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Abstract

The local field potential (LFP) has recently been widely used in brain computer interfaces (BCI). Here we used power of LFP
recorded from area MT of a macaque monkey to decode where the animal covertly attended. Support vector machines
(SVM) were used to learn the pattern of power at different frequencies for attention to two possible positions. We found
that LFP power at both low (,9 Hz) and high (31–120 Hz) frequencies contains sufficient information to decode the focus
of attention. Highest decoding performance was found for gamma frequencies (31–120 Hz) and reached 82%. In contrast
low frequencies (,9 Hz) could help the classifier reach a higher decoding performance with a smaller amount of training
data. Consequently, we suggest that low frequency LFP can provide fast but coarse information regarding the focus of
attention, while higher frequencies of the LFP deliver more accurate but less timely information about the focus of
attention.
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Introduction

Attention as a filtering mechanism selects behaviorally relevant

stimuli for more effective processing in the mammalian cortex.

The neural correlates of this mechanism, especially in the visual

system, have been intensively studied during the last few decades

both in humans and non-human primates [1–3]. The most basic

neuronal correlate of attention has been reported as the increase in

firing rate of neurons that are selective to the feature or position

that the animal has attended to. This effect has been reported in

different visual areas of macaques [3], [4]. Specifically, when

attention is directed toward a stimulus located inside the receptive

field (RF) of a neuron, the firing rate of that neuron increases

relative to when attention is toward a similar stimulus outside the

RF.

The local field potential (LFP) is another signature of neural

activity which has recently been paid considerable attention in

neuroscience. LFP mainly represents synaptic activities of cortical

neurons, as well as other factors such as calcium spikes and

membrane oscillations [5]. Different frequencies of LFPs have

been studied under various cognitive states and the results show

that high frequencies (.30 Hz) mostly represent local neural

activities indicating stimulus processing, while lower frequencies

(,20 Hz) show wide-range activities shared between large

populations of neurons [6]. Attention has also been shown to

influence LFP signals in different sensory areas of the monkey

cortex [7–13]. Previous studies have shown that spatial attention is

correlated with an increase in high frequency oscillations and

decrease in low frequency oscillations in LFPs of the visual cortex

[8–10], albeit see [13] for different results. Low frequency and

high frequency oscillations are linked to each other through a

mechanism known as phase-amplitude coupling [14–16]; the

phase of low frequency oscillations (,20 Hz) determines the high

frequency power (30–200 Hz) across a variety of cortical areas in

different species [17]. It is assumed that the brain exploits this

mechanism to control local computations in cortical areas [15],

[17]. Attention also influences the phase of on-going low frequency

oscillations of the LFP in monkey visual cortex [11]. Therefore, it

is assumed that attention modulates local cortical activities by

controlling the phase of low frequency oscillations which are

functionally involved in the processing of stimuli [15], [17].

The influence of attention on the power of LFP signals in

different frequencies would suggest it to be a helpful signal for

decoding attentional state. This can be used in BCIs, devices that

use brain signals to decode the intention of human and non-

human primates. These devices can be incorporated into

prostheses such as artificial limbs [18]. BCIs may use invasive or

non-invasive methods for decoding. Non-invasive techniques

compromise EEG, fMRI, MEG and near-infrared spectroscopy

while invasive methods use single cell spikes and LFPs.

Non-invasive BCIs can be used for healthy humans since they

do not involve any surgical procedures. In contrast to fMRI and

MEG, EEG and near-infrared spectroscopy are more relevant

options to be used for every-day applications. Specifically, EEG

signals have been extensively investigated to control matrix spellers

[19], [20]; for instance, analysis of modulations of the P300 has led

to high performance in decoding the letter on the screen to which

the subject has attended. However, the main shortcoming of this

technique is the long time needed to decode each character due to

multiple presentations of the matrix which are needed to evoke

reliable signals. Invasive methods on the other hand can perform
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the decoding at a higher speed since there is much more spatial

resolution and also higher signal-to-noise ratio [21].

