
Int J Softw Tools Technol Transfer (2008) 10:309–326
DOI 10.1007/s10009-008-0075-0

SPECIAL SECTION ON ADVANCES IN TEST AUTOMATION – THE EVOLUTION OF TTCN-3

An approach to quality engineering of TTCN-3 test specifications

Helmut Neukirchen · Benjamin Zeiss ·
Jens Grabowski

Published online: 6 May 2008
© Springer-Verlag 2008

Abstract Experience with the development and mainte-
nance of large test suites specified using the Testing and
Test Control Notation (TTCN-3) has shown that it is diffi-
cult to construct tests that are concise with respect to quality
aspects such as maintainability or usability. The ISO/IEC
standard 9126 defines a general software quality model that
substantiates the term “quality” with characteristics and sub-
characteristics. The domain of test specifications, however,
requires an adaption of this general model. To apply it to
specific languages such as TTCN-3, it needs to be instanti-
ated. In this paper, we present an instantiation of this model as
well as an approach to assess and improve test specifications.
The assessment is based on metrics and the identification of
code smells. The quality improvement is based on refactor-
ing. Example measurements using our TTCN-3 tool TRex
demonstrate how this procedure is applied in practise.

Keywords Test specification · TTCN-3 · Quality model ·
Code smells · Metrics · Refactoring

B. Zeiss is supported by a Ph.D. scholarship from Siemens AG,
Corporate Technology.

H. Neukirchen (B) · B. Zeiss · J. Grabowski
Software Engineering for Distributed Systems Group,
Institute for Computer Science, University of Göttingen,
Lotzestr. 16–18, 37083 Göttingen, Germany
e-mail: neukirchen@cs.uni-goettingen.de

B. Zeiss
e-mail: zeiss@cs.uni-goettingen.de

J. Grabowski
e-mail: grabowski@cs.uni-goettingen.de

1 Introduction

The Testing and Test Control Notation (TTCN-3) [16,22] is
a mature standard which is widely used in industry and stan-
dardisation to specify abstract test suites. Nowadays, large
TTCN-3 test specifications with a size of several ten thou-
sand lines of code are developed [2,13–15]. Like any other
large software, such large test specifications tend to have
quality problems. The roots of these quality problems are
manifold, for example inexperienced test developers [2] or
software ageing [39]. Usually, statements on quality defi-
ciencies of test suites are made in a subjective manner. How-
ever, to obtain a dependable quality assurance for TTCN-3
test suites, an impartial quality assessment for TTCN-3 test
specifications is desirable. Hence, a model for test suite
quality is required.

In this article, a method and a tool for quality engineer-
ing of TTCN-3 test suites are presented. To this aim, we
use an adaption of the ISO/IEC 9126 [26] software prod-
uct quality model which is suitable for test specifications.
For the automated quality assessment of TTCN-3 test suites,
we apply metrics and code smells measuring attributes of
the quality characteristics that constitute the test specifica-
tion quality model. Metrics are a common means to quan-
tify properties of software. More sophisticated deficiencies
in source code structures which cannot be identified by using
metrics require a pattern-based analysis. These patterns in
source code are described by code smells. For the improve-
ment of test suites, we use refactoring. A refactoring is “a
change made to the internal structure of software to make it
easier to understand and cheaper to modify without chang-
ing its observable behavior” [20]. This means, a refactoring
is a behaviour preserving transformation which is able to
improve internal source code quality. For an automation of
the complete quality assessment and improvement process,

123

310 H. Neukirchen et al.

Fig. 1 The ISO/IEC 9126-1
model for internal and external
quality

External and Internal
Quality

Functionality Reliability Usability Efficiency Maintainability Portability

Suitability

Accuracy

Interoperability

Security

Functionality
Compliance

Maturity

Fault Tolerance

Recoverability

Reliability
Compliance

Understand-
ability

Learnability

Operability

Attractiveness

Usability
Compliance

Time Behaviour

Resource
Utilisation

Efficiency
Compliance

Analysability

Changeability

Stability

Testability

Maintainability
Compliance

Adaptability

Installability

Co-Existence

Replaceability

Portability
Compliance

C
h

ar
ac

te
ri

st
ic

s
S

u
b

ch
ar

ac
te

ri
st

ic
s

we have developed the TTCN-3 Refactoring and Metrics tool
TRex which is available as open-source software.

This article is structured as follows: Sect. 2 describes the
ISO/IEC 9126 software product quality model and intro-
duces its adaptation to the domain of test specification. Sub-
sequently, Sect. 3 surveys metrics and smells and presents
TTCN-3 specific metrics and code smells. An application
of metrics and smells for the quality assessment of TTCN-3
specifications is demonstrated in Sect. 4. In Sect. 5, the TRex
tool for assessing and improving TTCN-3 test specifications
is presented. Finally, a summary and an outlook are given.

2 Quality of test specifications

Quality models are needed to evaluate and set goals for the
quality of a software product. The ISO/IEC standard 9126
[26] defines a general quality model for software products
that requires an instantiation for each concrete target envi-
ronment (e.g. a programming language). In this section, we
briefly introduce ISO/IEC 9126 and present an adaption to
the domain of test specifications [56].

2.1 Software quality (ISO/IEC 9126)

ISO/IEC 9126 [26] is an international multipart standard pub-
lished by the International Organization for Standardization
(ISO) and the International Electrotechnical Commission
(IEC). It is based on earlier attempts for defining software
quality [5,30] and presents a software product quality model,
quality characteristics, and related metrics.

Part 1 of ISO/IEC 9126 contains a two-part quality model:
the first part of the quality model is applicable for model-
ling the internal and external quality of a software product,
whereas the second part is intended to model the quality in
use of a software product. These different quality models are
needed to be able to assess the quality of a software prod-
uct at different stages of the software life cycle. Typically,

internal quality is obtained by reviews of specification docu-
ments, checking models, or by static analysis of source code.
External quality refers to properties of software interacting
with its environment. In contrast, quality in use refers to the
quality perceived by an end user who executes a software
product in a specific context.

As shown in Fig. 1, ISO/IEC 9126 defines the same generic
model for modelling internal and external quality. This
generic quality model can then be instantiated as a concrete
model for internal or external quality by using different sets
of metrics. The model itself is based on the six characteris-
tics functionality, reliability, usability, efficiency, maintain-
ability, and portability. Each characteristic is structured into
further subcharacteristics.

The model of quality in use is based on the characteristics
effectiveness, productivity, safety, and satisfaction and does
not elaborate on further subcharacteristics. In the further parts
of ISO/IEC 9126, metrics are defined which are intended to
be used to measure the properties of the (sub)characteristics
defined in Part 1. The provided metrics are quite abstract
which makes them applicable to various kinds of software
products, but they cannot be applied without further refine-
ment.

The actual process of assessing the quality of a software
product is not part of ISO/IEC 9126. It is defined in the
ISO/IEC standard 14598 [25]: the assessment requires the
weighting of the different (sub)characteristics and the selec-
tion of appropriate metrics.

2.2 Test specification quality

Our quality model for test specification is an adaptation of
ISO/IEC 9126 to the domain of test specification. While the
ISO/IEC 9126 model deals with internal quality, external
quality, and quality in use, the remainder of this article will
only address internal quality characteristics. Due to our par-
ticipation in standardisation, our primary interest is the qual-
ity of abstract test specifications.

123

An approach to quality engineering of TTCN-3 test specifications 311

Fig. 2 The test specification
quality model

Test Specification
Quality

Test Effectivity
(Functionality)

Reliability
(Reliability)

Usability
(Usability)

Efficiency
(Efficiency)

Maintainability
(Maintainability)

Portability
(Portability)

Reusability
(—)

Test Coverage
(Suitability)

Test
Correctness
(Accuracy)

Fault-
Revealing
Capability

(—)

Test Effectivity
Compliance
(Functionality
Complicance)

Test
Repeatability

(—)

Maturity
(Maturity)

Fault-Tolerance
(Fault-

Tolerance)

Security
(—)

Recoverability
(Recoverability)

Reliability
Compliance
(Reliability

Compliance)

Understand-
ability

(Understand-
ability)

Learnability
(Learnability)

Operability
(Operability)

Test
Evaluability

(—)

Usability
Compliance

(Usability
Compliance)

Time Behaviour
(Time

Behaviour)

Resource
Utilisation
(Resource
Utilisation)

Efficiency
Compliance
(Efficiency

Compliance)

Analysability
(Analysability)

Changeability
(Changeability)

Stability
(Stability)

Maintainability
Compliance

(Maintainability
Compliance)

Adaptability
(Adaptability)

Portability
Compliance
(Portability

Compliance)

Coupling
(—)

Flexibility
(—)

Comprehen-
sibility
(—)

Reusability
compliance

(—)

Bold text: Quality characteristic
(Text in parentheses): Corresponding characteristic in ISO/IEC 9126-1
(—): No corresponding characteristic in ISO/IEC 9126-1

C
h

ar
ac

te
ri

st
ic

s
S

u
b

ch
ar

ac
te

ri
st

ic
s

An overall view of our quality model for test specifications
is shown in Fig. 2. The model is structured into seven char-
acteristics: test effectivity, reliability, usability, efficiency,
maintainability, portability, and reusability. Each character-
istic comprises several subcharacteristics.

Even though most of those characteristics defined in
ISO/IEC 9126 can be generously re-interpreted and thus
applied for test specifications as well, we preferred to intro-
duce names which are more appropriate in the context of test-
ing. In Fig. 2, the relationship of our model to ISO/IEC 9126
is indicated by providing the corresponding name of the
ISO/IEC 9126 characteristics in parentheses. In that figure,
test quality characteristics are printed in bold letters. Test
quality characteristics which have no corresponding charac-
teristic in ISO/IEC 9126, are denoted by the sign (–).

