implement charge conservation, net voltage

changes over a cycle through other currents can only be

A

C

B

D

Figure 5. Restitution in a cable. Properties of action potential (AP) #45 and 46 after start of stimulation are shown for each basic cycle length

(BCL). (A) Action potential duration (APD) measured at a cell 1 cm from the left of the cable. (B) CV measured between 1 and 2 cm from the

left of the cable. (C) Spatial variations in APD at BCL = 130 ms. (D) Spatial variations in APD at BCL = 140 ms.
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balanced by changes in the intracellular concentrations of

the tracked ions leading inevitably to drift. Our study

calls attention to this feature of such models, which seems

to be underappreciated in the literature.

While nonconservative stimuli might, in fact, be a cor-

rect description in some experimental situations, they lead

to highly undesirable consequences in computational

models. As models with nonconservative stimulation can-

not be driven to a steady state, setting initial conditions

becomes problematic. Furthermore, no long-term simula-

tions can be performed at higher pacing rates, as the

dynamical variables of the cell will quickly leave their

physiological range under such conditions (Fig. S4). Fol-

lowing a proposal of Hund et al. (2001), we have there-

fore attributed the stimulus current to potassium fluxes,

which is done in many of the more recent models of car-

diac cells (Kneller et al. 2002; ten Tusscher et al. 2004;

Bueno-Orovio et al. 2008).

There is just one chloride current, the calcium-acti-

vated chloride current ICl,Ca, contained in the model. As

it is net outward during a typical AP (Fig. S1), it breaches

cellular homeostasis. Another modeling study tried to

address a similar problem in a model of the canine atrial

AP by incorporating an additional chloride background

current and an empirically formulated Na+/Cl� cotrans-

porter (Kneller et al. 2002). We have opted against such

an approach, as we felt there was not enough experimen-

tal data on murine neonatal chloride currents to parame-

terize such channels. Furthermore, if anionic fluxes are

included in a model, the cells osmolarity may change dur-

ing prolonged pacing, which is problematic in a model

that does not account for volume changes (Fraser and

Huang 2007). The elimination of ICl,Ca resulted in a small

change in the AP, which is in agreement with experiments

(Xu et al. 2002).

Both the authors of the Bondarenko model, which suf-

fers from the same nonconvergence problems (Koivum€aki

et al. 2009), and of the Wang–Sobie model claimed that

the initial condition represented a steady state during

pacing. This highlights the need for a more careful and

methodological assessment of convergence, as a properly

defined steady state is required for the analysis of many

dynamical phenomena such as alternans (Livshitz and

Rudy 2007). We believe that introducing a scalar measure

of drift, such as ours or similar ones reported in the liter-

ature (Livshitz and Rudy 2009), can be helpful in getting

a quick overview about the convergence of high-dimen-

sional models.

The modeling of the electrotonic currents in tissue with

the monodomain model is very widespread in the literature

(Alonso et al. 2016), even though other models of tissue

have been constructed. One limitation of the current study

A

B C D

Figure 6. Spiral wave dynamics. (A) Snapshots of the membrane potential at time t/s 2 {0.25, 1.0, 2.5, 5.0} (from left to right). (B) Histogram

of the periods of the electrical activity during t/s 2 [1.0, 2.0]. (bin size 1 ms). (C) Meandering of the spiral core for t/s 2 [1.0, 2.5]. (D)

Meandering of the spiral core for t/s 2 [3.5, 5.0].
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is that we have only considered isotropic and homogeneous

tissue, whereas in the heart fibers introduce anisotropy, and

fibroblasts and blood vessels introduce inhomogeneities

(Clayton et al. 2011). These modeling assumptions might

best be met by cultures of neonatal mouse myocytes, which

are grown on unpatterned slides. Even these cell cultures,

however, tend not to be perfectly homogeneous due to cell-

to-cell variability and fibroblasts present in the culture and

could be incorporated in the future in order to directly

match such experiments, as was done in the case of mono-

layers of rat atrial cardiomyocytes (Majumder et al. 2016).

Spatiotemporal dynamics in tissue

Using our newly constructed tissue model, we studied

spatiotemporal dynamics in tissue and contrasted it to

the single-cell dynamics.

In our modeling process, we incorporated a single-cell

model as a source term for ionic currents into the mon-

odomain equation. While this step is conceptually

straightforward, unphysiological changes in the AP or in

some transmembrane currents may result from switching

from the single-cell stimulus current to electrotonic cur-

rents in tissue as has been reported for some models

(Cherry and Fenton 2007; Clayton et al. 2011). We have

thus carefully analyzed differences between an AP in a

single cell and in tissue. While there were differences in

the AP shape, most notably a decreased APA and

upstroke velocity in tissue compared to a single cell, the

time course of most transmembrane currents changed lit-

tle and the APD was essentially unchanged. The decreased

upstroke velocity is at the lower end, but still in the range

of cell-to-cell variability of upstroke velocities experimen-

tally observed in day 1 neonatal ventricular mouse myo-

cytes (Wang et al. 1996) and strands of cultured neonatal

mice (Thomas et al. 2000).