Invasive methods have been used to decode brain signals in

both rodents and primates. There have been numerous studies

showing that movement direction in non-human primates can be

decoded using intra-cortical signals [22–24], especially LFP

recorded from the motor cortex [25], [26]. Slutzky et al. [27]

showed that the forelimb movement of rats could be decoded

using LFP recorded from their sensorimotor cortex. LFPs recorded

from the visual cortex (inferior temporal cortex) of macaque

monkeys has also been used to decode visual stimuli presented to

them [28], [29]. Similarly, Manyakov et al. [30] decoded stimulus-

reward pairing using LFPs recorded from macaque V4. Smith et

al. [31] also decoded vocalizations from LFPs recorded from

auditory areas of the monkey cortex. However, it has not yet been

explored how invasive recordings could be used for decoding the

allocation of visual attention. Nevertheless, Rotermund et al. [32]

have used the semi-invasive technique of the electro-corticogram

(ECoG) to decode the focus of attention in macaques and have

shown that gamma frequency can decode attention at high

performance, while low frequencies cannot decode attention better

than chance [32].

We investigated whether LFP recorded from the visual cortex

(medial temporal area MT) of a macaque monkey can be used to

decode the focus of attention, and compared the contribution of

different frequency bands to the performance of decoding. We

found that the power of LFPs at different frequencies can be used

to decode the focus of attention with appreciable performance,

where gamma frequencies (31–120 Hz) had the highest perfor-

mance.

Materials and Methods

Ethics Statement
All procedures of this study have been approved by the regional

government office (Niedersächsisches Landesamt für Verbrau-

cherschutz und Lebensmittelsicherheit (LAVES)). The animal was

group-housed with other macaque monkeys in facilities of the

German Primate Center in Goettingen, Germany in accordance

with all applicable German and European regulations. The facility

provides the animals with an enriched structured environment

(incl. toys and wooden structures), exceeding the size requirements

of the European regulations, including access to outdoor space.

The craniotomy and head post implantation were done under

full anesthesia and with appropriate analgesics. The German

Primate Center has several veterinarians on staff that monitor and

examine the animals and consult on any procedures.

During the study the animal had unrestricted access to fluid,

except on the days where data were collected or the animal was

trained on the behavioral paradigm. On these days the animal was

allowed unlimited access to fluid through his performance in the

behavioral paradigm. Here he received fluid rewards for every

correctly performed trial. Throughout the study the animal’s

psychological and medical welfare was monitored by the

veterinarians, the animal facility staff and the lab’s scientists, all

specialized on working with non-human primates.

Behavioral Task and Recording
A behaving male macaque monkey was trained to fixate to a

central fixation point on the middle of the screen and keep its

attention on one of two coherently moving random dot patterns

(RDP) while ignoring the other. The RDPs moved in the same

direction and were presented simultaneously at peripheral

locations (Figure 1A).

One of the RDPs was specified as the target stimulus by a cue at

the beginning of each trial. The cue was a static RDP in the same

position as the upcoming target stimulus and was shown for

455 ms. The moving RDPs appeared 325 ms after the cue faded

and were presented for a random period between 680–4250 ms.

During this time, one or both of the stimuli could randomly make

a short (130 ms) direction change of 30 degrees. The monkey was

rewarded if it released the lever within a time window of 150–

650 ms after the direction change of the target. If the direction

change took place in the distracter, the monkey had to ignore it.

Releasing the lever in these cases would lead to termination of the

trial without any reward. This allowed us to ensure that the

monkey switched its attention to the position of the target and

ignored the position of the distracter. One of the two RDPs was

placed inside the RF and the other outside. Both of them moved in

the same direction in a given trial, chosen out of 8 possible

directions (0 to 2p radians with steps of p/4). The preferred

direction of each recorded site was determined using the direction

tuning function from single unit spikes [33] that was estimated in

the beginning of each session.

After the monkey reached acceptable performance in the task,

multi unit activity (MUA) and LFP signals were recorded from

area MT using a five-channel recording system (MiniMatrix;

Thomas Recording). Spikes were sorted using the Plexon Data

Acquisition System. We selected sites according to the selectivity of

the isolated cells to motion direction and the position of the

electrode in the cortex. Overall 112 sites were selected for analyses.