The characteristic reusability (right-hand side of Fig. 2) is
not considered in the ISO/IEC 9126 model. We added it to
our model, because test specifications and parts of them are
often reused for different kinds of testing. Thus, design for
reusability is an important internal quality criterion for test
specifications.

Each characteristic contains a compliance subcharacter-
istic which denotes the degree to which the test specifica-
tion adheres to potentially existing standards or conventions
concerning this characteristic. Since such standards and con-
ventions also exist for test design, a compliance subchar-
acteristic is also part of each characteristic in our model.
However, compliance to standards and conventions will not
be covered any further in the following descriptions because
they are often company- or project-specific.

In the following, we describe the characteristics and sub-
characteristics of our quality model (Fig. 2) in more detail.

Subcharacteristics that are not applicable for test specifica-
tions are also reviewed.

2.2.1 Test effectivity

The test effectivity characteristic describes the capability of
the specified tests to fulfil a given test purpose. The test effec-
tivity characteristic corresponds to the functionality charac-
teristic in ISO/IEC 9126. It is renamed to emphasise the test
specific meaning of this characteristic.

The test coverage subcharacteristic relates to test com-
pleteness and can be measured on different levels, e.g. the
degree to which the test specification covers system require-
ments, system specification, or test purpose descriptions.

Test correctness refers to the correctness of the test spec-
ification with respect to system requirements, system speci-
fication or test purposes. Furthermore, a test specification is
only correct when it always returns correct test verdicts and
when it has reachable end states, i.e. it terminates.

The fault-revealing capability is a new subcharacteristic.
It has been added, because obtaining a good coverage with
a test suite does not make any statement about the capability
of a test specification to actually reveal faults. Indicators for
increased attention to the fault-revealing capability may be
the usage of cause–effect analysis [34] for test creation or
usage of mutation testing [6].

The interoperability subcharacteristic has been omitted
from the test specification quality model. Test specifications
are too abstract for interoperability to play a role. The secu-
rity subcharacteristic has been moved to the reliability char-
acteristic.

123

312 H. Neukirchen et al.

2.2.2 Reliability

The reliability characteristic describes the capability of a
test specification to maintain a specific level of performance
under different conditions. In this context, the term “perfor-
mance” expresses the degree to which needs are satisfied.

The reliability subcharacteristics maturity, fault-
tolerance, and recoverability of ISO/IEC 9126 apply to test
specifications as well.

The new subcharacteristic test repeatability refers to the
requirement that test results should always be reproducible
in subsequent test runs if generally possible. Otherwise, the
report of a defect may become imprecise and debugging the
system under test (SUT) to locate a defect may become hard
or even impossible. Test repeatability includes the demand
for deterministic test specifications.

The security subcharacteristic covers issues such as
included plain-text passwords that play a role when test speci-
fications are made publicly available or are exchanged
between development teams.

2.2.3 Usability

Usability characterises the ease to instantiate and execute a
test specification. This explicitly does not include usability in
terms of difficulty to maintain or reuse parts of the test spec-
ification. These aspects are included in other characteristics
of our model.

Understandability covers aspects that establish under-
standing of a test specification. Documentation and descrip-
tion of the overall purpose of the test specification are key
factors for the test engineer to decide whether a test specifi-
cation is suitable for his or her needs and also to find suitable
test selections.

The learnability subcharacteristic focuses on understand-
ing for usage. For the proper use of a test suite, the test engi-
neer must understand details of the test configuration, what
kind of parameters are involved, and how they affect test
behaviour. A comprehensive documentation and the usage
of style guides may have positive influence on this quality
subcharacteristic.

A test specification has a poor operability if it, e.g. lacks
appropriate default values, or a lot of external or non-auto-
matable actions are required in the actual test execution. Such
factors make it hard to setup a test suite for execution or they
make execution time-consuming due to a limited degree of
automation.

Test evaluability is a new test-specific subcharacteristic. It
refers to the requirement that a test specification must make
sure that the provided test results are detailed enough for a
thorough analysis. This can be achieved by, e.g. producing
meaningful log messages during the test run.

Lastly, the ISO/IEC 9126 characteristic usability includes
attractiveness which we omitted in our quality model. Attrac-
tiveness is not relevant for test specifications. It may play a
role for the user interface of test execution environments and
tools, but for plain test specifications, there simply is no user
interface involved.

2.2.4 Efficiency

The efficiency characteristic relates to the capability of a test
specification to provide acceptable performance in terms of
speed and resource usage. The ISO/IEC 9126 subcharacter-
istics time behaviour and resource utilisation apply without
change.

2.2.5 Maintainability

The maintainability of a test specification characterises its
capability to be modified for error correction, improvement,
or adaption to changes in the environment or requirements.
This quality characteristic is important, because test speci-
fications are often modified and expanded due to changing
product requirements and new product versions.

The analysability subcharacteristic covers the ability to
examine a test specification for deficiencies. For example,
deficiencies may be detected statically by means of code
reviews. Well-structured code is a prerequisite for an efficient
code review. Further elements that influence the analysabili-
ty of test code are mandatory style guides or a complete and
comprehensive documentation.

The changeability subcharacteristic describes the capabil-
ity of the test specification to enable the implementation of
required modifications. Examples for negative impacts on
this quality subcharacteristic are unstructured spaghetti code
or a test architecture that is not expandable.

Depending on the test specification language used, unex-
pected side effects due to a modification have negative impact
on the stability subcharacteristic.

The testability subcharacteristic from the ISO/IEC 9126
model does not play any role for test specifications and is
therefore removed from our quality model.

2.2.6 Portability

The portability plays only a limited role in the context of test
specifications, because test specifications are not yet instanti-
ated. Therefore, the subcharacteristics installability (ease of
installation in a specified environment), co-existence (with
other test products in a common environment), and replace-
ability (capability of the product to be replaced by another
one for the same purpose) are elements of the ISO/IEC 9126
model, but not of our quality model.

However, the adaptability subcharacteristic is relevant for
our model since test specifications should be capable to be

123

An approach to quality engineering of TTCN-3 test specifications 313

adapted to different SUTs or test environments. For example,
hard-coded SUT addresses or access data in the specification
make it hard to adapt the specification for other SUTs.

2.2.7 Reusability

A reusability quality characteristic is not part of
ISO/IEC 9126. We consider this characteristic to be particu-
larly important for the quality of test specifications, because
test suites and parts of them are often reused for different
types of tests. For example, the test behaviour of a perfor-
mance or stress test specification may differ from a functional
test, but the test data, such as predefined messages, can be
reused between those test suites. As well, parts of a test spec-
ification may be reused to test different versions of the SUT.
It is noteworthy that the subcharacteristics correlate with the
maintainability characteristic to some degree.

The coupling degree is an important subcharacteristic in
the context of reuse. Coupling can occur in-between test
behaviour, in-between test data, and between test behaviour
and test data. For example, if there is a function call within
a test case, the test case is coupled to this function.

The flexibility of a test specification relates to its cus-
tomiseability regarding unpredictable usage. For example,
fixed values in a part of a test specification deteriorate its
flexibility, and thus a parametrisation likely increases its reus-
ability. Flexibility is furthermore influenced by the length of
a specification sub-part, because short parts can usually be
more flexible reused in new contexts.

Finally, parts of a specification can only be reused if there
is a good understanding of the reusable parts (comprehen-
sibility subcharacteristic). Good documentation, comments,
and style guides are necessary to achieve this goal.

3 Test quality assessment

The presented test quality model abstracts from how to deter-
mine the quality of a test specification with respect to each
characteristic and subcharacteristic. Hence, this quality
model needs to be instantiated by providing means to mea-
sure attributes of a test specification. There are mainly two
ways to obtain these attributes: static analysis of a test specifi-
cation to gather attributes of its internal quality and dynamic
analysis on a specification level to gain attributes of its exter-
nal quality. In the following, quality assessment based on
static analysis is presented. Its application is demonstrated
in Sect. 4.

3.1 Software metrics

The ISO/IEC 9126 standard suggests to quantify a software
product’s quality attributes using software metrics. As we

show later, such metrics are not only applicable for imple-
mentations, but also for TTCN-3 test specifications.

According to Fenton et al. [18], the term software metrics
embraces all activities which involve software measurement.
Software measurement can be classified into measures for
properties or attributes of processes, resources, and products.
For each class, internal and external attributes can be distin-
guished. External attributes refer to how a process, resource,
or product relates to its environment (i.e. the ISO/IEC 9126
notion of external quality); internal attributes are properties
of a process, resource, or product on its own, separate from
any interactions with its environment (i.e. the ISO/IEC 9126
notion of internal quality).

Internal product metrics can be structured into size and
structural metrics [18]. Size metrics measure properties of
the number of usage of programming or specification lan-
guage constructs, e.g. the number of non-commenting source
statements. Structural metrics analyse the structure of a
program or specification. The most popular examples are
complexity metrics based on control flow or call graphs and
coupling metrics.

Concerning metrics for measuring complexity of control
structures, one of the most prominent examples is the cyc-
lomatic complexity from McCabe [29,51]. The cyclomatic
complexity v(G) of a control flow graph G can be defined1

as: v(G) = e − n + 2, where e is the number of edges and
n is the number of nodes in G. The informal interpretation
is that a linear control flow has a complexity of 1 and each
branching increases the complexity by 1, thus v(G) measures
the number of branches.

The cyclomatic complexity metric is descriptive, i.e. its
value can be objectively derived from source code. By addi-
tionally using threshold values, this metric becomes also pre-
scriptive [17], i.e. it helps to control software quality. For
example, when threshold violations of the metric values are
analysed, it can help to identify modules with a lot of branch-
ing which shall thus be split into several simpler ones [51].
McCabe suggests to use a boundary value of 10. Behaviour
with a higher cyclomatic complexity is considered to be too
complex and should thus be avoided or restructured.