The single-cell model exhibits a complex restitution

behavior with relatively shallow slopes of the restitution

curves. The restitution curves obtained by the S1–S2
curve differed markedly demonstrating the effect of the

memory. The diastolic intracellular calcium and sodium

concentrations show a nonmonotonic dependence on

pacing frequencies.

No alternans were observed in isolated cells at steady

state. In cable simulations, alternans developed for some

BCLs, and were either spatially concordant or discordant.

To determine whether these alternans are indeed the

result of cell-to-cell coupling, we performed control simu-

lations in a single cell that replicate the pacing protocol

in the cable as closely as possible. Starting at a converged

0.5 Hz steady state, we analyzed the APDs of all subse-

quent APs for BCLs that led to alternans in the cable

(Fig. S2). While the APD decreased markedly with time

as a result of rate adaptation, no alternating APDs were

observed for any of the subsequent APs. While tissue-level

effects have previously been considered in other models

as a factor that quantitatively changes alternans character-

istics such as onset frequency and magnitude (Clayton

et al. 2011), we conclude that, in this model, electrotonic

coupling is what creates alternans in the first place (cf.

Fig. 3B). Another finding of our numerical simulations is

the existence of spiral waves that were stable during 5 sec

of simulation. In contrast to observations of stationary

reentry in the adult mouse heart (Vaidya et al. 1999), the

spiral tip meandered on paths which became more regu-

lar with time. While the simulation domain was clearly

larger than the ventricular surface area of a neonatal

mouse heart, it should be possible to compare this pre-

diction with monolayers of cultured neonatal mouse car-

diomyocytes. Note that the boundary conditions might

have an influence on the meander pattern of the spiral

due to loading effects (Cherry and Fenton 2011), so it

might be necessary to adapt the geometry to the specific

experimental situation. Nevertheless, in our case, the

dominant frequency of the spiral wave was 12.8 Hz which

is in good agreement with the frequencies of around

13.6 Hz seen during ventricular tachycardia in adult

mouse heart (Vaidya et al. 1999).

In summary, we have constructed and explored a

mathematical model for ventricular tissue of neonatal

mice. To do this, we modified an existing single-cell

model, such that it displays physiological behavior for

typical pacing experiments used to characterize cardiac

tissue, and added spatial interaction to simulate the prop-

agation of action potentials through one-dimensional

cables and in tissue. Matching higher order properties

such as APD and CV restitution curves and the dynamics

of spiral wave reentry with experimental data is indis-

pensable in order to correctly capture the emergence and

stability of arrhythmias, which, together with determining

their underlying dynamic and genetic causes, is one of the

primary reasons for the study of cardiac electrophysiol-

ogy. Our results yield a number of experimentally testable

predictions and can thus be used to provide additional

layer of validation that will lead to a refinement of the

underlying single-cell model of neonatal mouse cardiomy-

ocytes. In addition, our results can serve as the base line

for the incorporation of additional spatial structure intro-

duced by tissue geometry, fibrotic tissue, and cell-to-cell

variability.
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Supporting Information

Additional Supporting Information may be found online

in the supporting information tab for this article:

Figure S1. The calcium-activated chloride channel has a

very small influence on the action potential shape (blue

lines, scale on left axis). The current (black, scale on right

axis), however, causes an outward flux during an AP,

which leads to long-term drift (Fig. 2).

Figure S2. No alternans were observed in a single cell for

a comparable pacing protocol. After pacing, a single cell

at 0:5 Hz until steady state was reached, APDs of succes-

sive action potentials were measured for each of the indi-

cated BCLs. The 0:5 Hz pacing steady state corresponds

to the initial conditions for which alternans were

observed in a cable (cf. Fig. 5).

Figure S3. Effects of long-term pacing (see Fig. 2): Model

drift upon pacing is also visible at the pacing frequency

of 0:5 Hz used by Wang and Sobie (2008), clearly demon-

strating that their initial conditions do not represent a

steady state.

Figure S4. Effects of long-term pacing (see Fig. 2): The

model drift upon pacing is exacerbated at a higher pacing

frequency of 10 Hz.

Figure S5. Comparison of ionic currents (in pA/pF) for

an AP (Fig. 3) elicited after quiescence in a single cell and

in tissue. For the fast Na+ current, an inset provides a

magnified view into the fast dynamics during the

upstroke of the AP.

Figure S6. Comparison of ionic currents (in pA/pF) dur-

ing steady-state APs (Fig. 4) at different BCLs. For the

fast Na+ current, an inset provides a magnified view into

the fast dynamics during the upstroke of the AP.

Appendix S1. Model equations.
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