To make sure that reasonable metrics are chosen, Basili
et al. [3] suggest the Goal Question Metric (GQM) approach:
First, the goals which shall be achieved (e.g. improve main-
tainability) must be defined. Then, for each goal, a set of
meaningful questions that characterise a goal is derived. The
answers to these questions determine whether a goal has been
met or not. Finally, one or more metrics are defined to gather
quantitative data which give answers to each question.

1 Several ways of defining v(G) can be found in literature. The above
definition assumes that G has a single entry and a single exit point. In
the presence of several exit points, this assumption can be maintained
by adding edges from all exit points to a single exit point.

123

314 H. Neukirchen et al.

3.1.1 Test metrics

Tests are a special kind of software and thus metrics are also
applicable to assess their quality. Most of the known metrics
related to tests concern processes and resources, but not prod-
ucts like test suite specifications. From those known metrics
which relate to tests as product, most are simple size met-
rics: Vega et al. [49], for example, propose several internal
and external size metrics for TTCN-3 test suites. However,
they did not provide the goals and questions related to their
metrics, hence it is not clear how these metrics can be inter-
preted to assess the actual quality of test suites. Sneed [45]
provides metrics which abstract from a certain test specifi-
cation notation. Hence, they are not based on attributes of
source code, but on more abstract information. For exam-
ple, Sneed measures test case reusability by considering the
ratio of automated test cases to the overall number of test
cases. Some of Sneed’s metrics (e.g. test costs) even relate
to process or resource attributes. As a result, Sneed’s test
metrics are not applicable for an assessment of TTCN-3 test
specifications on their own.

3.1.2 TTCN-3 metrics

We have investigated metrics for different test specification
quality characteristics and came to the conclusion that inter-
nal and external product metrics are not only applicable to
assess source code of implementations, but as well to assess
TTCN-3 test specifications [54–56]. The remainder of this
section focuses on internal product metrics for TTCN-3 test
specifications.

In addition to the taxonomy of metrics described at the
beginning of Sect. 3.1, the metrics which we use to measure
the different quality (sub)characteristics of a TTCN-3 test
specification can be regarded as either TTCN-3 specific met-
rics, test specific metrics, or generally applicable (i.e. as well
to programming languages) metrics.

TTCN-3 specific metrics These kind of metrics take spe-
cific concepts of the TTCN-3 language into account. One
example is the coupling between test behaviour and test data
descriptions which depends on whether behavioural TTCN-3
statements refer to test data using TTCN-3 template refer-
ences or in-line templates [54]:

Metric 1 (Template coupling) The template coupling TC
is defined as:

TC :=
∑|stmt|

i=1 score(stmt(i))

|stmt|
where stmt is the sequence of behaviour statements referenc-
ing templates in a test suite, |stmt| is the number of statements
in stmt, and stmt(i), i ∈ N, denotes the i th statement in stmt.

score(stmt(i)) is defined as follows:

score(stmt(i)) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if (stmt(i) references a template
without parameters)
∨(stmt(i) uses wildcards only)

2 if stmt(i) references a template
with parameters

3 if stmt(i) uses an in-line template

The template coupling TC measures whether a change of
test data requires changing test behaviour and vice versa. The
value range is between 1 (i.e. behaviour statements refer only
to template definitions or use wildcards) and 3 (i.e. behaviour
statements only use in-line templates). For the interpretation
of such a coupling score, appropriate boundary values are
required. These may depend on the actual usage of the test
suite. For example, for good changeability a decoupling of
test data and test behaviour (i.e. the template coupling score
is close to 1) might be advantageous and for optimal ana-
lysability most templates may be in-line templates (i.e. the
template coupling score will be close to 3).

Test specific metrics In addition to TTCN-3 specific met-
rics, we identified metrics which do not relate to TTCN-3
concepts, but to general test specific properties. For exam-
ple, a test case is typically designed to check a single test
purpose. Checking too much functionality in a single test
case makes it hard to comprehend the reasons of fail test
verdicts. Such a test case can be recognised when the ratio
between the number of statements that set a verdict and the
number of overall statements is unreasonable. Meszaros [31]
describes this situation as test eagerness.

Metric 2 (Test eagerness) The test eagerness metric TE of
a single test case is defined as:

TE := 1 − |vs|
|stmt|

where vs is the sequence of all statements that set a verdict
in a test case and stmt is the sequence of all statements in
the same test case. The range of TE is [0..1]. In general, it is
desirable that TE is close to 1 for an average size test case.

General applicable metrics The third kind of metrics
which we considered, are those which are applicable to source
code of implementations as well as to test specifications.

As an example, we evaluated the applicability of McCabe’s
cyclomatic complexity to the control flow graphs of TTCN-3
behavioural entities, i.e. the function, testcase, altstep, and
control part constructs (TTCN-3 keywords are printed in
bold). We found out that McCabe’s metric exhibits the same
properties for TTCN-3 test suites as for source code written
using general purpose programming languages. Even though
TTCN-3 eases the specification of branching using the alt

123

An approach to quality engineering of TTCN-3 test specifications 315

and altstep constructs, our measurements show that this does
not lead to overly complex control flow graphs [55]. Thus,
those behaviours which violate McCabe’s upper boundary of
ten are actually of low quality and this complexity metric can
be used to identify behaviour that is hard to maintain. How-
ever, there is one exception: the cyclomatic complexity of
control parts is usually in the same order of magnitude as the
number of test cases in a test suite. The reason is that a con-
trol part often contains many if statements querying module
parameters to select the test cases to be executed depending
on sets of capabilities of the implementation. Hence, it is very
probable that the control part of a test suite which consists of
more than ten test cases does violate the upper complexity
bound. Nevertheless, the structure of such a control part is
usually very simple (a linear sequence of if statements) and
therefore, such control parts cannot be regarded as very error
prone or of low quality. Thus for control parts, a metric that
is purely based on the nesting level [18] is more appropriate.
Alternatively, a possible approach could be to increase the
boundary value for control parts by the number of statements
which execute a test case and are guarded by a condition [55].

The application of such metrics in order to assess a specific
quality characteristic of a test specification requires a tailor-
ing of descriptive metrics into prescriptive ones. Section 4
exemplifies how this can be achieved by introducing such
metrics and threshold values tailored to analyse the change-
ability and analysability quality subcharacteristics.

3.2 Smells in software

Even though we experienced that metrics are able to detect
various issues and can thus be used for an assessment of sev-
eral quality aspects, some issues cannot by detected by sim-
ple metrics. Instead, a complementary, more sophisticated
pattern-based approach is needed. This approach is based
on so called smells. The metaphor of “bad smells in code”
has been coined by Beck and Fowler. They define a smell
as “certain structures in the code that suggest (sometimes
they scream for) the possibility of refactoring” [20]. Smells
are thus indicators of bad quality. According to this defini-
tion, defects with respect to program logic, syntax, or static
semantics are not smells, because these defects cannot be
removed by a refactoring (by definition, a refactoring only
improves internal structure, but does not change observable
behaviour).

Beck and Fowler present smells for Java source code. They
describe their smells using unstructured English text. The
most prominent smell is Duplicated Code. Code duplication
deteriorates in particular the changeability quality subchar-
acteristic: if code that is duplicated needs to be modified, it
usually needs to be changed in all duplicated locations.

Smells provide only hints: whether the occurrence of an
instance of a certain smell in a source code is considered as

a sign of low quality may be a matter that depends on pref-
erences and the context of a project. For the same reason, a
list of code structures which are considered as smell is never
complete, but may vary from project to project and from
domain to domain [12].

The notion of metrics and smells is not disjoint: each smell
can be turned into a metric by counting the occurrences of a
smell, and sometimes, a metric can be used to locate a smell.
The latter is the case for the smell of a long function which
can be expressed by a metric which counts the lines of code of
a function. However, the above smell of duplicated code and
other pathological structures in code require a pattern-based
detection approach and cannot be identified using metrics.

3.2.1 Smells in tests

Even though smells were developed with having implemen-
tation languages in mind, the idea has also been applied to
tests. Van Deursen et al. [7] and Meszaros [31] describe test
smells. Meszaros distinguishes between three kinds of smells
that concern tests (test smells): code smells are problems that
must be recognised when looking at code, behaviour smells
affect the outcome of tests as they execute, and project smells
are indicators of the overall health of a project which does not
involve looking at code or executing tests. Within this clas-
sification, smells of different kinds may affect each other,
hence the root cause of a behaviour smell may be a problem
in the code. We believe that this classification is reasonable.
Most of the test smells identified by Meszaros are behav-
iour smells, e.g. the smell called Erratic Test which refers
to tests which are non-deterministic. Some of the test smells
presented by Van Deursen et al. are specific to the usage
of the JUnit Java framework [21] and can thus be consid-
ered as code smells while others are more general and can
be regarded as behaviour smells. In the remainder, we will
restrict our investigations on code smells for TTCN-3.

3.2.2 A TTCN-3 code smell catalogue

Because no TTCN-3 specific code smells have been system-
atically described, we have developed an initial catalogue of
TTCN-3 code smells [4,35]. When investigating candidates
for this catalogue, we have relaxed the above definitions of
code smells a little bit: we added to that catalogue not only
problems in TTCN-3 source code that can be improved by a
behaviour preserving refactoring, but as well problems which
obviously require a change of the behaviour. One example is
an “idle parallel test component” which is created, but never
started. In this case, either a TTCN-3 start statement needs to
be added or the create statement needs to be removed. How-
ever, we adhered to the above definitions of code smells, in
that we did not consider errors in TTCN-3 source code with
respect to syntax or static semantics as a smell.

123

316 H. Neukirchen et al.

The code smells that are provided by Beck and Fowler [20]
were a source for our TTCN-3 code smell catalogue. Even
though those smells are intended for Java code, some of them
are as well applicable for TTCN-3 code. A further source was
our TTCN-3 refactoring catalogue which we have developed
earlier [48,53,54]. It already refers briefly to code smell-like
quality issues in the motivation of each refactoring.

While the above sources describe smells only in an infor-
mal manner, our TTCN-3 code smell catalogue uses a struc-
tured representation: each entry is listed in the following for-
mat: each smell has a name; those smells which are based on
other sources have a derived from section which lists the cor-
responding references; a description provides a short prose
description of the symptom of the smell; the motivation part
explains why the described code structure is considered of
having a low quality; if several variants of a smell are possi-
ble by relaxing or tightening certain requirements on a code
structure, this is mentioned in an options section; one or more
actions (typically a refactoring from our TTCN-3 refactoring
catalogue) which are applicable to remove a smell are listed
in the related actions section; finally, a TTCN-3 source code
snippet is provided for each smell in the example section.

In our catalogue, the names of TTCN-3 code smells are
emphasised using slanted type and TTCN-3 keywords are
printed using bold type. To structure our TTCN-3 code smell
catalogue, we have divided it into ten sections. This structure
is used in the following list which is an overview providing
the name and the symptom description of each smell from
our TTCN-3 code smell catalogue. So far, we have identified
37 TTCN-3 code smells:

Duplicated code

– Duplicate statements: there is a duplicate sequence of
statements in the statement block of one or multiple
behavioural entities (functions, test cases, and altsteps).
Special cases like code duplication in alt constructs and
conditionals are considered as a separate smell.

– Duplicate alt branches: different alt constructs contain
duplicate branches.

– Duplicated code in conditional: duplicated code is found
in the bodies of a series of conditionals.

– Duplicate in-line templates: there are two or more similar
or identical in-line templates.

– Duplicate template fields: the fields of two or more tem-
plates are identical or very similar.

– Duplicate component definition: two or more test com-
ponents declare identical variables, constants, timers, or
ports.

– Duplicate local variable/constant/timer: the same local
variable, constant, or timer is defined in two or more func-
tions, test cases, or altsteps running on the same test com-
ponent.

References

– Singular template reference: a template definition is ref-
erenced only once.

– Singular component variable/constant/timer reference:
a component variable, constant, or timer is referenced by
one single function, test case, or altstep only, although
other behavioural entities run on the component as well.

– Unused definition: a definition is never referenced.
– Unused imports: an import from another module is never

used.
– Unrestricted imports: a module imports more from

another module than needed.

Parameters

– Unused parameter: a parameter is never used within the
declaring unit. For in-parameters, the parameter is never
read, for out-parameters never defined, for inout-param-
eters never accessed at all.

– Constant actual parameter value: the actual parameter
values for a formal parameter of a declaration are the
same for all references. Hence, this parametrisation is
unnecessary.

– Fully-parametrised template: all fields of a template are
defined by formal parameters. Hence, this template con-
veys no information on its own.

Complexity

– Long statement block: a function, test case, or altstep has
a long statement block.

– Long parameter list: the number of formal parameters is
high.

– Complex conditional: a conditional expression is com-
posed of many Boolean conjunctions.

– Nested conditional: a conditional expression is unneces-
sarily nested.

– Short template: the body of a template definition is so
short that it does not justify the creation of a template
declaration.

Default anomalies

– Activation asymmetry: a default activation has no match-
ing subsequent deactivation in the same statement block,
or a deactivation has no matching previous activation.

– Unreachable default: an alt statement contains an else
branch while a default is active.

Test behaviour

– Missing verdict: a test case does not set a verdict.
– Missing log: setverdict is used to set verdict inconc or

fail, but without calling log.
– Stop in function: a function contains a stop statement.

123

An approach to quality engineering of TTCN-3 test specifications 317

Test configuration

– Idle PTC: A parallel test component (PTC) is created, but
never started.

Coding standards

– Magic values: magic values are literals that are not defined
as constants or as part of templates. Numeric literals are
called Magic Numbers, string literals are called Magic
Strings.

– Bad naming: an identifier does not conform to a given
naming convention.

– Disorder: the sequence of elements within a module does
not conform to a given order.

– Insufficient grouping: a module or group contains too
many elements.

– Bad comment rate: the comment rate is too high or too
low.

– Bad documentation comment: a documentation comment
does not conform to its format.

Data flow anomalies

– Missing variable definition: a variable or out parameter
is read before its value has been defined. This smell is
also known as UR data flow anomaly [19,23].

– Unused variable definition: a defined variable or in-
parameter is not read before it becomes undefined. This
smell is also known as DU data flow anomaly [19,23].

– Wasted variable definition: a variable is defined and
defined again before it is read. This smell is also known
as DD data flow anomaly [19,23].

Miscellaneous

– Over-specific runs on: A behavioural entity (function, test
case, or altstep) is declared to run on a component, but
uses only elements of this component’s super-component
or no elements of the component at all.

– Goto: a goto statement is used.

To give an impression, how an entry of our TTCN-3 code
smell catalogue looks like, the Duplicate Alt Branches smell
is presented in detail. In addition to the already mentioned
style of type setting TTCN-3 keywords in bold and names
of TTCN-3 code smells in slanted, refactoring names from
our TTCN-3 refactoring catalogue [48,53,54] are printed in
slanted type as well. Please refer to the complete TTCN-3
code smell catalogue [4,48] for a detailed description of all
TTCN-3 code smells.

Smell: Duplicate alt branches

Derived from: TTCN-3 refactoring catalogue [48,53,54]
(Motivations for Extract Altstep, Split Altstep, and
Replace Altstep with Default refactorings).

Description: different alt constructs contain duplicate
branches.

1 testcase tc_exampleTestCase1() runs on ExampleComponent {
2 timer t_guard;
3 //...
4 t_guard.start(10.0);
5 alt {
6 [] pt.receive(a_MessageOne) {
7 pt.send(a_MessageTwo);
8 }
9 [] any port.receive {

10 setverdict(fail);
11 stop;
12 }
13 [] t_guard.timeout {
14 setverdict(fail);
15 stop;
16 }
17 }
18 }
19
20 testcase tc_exampleTestCase2() runs on ExampleComponent {
21 timer t_guard;
22 //...
23 t_guard.start(10.0);
24 alt {
25 [] pt.receive(a_MessageThree) {
26 pt.send(a_MessageFour);
27 }
28 [] any port.receive {
29 setverdict(fail);
30 stop;
31 }
32 [] t_guard.timeout {
33 setverdict(fail);
34 stop;
35 }
36 }
37 }

Listing 1 Duplicate alt branches

Motivation: code duplication in branches of alt constructs
should be avoided just as well as any other duplicated
code. Especially common branches for error handling
can often be handled by default altsteps if extracted into
an own altstep beforehand.

Related action(s): Use Extract Altstep refactoring to sepa-
rate the duplicate branches into an own altstep. Consider
refactoring Split Altstep if the extracted altstep contains
branches which are not closely related to each other and
refactoring Replace Altstep with Default if the duplicate
branches are invariably used at the end of alt constructs
as default branches.

Example: In Listing 1, both test cases contain alt constructs
with three alternatives. The last two alternatives in both
alt constructs (lines 9–16 and lines 28–35) are identical
and can be extracted into a separate altstep.

Most of our TTCN-3 code smells are detectable using static
analysis; however, some of the code smells related to test
behaviour can only be detected using a dynamic analysis.

The applicability of each TTCN-3 code smell depends on
the specific project and personal preferences. For example,

123

318 H. Neukirchen et al.

when developing a library, occurrences of the Unused Defi-
nition smell are tolerable, because definitions provided by a
library are usually not referenced until the library is reused
by other TTCN-3 modules.

The smell descriptions can be used to detect either individ-
ual occurrences of a smell or for an overall quality assessment
by introducing additional metrics that count occurrences of
smells. Such complementing metrics will be described in the
next section together with results from applying this uni-
fied metrics calculation and code smell detection approach
to three large TTCN-3 test suites.

4 Application of metrics and smell detection

For the quality assessment of TTCN-3 test suites, we use a
unified approach in which smells are also represented by met-
rics. To demonstrate the practical usefulness of this approach,
we have implemented the calculation of metrics for the main-
tainability characteristic of the test specification quality
model and in particular its analysability and changeabil-
ity subcharacteristics. Using the GQM approach, we chose
the subsequently described metrics for the subcharacteristic
assessment. They incorporate complexity metrics as
described in Sect. 3.1 as well as metrics that are based on
counting occurrences of the TTCN-3 code smell defined in
Sect. 3.2.

To ease the subsequent definition of prescriptive metrics,
we define the violation of an upper bound as follows:

Definition 1 (Upper bound violation) A measurement m
that exceeds a threshold value u, violates the upper bound
of a metric. The corresponding function bound is defined as
follows:

bound(m, u) :=
{

0 if m < u
1 if m ≥ u

4.1 Analysability metrics

The metric listed in this section concerns the degree to which
a test specification can be diagnosed for deficiencies, e.g.
a badly structured test suite affects the difficulty of code
reviews.

Metric 3 (Complexity violation ratio) The complexity vio-
lation ratio CVR represents the ratio between the number of
TTCN-3 test cases, functions, and altsteps that exceed a cho-
sen boundary value u of a complexity measure and the over-
all number n of behavioural entities (test cases, functions,
and altsteps). Let elem be the sequence of |elem| test cases,
functions, and altsteps and let elem(i), i ∈ N, denote the i th
element in elem. The function cm(e) denotes the complexity
measure of an element e from elem. Then, the complexity

violation ratio CVR is defined as follows:

CVR := 1 −
∑|elem|

i=1 bound(cm(elem(i)),u)

|elem|
Since various aspects contribute to the complexity of a test
behaviour, several complexity measures cm(e) may be used,
e.g. McCabe’s cyclomatic complexity [29,55], nesting
level [18], or call-depth.

4.2 Changeability metrics

Changeability is the capability of a test specification to enable
the implementation of necessary changes. For example, badly
structured code or a non-expandable test architecture have a
negative impact on this subcharacteristic.

Metric 4 (Code duplication ratio) The code duplication
ratio CDR describes how much of the code is duplicated.
Let entities be a sequence of entities that could possibly be
duplicated (such as all branches of alt statements in a test
suite) and let entities(i), i ∈ N, denote the i th element in
entities. With |entities| being the total number of elements in
the sequence, the code duplication ratio CDR is then defined
as:

CDR := 1 −
∑|entities|

i=1 dup(entities, i)

|entities|
where the function dup(entities,i) with i ∈ N being a position
within the sequence is defined as:

dup(entities, i) :=
⎧
⎨

⎩

0 if � j ∈ N :
entities(j) = entities(i), j < i

1 otherwise

That means, dup(entities,i) yields 1, if entities(i) is dupli-
cated, and 0 if not.

Metric 5 (Reference count violation ratio) When apply-
ing changes to entities which are referenced very often, a
test developer needs to check for every reference whether
a change may have unwanted side effects or requires fol-
low-up changes. The reference count violation ratio RCVR
determines how often an entity is referenced and penalises
the violation of a given upper boundary value u. With defs
being a sequence indexing distinct entity definitions, the ref-
erence count violation ratio RCVR is defined as follows:

RCVR := 1 −
∑|defs|

i=1 bound(ref(defs, i), u)

|defs|
where the function ref(defs, i), i ∈ N, denotes the number of
references to the i th distinct entity definition:

ref(defs, i) := number of references to defs(i)

Metric 6 (Magic value count violation) Magic numbers or
magic strings, i.e. literals that are not defined as constant,

123

An approach to quality engineering of TTCN-3 test specifications 319

decrease changeability when used excessively. The magic
value count violation metric MVCV is designed to indicate
bad quality when the total number of magic values exceeds
a given threshold value u. Thus, the result of this metric is
Boolean. With m being the total number of existing magic
values in a test suite, the magic value count violation MVCV
of a test suite is defined as:

MVCV := bound(m, u)

The metrics 3–6 have been designed to yield a value between
0 (the considered quality aspect is not fulfiled at all) and 1
(the considered quality aspect is fulfilled to 100%). The pre-
sented metrics serve as example for the application and do not
represent a complete means to measure these characteristics.

4.3 Results

The described metrics for assessing the maintainability qual-
ity characteristic have been implemented in our TRex tool
(see Sect. 5). We applied them to three different TTCN-3 test
suites: the SIP test suite [13], the HiperMAN test suite [14],
and the IPv6 test suite [15] which are standardised by the
European Telecommunications Standards Institute (ETSI)
and publicly available. The calculated metric values for these
test suites are shown in Table 1. In the first third of the table,
the number of lines of code and number of test cases are
provided to give an impression of the size of the three test
suites. The next part of the table contains the values that are
used as input to calculate the metrics CVR, CDR, RCVR,
and MVCV. The results of these calculations are shown in
the lower third of the table.

To obtain a value for the complexity violation ratio CVR,
the number of exceeded complexity thresholds and the num-
ber of behavioural entities are used. As complexity measure
cm, we have chosen the cyclomatic complexity v(G) from
McCabe. As discussed before (Sect. 3.1.2), a threshold value
u := 10 is reasonable. The code duplication ratio CDR is
determined with respect to the number of duplicated branches
in alt statements and the number of total alt branches. For the
calculation of the reference count violation ratio RCVR, the
number of exceeded reference thresholds and the total num-
ber of distinct entity definitions are required. As threshold
for exceeded referencing, we selected u := 50. For deciding
whether a magic value count violation occurred, the magic
value count is required. As threshold for the magic value
count violation MVCV, we used u := 100. The latter two
threshold values are based on our intuitive perception of
how much work a single change should cause. For exam-
ple, changing a definition requires examining the impact to
all its references which may be scattered all over the test
suite. Thus, changing a definition manually may become a
really costly task when it is referenced too often.

1 [] SIPP.receive (INVITE_Request_r_1) {
2 repeat;
3 }
4 [] SIPP.receive {
5 all timer.stop;
6 setverdict (fail);
7 rejectInvite(v_CSeq);
8 stop;
9 }

10 [] TAck.timeout {
11 setverdict (fail);
12 rejectInvite(v_CSeq);
13 stop;
14 }

Listing 2 Duplicated alt branches in the SIP test suite

1 v_ptc1.start (
2 ptc1_FinalAnswer(
3 302,
4 “Moved Temporarily”,
5 loc_CSeq_ptc_s,
6 v_CallId));
7 v_ptc2.start (
8 ptc2_FinalAnswer(
9 302,

10 “Moved Temporarily”,
11 loc_CSeq_ptc2_s,
12 v_CallId));

Listing 3 Magic values in the SIP test suite

The measurements of the ETSI test suites show that the
CVR and RCVR metrics yield values which are within rea-
sonable boundaries. However, the CDR measurement of the
SIP test suite indicates that a lot of duplicated branches of
alt statements could be avoided by using altsteps. Listing 2
shows such a generic code fragment (taken from the file
SIP_CallControl.ttcn of the SIP test suite) that is repeated
multiple times.

Not only does the repetition of such a code fragment
increase the size of the overall test suite and reduce its ana-
lysability, but it also decreases changeability as the duplicate
fragments must be found and adjusted as well.

Furthermore, the values of the MVCV metric indicate
that all test suites make little to no use of constant defi-
nitions and constant references for avoiding magic values.
Listing 3 (taken from SIP_CallControl.ttcn as well) demon-
strates this problem in two subsequent statements: in lines
3 and 9, the magic number 302 is used. Without knowing
the details of the SIP protocol, it is hard understand what
this number means. Hence, using a constant with a descrip-
tive name would improve the analysability of the test suite.
Furthermore, the changeability of a test suite is increased by
using constants instead of magic values.

The exemplary investigation of these results demonstrates
that the used metrics are not only descriptive (and thus able
to quantify occurrences of TTCN-3 language constructs), but
also prescriptive: they help to locate concrete problems and

123

320 H. Neukirchen et al.

Table 1 Maintainability metrics
of ETSI test suites Metric SIP v4.1.1 HiperMAN v2.3.1 IPv6 v1.1

Lines of code 61282 54565 41801

Number of test cases 609 364 286

Number of exceeded complexity thresholds (cm := v(G), u := 10) 31 35 9

Number of behavioural entities |elem| 1478 701 881

Number of duplicate alt branches 938 169 224

Number of total alt branches |entities| 1535 1034 560

Number of exceeded reference thresholds (u := 50) 71 54 49

Number of distinct entity definitions |defs| 2077 2460 1759

Magic value count m 2214 545 618

Complexity violation ratio CVR (cm := v(G), u := 10) 0.02 0.05 0.01

Code duplication ratio CDR (with respect to alt branches) 0.61 0.16 0.40

Reference count violation ratio RCVR (u := 50) 0.03 0.02 0.03

Magic value count violation MVCV (u := 100) 1.00 1.00 1.00

to make quantified statements on quality aspects of TTCN-3
test suites by combining descriptive metrics with goal infor-
mation, e.g. threshold values or ratios.

5 The TRex tool

To practically evaluate our method for the assessment and
improvement of TTCN-3 test specification quality, we have
implemented the TTCN-3 Refactoring and Metrics tool TRex
[48]. The initial version has been developed in collabora-
tion with Motorola Labs, UK [1]. TRex currently imple-
ments assessment and improvement techniques for TTCN-3
based on static analysis and TTCN-3 source code restruc-
turing. More precisely, the tool realises the calculation of
internal metrics, automated smell detection, and refactoring
as well as Integrated Development Environment (IDE) func-
tionality for TTCN-3. The latter is provided by a TTCN-3
perspective (Fig. 3) which includes typical state-of-the-art
functionality:

– a navigator view for project browsing,
– an editor with syntax highlighting and syntax checking

according to the specification of the textual TTCN-3 core
language (v3.1.1),

– a code formatter,
– an outline view providing a tree representation of the

structure of the currently edited file,
– content assist which automatically completes identifiers

from their prefix and scope.

Furthermore, it is possible to invoke external TTCN-3 com-
pilers from within TRex.

5.1 TTCN-3 metrics functionality

TRex implements a considerable amount of size metrics (such
as number of statements or the number of references to defi-
nitions) and structural metrics (such as the cyclomatic com-
plexity) including those metrics mentioned in Sect. 4. Some
structural metrics require the creation of control flow graphs
and call graphs for each TTCN-3 behavioural entity. For a
manual inspection, these graphs can be visualised as shown
in Fig. 4.

The calculated metrics are displayed in the metrics view
(Fig. 5a). The metrics are hierarchically organised as a tree
which supports different aggregation types (e.g. sum or
mean). Hence, it is possible to investigate the calculated met-
rics at different scopes.

5.2 TTCN-3 code smell detection functionality

A total number of 11 TTCN-3 code smell detection rules
have been implemented in TRex. By means of static analy-
sis, TRex is able to find

– Activation asymmetry smells,
– template parameter instances of Constant actual template

parameter value,
– Duplicate alt branches,
– Fully-parametrised template smells,
– Magic values of numeric or string types,
– instances of Short template with configurable character

lengths,
– instances of Singular component variable/constant/ timer

reference,
– instances of Singular template reference,

123

An approach to quality engineering of TTCN-3 test specifications 321

Fig. 3 TRex TTCN-3 perspective

Fig. 4 TRex control flow graph view

– template definitions with Duplicate template fields,
– instances of any local Unused definition, and
– occurrences of an Unused definition of a global template

instance.

As stated in Sect. 3, whether a certain code structure is con-
sidered as a smell or not, may vary from project to project.

Therefore, TRex supports enabling and disabling individual
TTCN-3 code smell detection rules and to store and retrieve
these preferences as customised analysis configurations.

The results of the smell detection are displayed in the
Analysis results view (Fig. 5b). The listed results are organ-
ised within a tree. Clicking the entries results in a jump to the
corresponding position in the TTCN-3 source code displayed

123

322 H. Neukirchen et al.

Metrics view Smell analysis results view

Fig. 5 TRex metrics and smell analysis views

in the editor window. Some rules, for example Unused def-
initions, offer the possibility for invoking so called Quick
Fixes. Quick Fixes automatically suggest a TTCN-3 source
code change to remove a detected smell. In fact, these Quick
Fixes invoke refactorings.

5.3 TTCN-3 refactoring functionality

To improve the quality TTCN-3 test suites, TRex supports
refactoring of TTCN-3 test suites [1,54]. Refactoring is based
on a systematic behaviour preserving restructuring of
TTCN-3 source code. So far, we have identified 51 refactor-
ings that are suitable for TTCN-3. We have collected them
in our TTCN-3 refactoring catalogue [48,53,54].

The refactoring mechanics, step-by-step instructions of
how to apply each refactoring, are used by TRex to auto-
mate the application of a refactoring. The TTCN-3 refactor-
ings which are currently implemented in TRex emphasise on
improving template definitions. So far, the following refac-
toring are realised:

– the Inline Template refactoring inlines a template,
– the Extract Template refactoring turns one or several iden-

tical in-line templates into a template definition,
– the Inline Template Parameter refactoring inlines a tem-

plate parameter when all its references use a common
actual parameter value,

– the Merge Template refactoring replaces several similar
or even identical template definitions by a single, possibly
parametrised, template definition,

– the Decompose Template refactoring decomposes com-
plex templates by referencing to smaller templates,

– the Replace Template with Modified Template refactoring
simplifies templates that differ only in few field values by
using modified templates,

– the Move Module Constants to Component refactoring
moves constants that are defined on module level into a
component definition, if the constants are used inside a

single component only or only by behaviour running on
the same component,

– the Rename refactoring changes a definition name when
the name does not reveal its purpose.

There are two ways to apply refactorings in TRex. The first
possibility is that the test engineer specifies the source code
locations which are subject to the refactoring. Then, before a
refactoring is applied, a refactoring wizard displays a preview
page where the transformed and original TTCN-3 source
code can be compared side by side. The second possibility
is the automated application of refactorings through Quick
Fixes. Since each of our TTCN-3 code smells presented in
Sect. 3.2.2 has a related actions section, it is possible to
implement and associate a suitable refactoring to remove the
issue. As pointed out at the end of Sect. 5.2, TRex is able
to automatically invoke the suitable refactoring to remove a
smell by means of a Quick Fix. This way, a manual selec-
tion of the source code location to be refactored becomes
unnecessary.

The automated assessment and improvement functional-
ity of TRex yields test suites with increased internal qual-
ity [54]. As an experiment, we investigated the effect which
TRex was able to achieve when being applied to the SIP, the
HiperMAN, and the IPv6 ETSI test suites by performing
refactorings for removing unused template definitions,
replacing template definitions which are only referenced once
by in-line templates, and by refactorings for merging similar
templates: the reduction of the number of template defini-
tions was between 11% (SIP) and 53% (IPv6). The result-
ing reduction of the test suite size in terms of lines of code
depends on the extent to which template definitions contrib-
ute to the overall size of the test suites: the obtained reduction
was between 1% (SIP) and 12% (IPv6).

5.4 Implementation

TRex is written in Java and is implemented as a set of plug-
ins for the Eclipse Platform [9]. The Eclipse Platform is well

123

An approach to quality engineering of TTCN-3 test specifications 323

Fig. 6 The TRex toolchain (1) Static Analysis

Eclipse Platform
User

Interface
Text Editor TPTP

Language
Toolkit

...

TTCN-3
Core

Notation

ANTLR
Lexing,
Parsing

Refactored
TTCN-3

Core
Notation(3) Quality Improvement

Refactoring

Syntax Tree /
Symbol Table

(2) Quality Assessment

Metrics

Automated Smell Detection

documented and supported. It provides many ready-to-use
components such as project and file management, or a flexi-
ble graphical user interface making it easy to implement an
IDE for new languages. Furthermore, the Eclipse Platform
supports a very flexible plug-in architecture using the concept
of extension points. Through the definition of TRex-specific
extension points, it is very easy to add third-party extensions
to TRex. Figure 6 illustrates how TRex is built on top of
existing Eclipse components and infrastructure and how the
different building blocks of TRex interact.

All language-oriented features of TRex are based on a lex-
er and parser generated using “ANother Tool for Language
Recognition” (ANTLR) [40]. ANTLR also supports the tra-
versal of abstract syntax trees (ASTs) using tree grammars
which are syntactically similar to the lexer and parser gram-
mars. As shown in Block 1 of Fig. 6, additionally a symbol
table is used for storing and retrieving information like the
type of an identifier. Using the syntax tree resulting from the
parsing and the created symbol table, it is possible to realise
the static analysis techniques required for the quality assess-
ment (Block 2 of Fig. 6) and quality improvement (Block 3
of Fig. 6) implemented in TRex.

The metrics implementation in TRex offers its own exten-
sible infrastructure. A new metric calculation can be imple-
mented easily by adding a new plug-in which makes use of
a special TRex metric extension point. The existing TRex
TTCN-3 metric plug-ins calculate metrics using tree gram-
mars which have been been enriched with semantic actions.
These actions count, for example, the occurrences of certain
language elements, or build and use control flow and call
graphs of TTCN-3 entities. To visualise these graphs, the
Eclipse Graphical Editing Framework (GEF) [10] has been
utilised.

The smell detection in TRex uses the static analysis
framework offered by the Eclipse Test & Performance Tools
Platform (TPTP) [11]. In the context of this framework, each
smell detection capability is represented by a selectable rule.
TPTP provides the underlying programming interface for
these rules as well as configuration dialogues to allow cus-
tom rule selection and analysis profiles and a view for the
result output. Thus, it is possible to concentrate on the actual
rule implementation and analysis aspects. The actual smell

detections are based on the syntax tree traversals and symbol
table lookups.

The refactoring implementation (Block 3 of Fig. 6) makes
use of the Language Toolkit (LTK) which is part of the Eclipse
Platform. It provides a programming interface for
transformations of an Eclipse workspace and thus provides
abstract classes and wizards that need to be implemented.
The benefit is that certain functionality is already provided,
for example, a preview page in the refactoring wizard which
displays the differences between the original and refactored
code side by side. Based on the syntax tree and symbol table,
the necessary changes for the workspace transformation are
calculated and applied to the original TTCN-3 source code
using a programmatic text editor which is provided by the
Eclipse Platform as well. It supports all typical text opera-
tions such as copy, paste, move, or delete. The overall format-
ting of the original TTCN-3 source code is preserved since
only the textually changed parts are modified. In some cases,
the refactoring implementations make use of the TRex code
formatter for the necessary changes to obtain valid TTCN-3
core notation from a transformed syntax tree.

5.5 Related work

Most recent work which realises quality assessment and
improvement for source code uses Java as target language.
Hence, test-specific quality aspects, e.g. those related to test
verdicts or to the determinism of tests, are not considered in
these tools. Software that calculates metrics of programming
languages like C or Java has been around for decades. A few
recent examples of such tools which target the quality assess-
ment of programming languages are the Metrics plug-in for
Eclipse [44], CodePro AnalytiX from Instantiations [24], or
Telelogic Logiscope [46].

Approaches to automatic detection of issues in source
code which are detectable using static analysis and go beyond
metrics exist for a long time as well. While, e.g. the Lint
tool [28] is older than the notion of smell, it detects issues
which are nowadays considered as code smell.

Fowler suggests not to automate the localisation of code
smells, but rather argues that “no set of metrics rivals
informed human intuition” [20]. We think this statement is

123

324 H. Neukirchen et al.

correct in the sense that it seems impossible to find univer-
sally valid threshold values for metrics. After all, reasonable
threshold values may differ significantly depending on the
preferred coding style, the language used, and many other
factors. Nevertheless, we think that it is possible to ease the
detection of problems with proper tool support when thresh-
old values are user definable and selected sensibly respecting
such factors. To some extent, the selection of threshold values
represents this intuitive aspect mentioned by Fowler. Related
research in this area proves that automatic smell detection is
possible and helpful [32,33,43]. In addition to this research,
there are already reasonably mature tools for Java like Find-
Bugs [41] or PMD [8] that have similar objectives and are
able to detect code smells. However, these tools do neither
consider TTCN-3 nor at least more general test specific prop-
erties at all.

Refactoring for C++ [38] and Smalltalk [42] has been
known for some time, but has actually become popular only
more recently after the publication of Fowler’s book on refac-
toring [20] and by the Java refactoring functionality provided
in the JetBrains IntelliJ IDEA [27] and the Eclipse JDT [9]
IDEs. However, an automated assessment and improvement
as provided by TRex is not a default feature of those IDEs.
The TRex implementation represents the first publicly avail-
able refactoring and metrics tool for TTCN-3 test specifi-
cations. The TTCN-3 IDE TTworkbench [47] has recently
been extended to provide initial support for refactoring
as well.

6 Summary and outlook

In this article, we have presented a procedure and means to
assess and improve the quality of TTCN-3 test suites. The
approach is based on a quality model for test specifications,
which is an adaptation of the ISO/IEC 9126 quality model to
the domain of test specification. The quality model addresses
the different aspects related to quality by defining several
characteristics. The concrete assessment of a quality char-
acteristic is based on metrics. For each characteristic under
investigation an appropriate set of metrics has to be selected
and applied.

We have instantiated the quality model for the assessment
of TTCN-3 test specifications by providing and discussing
metrics. These metrics can be used to measure the quality of
TTCN-3 specifications and they help to detect quality issues.
In addition to metrics, we use code smells which have been
collected and published by us in a TTCN-3 code smell cat-
alogue. It is a first attempt at writing down problems related
to TTCN-3 source code and we have the intention to allow
others to contribute by making it publicly available as a wiki
web page [48] and to extend it continuously. Our means to
improve the quality of test specifications is refactoring, i.e.

we remove quality issues by restructuring a test specification
without changing its behaviour.

Metrics, smell detection, and refactoring for TTCN-3 have
been implemented in our TTCN-3 Refactoring and Metrics
tool TRex. TRex is available as open-source tool from the
project website [48]. We have shown the application of TRex
to several standardised TTCN-3 test suites. In this study, we
have investigated their maintainability subcharacteristics.

Currently, we are investigating further TTCN-3 code
smells, e.g. those that relate to the usage of timers or functions
in the guards of alt statements. In addition, we are refining the
smell-based approach to detect issues in a test specification.
At the moment, the smell detections in TRex are implemented
using Java. Instead of this hard-coded imperative approach,
we are currently developing a declarative method for specify-
ing TTCN-3 code smell patterns using XQuery [50] expres-
sions [36].

Our intention is to implement further metrics and support
the quality assessment based on user-specific variants of our
quality model. The latter will allow to select appropriate met-
rics and thresholds for each (sub)characteristics and to give
weights to the different (sub)characteristics to obtain a gen-
eral quality verdict. Furthermore, we have started to investi-
gate means to evaluate whether chosen metrics are reasonable
and independent, i.e. orthogonal to each other [52].

Our future work concentrates on the refinement, com-
pletion, and implementation of our quality model. At the
moment, our model covers only internal quality character-
istics. We will start to investigate a generalisation of our
model which also includes external quality characteristics,
e.g. performance aspects and properties related to test
campaigns.

Finally, we intend to instantiate our quality model for
tests specified with the UML 2.0 Testing Profile (U2TP) [37].
Thus, aspects of graphical design and object orientation will
be future challenges of our work on quality assessment and
quality improvement for test specifications.

Acknowledgements The test specification quality model presented
in Sect. 2 has been developed together with Diana Vega and Ina Schie-
ferdecker [56]. The TTCN-3 smell catalogue has been elaborated as part
of the Master’s thesis [4] of Martin Bisanz who has been supervised by
Helmut Neukirchen. Paul Baker and Dominic Evans contributed to ear-
lier versions of the TRex tool [1]. Finally, the authors like to thank the
anonymous reviewers for valuable comments on improving this article.

References

1. Baker, P., Evans, D., Grabowski, J., Neukirchen, H., Zeiss, B.:
TRex—the refactoring and metrics tool for TTCN-3 test specifica-
tions. In: Proceedings of TAIC PART 2006 (Testing: Academic &
Industrial Conference—Practice And Research Techniques), Cum-
berland Lodge, Windsor Great Park, UK, 29–31 August 2006.
IEEE Computer Society (2006). doi:10.1109/TAIC-PART.2006.
35

123

http://dx.doi.org/10.1109/TAIC-PART.2006.35
http://dx.doi.org/10.1109/TAIC-PART.2006.35

An approach to quality engineering of TTCN-3 test specifications 325

2. Baker, P., Loh, S., Weil, F.: Model-driven engineering in a large
industrial context—Motorola case study. In: Briand, L., Williams,
C. (eds.) Model Driven Engineering Languages and Systems: 8th
International Conference, MoDELS 2005, Montego Bay, Jamaica,
October 2–7, 2005. Lecture Notes in Computer Science (LNCS),
vol. 3713, pp. 476–491. Springer, Berlin (2005). doi:10.1007/
11557432_36

3. Basili, V.R., Weiss, D.M.: A methodology for collecting valid
software engineering data. IEEE Trans. Softw. Eng. 10(6), 728–
738 (1984)

4. Bisanz, M.: Pattern-based smell detection in TTCN-3 test suites.
Master’s thesis, Center for Computational Sciences, Univer-
sity of Göttingen, Germany, ZFI-BM-2006-44 (2006). http://
www.swe.informatik.uni-goettingen.de/publications/MB/bisanz_
mastersthesis.pdf

5. Boehm, B., Brown, J., Kaspar, J., Lipow, M., MacLead, C., Merrit,
M.: Characteristics of Software Quality. North-Holland, Amster-
dam (1978)

6. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selec-
tion: help for the practicing programmer. IEEE Comp. 11(4), 34–43
(1978). doi:10.1109/C-M.1978.218136

7. van Deursen, A., Moonen, L., van den Bergh, A., Kok, G.:
Extreme Programming Perspectives, Chap. Refactoring Test
Code, pp. 141–152. Addison-Wesley, Boston (2002)

8. Dixon-Peugh, D.: PMD (2007). http://pmd.sourceforge.net
9. Eclipse Foundation: Eclipse (2007). http://www.eclipse.org

10. Eclipse Foundation: Eclipse Graphical Editing Framework (2007).
http://www.eclipse.org/gef

11. Eclipse Foundation: Eclipse Test & Performance Tools Platform
Project (TPTP) (2007). http://www.eclipse.org/tptp

12. van Emden, E., Moonen, L.: Java quality assurance by detect-
ing code smells. In: Proceedings Ninth Working Conference
on Reverse Engineering WCRE 2002, pp. 97–106. IEEE Com-
puter Society Press, New York (2002). doi:10.1109/WCRE.2002.
1173068

13. ETSI: Technical Specification (TS) 102 027-3 V4.1.1 (2006–07):
SIP ATS & PIXIT; Part 3: Abstract Test Suite (ATS) and partial
Protocol Implementation eXtra Information for Testing (PIXIT).
European Telecommunications Standards Institute (ETSI), Sophia-
Antipolis, France (2006)

14. ETSI: Technical Specification (TS) 102 385-3 V2.2.1 (2006–
04): Conformance Testing for WiMAX/HiperMAN 1.2.1; Part 3:
Abstract Test Suite (ATS). European Telecommunications Stan-
dards Institute (ETSI), Sophia-Antipolis, France (2006)

15. ETSI: Technical Specification (TS) 102 516 V1.1 (2006–04): IPv6
Core Protocol; Conformance Abstract Test Suite (ATS) and partial
Protocol Implementation eXtra Information for Testing (PIXIT).
European Telecommunications Standards Institute (ETSI), Sophia-
Antipolis, France (2006)

16. ETSI: ETSI Standard (ES) 201 873 V3.2.1: The Testing and Test
Control Notation version 3; Parts 1–8. European Telecommuni-
cations Standards Institute (ETSI), Sophia-Antipolis, France, also
published as ITU-T Recommendation series. Z.140 (2007)

17. Fan, C.F., Yih, S.: Prescriptive metrics for software quality assur-
ance. In: Proceedings of the First Asia-Pacific Software Engi-
neering Conference, pp. 430–438. IEEE-CS Press, Tokyo (1994).
doi:10.1109/APSEC.1994.465237

18. Fenton, N.E., Pfleeger, S.L.: Software Metrics. PWS Publishing
Company, Boston (1997)

19. Fosdick, L.D., Osterweil, L.J.: Data flow analysis in software reli-
ability. ACM Comput. Surv. 8(3), 305–330 (1976). doi:10.1145/
356674.356676

20. Fowler, M.: Refactoring—Improving the Design of Existing
Code. Addison-Wesley, Boston (1999)

21. Gamma, E., Beck, K.: JUnit (2007). http://junit.sourceforge.net

22. Grabowski, J., Hogrefe, D., Réthy, G., Schieferdecker, I., Wiles,
A., Willcock, C.: An introduction to the testing and test control
notation (TTCN-3). Comp. Netw. 42(3), 375–403 (2003). doi:10.
1016/S1389-1286(03)00249-4

23. Huang, J.C.: Detection of data flow anomaly through program
instrumentation. IEEE Trans. Softw. Eng. 5(3), 226–236 (1979).
doi:10.1109/TSE.1979.234184

24. Instantiations: CodePro AnalytiX (2007). http://www.
instantiations.com/codepro/

25. ISO/IEC: ISO/IEC Standard No. 14598: Information technology—
Software product evaluation; Parts 1–6. International Organization
for Standardization (ISO)/International Electrotechnical Commis-
sion (IEC), Geneva, Switzerland (1999–2001)

26. ISO/IEC: ISO/IEC Standard No. 9126: Software engineer-
ing—Product quality; Parts 1–4. International Organization for
Standardization (ISO)/International Electrotechnical Commission
(IEC), Geneva, Switzerland (2001–2004)

27. JetBrains: IntelliJ IDEA (2007). http://www.jetbrains.com
28. Johnson, S.: Lint, a C Program Checker. Unix Programmer’s Man-

ual. AT&T Bell Laboratories, New Jersey (1978)
29. McCabe, T.J.: A complexity measure. IEEE Trans. Softw.

Eng. 2(4), 308–320 (1976)
30. McCall, J., Richards, P., Walters, G.: Factors in software quality.

Technical Report RADC TR-77-369, US Rome Air Development
Center (1977)

31. Meszaros, G.: XUnit Test Patterns. Addison-Wesley, Boston
(2007)

32. Moha, N., Guéhéneuc, Y.G., Leduc, P.: Automatic generation of
detection algorithms for design defects. In: 21st IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE
2006), 18–22 September 2006, Tokyo, Japan, pp. 297–300. IEEE
Computer Society, New york (2006). doi:10.1109/ASE.2006.22

33. Munro, M.: Product metrics for automatic identification of “Bad
Smell” design problems in Java source-code. In: 11th IEEE Interna-
tional Symposium on Software Metrics (METRICS 2005), 19–22
September 2005, Como, Italy. IEEE Computer Society, New York
(2005). doi:10.1109/METRICS.2005.38

34. Myers, G.: The Art of Software Testing. Wiley, New York
(1979)

35. Neukirchen, H., Bisanz, M.: Utilising code smells to detect qual-
ity problems in TTCN-3 test suites. In: Petrenko, A., Veanes, M.,
Tretmans, J., Grieskamp, W. (eds.) Testing of Communicating Sys-
tems/Formal Approaches to Testing of Software 2007, Tallinn,
Estonia, June 26–29, 2007. Lecture Notes in Computer Science
(LNCS), vol. 4581, pp. 228–243. Springer, Berlin (2007). doi:10.
1007/978-3-540-73066-8_16

36. Nödler, J.: An XML-based approach for software analysis—
applied to detect bad smells in TTCN-3 test suites. Master’s thesis,
Center for Computational Sciences, University of Göttingen, Ger-
many, ZFI-BM-2007-36 (2007). http://www.swe.informatik.uni-
goettingen.de/publications/JN/noedler-masters-thesis.pdf

37. OMG: UML Testing Profile (Version 1.0 formal/05-07-07). Object
Management Group (OMG) (2005)

38. Opdyke, W.: Refactoring object-oriented frameworks. Ph.D. the-
sis, University of Illinois at Urbana-Champaign, USA (1992)

39. Parnas, D.: Software aging. In: Proceedings of the 16th Interna-
tional Conference on Software Engineering (ICSE), May 16–21,
1994, Sorrento, Italy, pp. 279–287. IEEE Computer Society/ACM
Press, New York (1994)

40. Parr, T.: ANTLR parser generator v2 (2007). http://www.antlr2.
org

41. Pugh, B.: FindBugs (2007). http://findbugs.sourceforge.net
42. Roberts, D., Brant, J., Johnson, R.: A refactoring tool for smalltalk.

theory and practice of object systems 3(4), 253–263 (1997). doi:10.
1002/(SICI)1096-9942(1997)3:4<253::AID-TAPO3>3.3.CO;2-I

123

http://dx.doi.org/10.1007/11557432_36
http://dx.doi.org/10.1007/11557432_36
http://www.swe.informatik.uni-goettingen.de/publications/MB/bisanz_mastersthesis.pdf
http://www.swe.informatik.uni-goettingen.de/publications/MB/bisanz_mastersthesis.pdf
http://www.swe.informatik.uni-goettingen.de/publications/MB/bisanz_mastersthesis.pdf
http://dx.doi.org/10.1109/C-M.1978.218136
http://pmd.sourceforge.net
http://www.eclipse.org
http://www.eclipse.org/gef
http://www.eclipse.org/tptp
http://dx.doi.org/10.1109/WCRE.2002.1173068
http://dx.doi.org/10.1109/WCRE.2002.1173068
http://dx.doi.org/10.1109/APSEC.1994.465237
http://dx.doi.org/10.1145/356674.356676
http://dx.doi.org/10.1145/356674.356676
http://junit.sourceforge.net
http://dx.doi.org/10.1016/S1389-1286(03)00249-4
http://dx.doi.org/10.1016/S1389-1286(03)00249-4
http://dx.doi.org/10.1109/TSE.1979.234184
http://www.instantiations.com/codepro/
http://www.instantiations.com/codepro/
http://www.jetbrains.com
http://dx.doi.org/10.1109/ASE.2006.22
http://dx.doi.org/10.1109/METRICS.2005.38
http://dx.doi.org/10.1007/978-3-540-73066-8_16
http://dx.doi.org/10.1007/978-3-540-73066-8_16
http://www.swe.informatik.uni-goettingen.de/publications/JN/noedler-masters-thesis.pdf
http://www.swe.informatik.uni-goettingen.de/publications/JN/noedler-masters-thesis.pdf
http://www.antlr2.org
http://www.antlr2.org
http://findbugs.sourceforge.net
http://dx.doi.org/10.1002/(SICI)1096-9942(1997)3:4<253::AID-TAPO3>3.3.CO;2-I
http://dx.doi.org/10.1002/(SICI)1096-9942(1997)3:4<253::AID-TAPO3>3.3.CO;2-I

326 H. Neukirchen et al.

43. van Rompaey, B., du Bois, B., Demeyer, S.: Characterizing the rel-
ative significance of a test smell. In: Proceedings of the 22nd IEEE
International Conference on Software Maintenance (ICSM 2006),
Philadelphia, Pennsylvania, September 25–27, 2006, pp. 391–400.
IEEE Computer Society (2006). doi:10.1109/ICSM.2006.18

44. Sauer, F.: Eclipse Metrics Plugin (2007). http://metrics.
sourceforge.net

45. Sneed, H.M.: Measuring the effectiveness of software testing. In:
Beydeda, S., Gruhn, V., Mayer, J., Reussner, R., Schweiggert, F.
(eds.) Proceedings of SOQUA 2004 (First International Workshop
on Software Quality) and TECOS 2004 (Workshop Testing
Component-Based Systems). Lecture Notes in Informatics (LNI),
vol. 58. Gesellschaft für Informatik, Köllen Verlag, Bonn (2004)

46. Telelogic: Logiscope (2007). http://www.telelogic.de/products/
logiscope/

47. Testing Technologies: TTworkbench (2007). http://www.
testingtech.de/products_services/ttwb_intro.php

48. TRex Team: TRex Website (2007). http://www.trex.informatik.
uni-goettingen.de

49. Vega, D.E., Schieferdecker, I.: Towards quality of TTCN-3
tests. In: Proceedings of SAM’06: Fifth Workshop on System
Analysis and Modelling, May 31–June 2, 2006, University of
Kaiserslautern, Germany. University of Kaiserslautern, Germany
(2006)

50. XQuery 1.0: An XML Query Language. World Wide Web Con-
sortium (W3C) Recommendation 23 January 2007 (2007)

51. Watson, A.H., McCabe, T.J.: Structured testing: a testing meth-
odology using the cyclomatic complexity metricy. NIST Special
Publication 500–235, National Institute of Standards and Techno-
logy, Computer Systems Laboratory, Gaithersburg (1996)

52. Werner, E., Grabowski, J., Neukirchen, H., Röttger, N., Waack, S.,
Zeiss, B.: TTCN-3 quality engineering: using learning techniques
to evaluate metric sets. In: Gaudin, E., Najm, E., Reed, R. (eds.)
SDL 2007: Design for Dependable Systems, 13th International
SDL Forum, Paris, France, September 18–21, 2007, Proceedings.
Lecture Notes in Computer Science (LNCS), vol. 4745, pp. 54–68.
Springer, Berlin (2007). doi:10.1007/978-3-540-74984-4_4

53. Zeiss, B.: A refactoring tool for TTCN-3. Master’s thesis, Center
for Computational Sciences, University of Göttingen, Germany,
ZFI-BM-2006-05 (2006). http://www.swe.informatik.uni-
goettingen.de/publications/BZ/zeiss_mastersthesis.pdf

54. Zeiss, B., Neukirchen, H., Grabowski, J., Evans, D., Baker, P.:
Refactoring and Metrics for TTCN-3 Test Suites. In: Gotzhein, R.,
Reed, R. (eds.) System Analysis and Modeling: Language Profiles.
5th International Workshop, SAM 2006, Kaiserslautern, Germany,
May 31–June 2, 2006, Revised Selected Papers, Lecture Notes
in Computer Science (LNCS), vol. 4320, pp. 148–165. Springer,
Berlin (2006). doi:10.1007/11951148_10

55. Zeiss, B., Neukirchen, H., Grabowski, J., Evans, D., Baker, P.:
TRex—an open-source tool for quality assurance of TTCN-3 test
suites. In: Proceedings of CONQUEST 2006—9th International
Conference on Quality Engineering in Software Technology, Sep-
tember 27–29, Berlin, Germany, pp. 117–128. dpunkt.Verlag, Hei-
delberg (2006)

56. Zeiss, B., Vega, D., Schieferdecker, I., Neukirchen, H., Grabowski,
J.: Applying the ISO 9126 quality model to test specifications—
exemplified for TTCN-3 test specifications. In: Bleeck, W.G., Ras-
ch, J. Züllighoven, H. (eds.) Proceedings of Software Engineering
2007 (SE 2007). Lecture Notes in Informatics (LNI), vol. 105,
pp. 231–242. Gesellschaft für Informatik, Köllen, Bonn (2007)

123

http://dx.doi.org/10.1109/ICSM.2006.18
http://metrics.sourceforge.net
http://metrics.sourceforge.net
http://www.telelogic.de/products/logiscope/
http://www.telelogic.de/products/logiscope/
http://www.testingtech.de/products_services/ttwb_intro.php
http://www.testingtech.de/products_services/ttwb_intro.php
http://www.trex.informatik.uni-goettingen.de
http://www.trex.informatik.uni-goettingen.de
http://dx.doi.org/10.1007/978-3-540-74984-4_4
http://www.swe.informatik.uni-goettingen.de/publications/BZ/zeiss_mastersthesis.pdf
http://www.swe.informatik.uni-goettingen.de/publications/BZ/zeiss_mastersthesis.pdf
http://dx.doi.org/10.1007/11951148_10

	An approach to quality engineering of TTCN-3 test specifications
	Abstract
	1 Introduction
	2 Quality of test specifications
	2.1 Software quality (ISO/IEC 9126)
	2.2 Test specification quality

	3 Test quality assessment
	3.1 Software metrics
	3.2 Smells in software

	4 Application of metrics and smell detection
	4.1 Analysability metrics
	4.2 Changeability metrics
	4.3 Results

	5 The TRex tool
	5.1 TTCN-3 metrics functionality
	5.2 TTCN-3 code smell detection functionality
	5.3 TTCN-3 refactoring functionality
	5.4 Implementation
	5.5 Related work

	6 Summary and outlook
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