Data Analysis
All analyses were carried out using MATLAB (Mathworks,

Natick, MA). To generate the spike density function for the two

attention conditions (Figure 1B) we convolved a Gaussian function

(sd = 15) with the MUA recorded across trials of each condition

per site and normalized them to the maximum across the two

conditions for each site. We aligned the phases of LFP signals in

order to correct the phase lags enforced by the recording hardware

[34]. The mean of each LFP signal was subtracted from it in order

to cancel the DC factor. The 50 Hz noise, 76 Hz noise due to the

monitor refresh rate and its periodical (152 Hz) were band-pass

filtered and removed using EEGLAB toolbox [35]. We calculated

the power spectral density (PSD) of each signal by taking the

absolute value of the Fourier transform applied to the signal. The

PSDs were averaged across the trials of each site. For presentation

purposes (Figure 2), the PSD calculated for each site was smoothed

by convolution with a Gaussian kernel with sd = 2 for ,50 Hz

frequencies and sd = 5 for .50 frequencies. The reason we used a

larger kernel for .50 Hz frequencies was that they showed a

noisier trend than lower frequencies. Each trial-averaged PSD was

normalized by the average PSD across the attention conditions for

each site. We corrected for multiple comparisons in Figure 2 by

using Bonferroni correction and assumed the p-value threshold of

0.01 to decide about statistical significance.

To classify the PSDs into the two classes of attention, we used a

support vector machine (SVM) algorithm. This algorithm

estimates the hyper-plane that can best separate the data points

of the two classes from each other [36]. To be more explicit, SVM

finds the terms w and b in this equation: yi(,w,xi.+b)$1; in a

way that ||w|| (norm of w) is minimized and the equation holds

true for all data points (xi,yi) where xi is the data point number i

and yi is the class number for the corresponding data point that

changes between 21 and 1. The symbol ‘‘, .’’ means the dot

product function and w represents the weights of the dimensions

for each data point. We used the default SVM algorithm

developed in MATLAB with a linear kernel. We first averaged
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Figure 1. Behavioral paradigm and attentional modulation of MUA. A. A trial started when the monkey touched a lever and fixated the
central fixation point. The trial would abort without any reward if the monkey released the lever or broke its fixation at any time. After a short
(130 ms) blank screen a static RDP was shown for a 455 ms interval indicating the position of the target. After another blank period of 325 ms two
moving RDPs were presented peripherally. At a random time between 680–4250 ms after the onset of the RDPs, one or both of the stimuli made a
direction change of 30 degrees and turned back after 130 ms. The monkey had to respond to the direction change in the target within a time
window of 150–650 ms while ignoring any direction change in the distracter. The plus sign indicates the fixation point, the filled circle is the RF and
the dashed circle marks the target. The circles were not presented in the experiment. B. Normalized MUA aligned to target onset. The dashed line
represents the MUA recorded in the unattended condition and the solid line shows the MUA in the attended condition. Error bars show the standard
error of mean (SEM).
doi:10.1371/journal.pone.0100381.g001

Figure 2. Attentional modulation of LFP power at different frequencies. LFP power at different frequencies is shown in the two attention
conditions. Solid lines represent the LFP power in the attended condition and the dashed lines show the LFP power in the unattended condition.
Significant differences between the LFP powers in the two conditions are indicated by stars. A. Normalized power of frequencies below 48 Hz. B.
Normalized power of frequencies within 52–200 Hz. C. Logarithm of the normalized power for 1–200 Hz excluding 48–52 Hz. Error bars show SEM.
doi:10.1371/journal.pone.0100381.g002
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the PSDs across trials for each recording site. In order to generate

a distribution of classification performances for a given number of

trial-averaged PSDs, we randomly divided the data set of all trial-

averaged PSDs into train and test subsets 500 times and each time

we trained the classifier using the train data and calculated the

performance using the test data. In order to find out if a given

distribution of performance is significantly above 50% (chance

level), we checked if the mean of the distribution was more than

2*sd apart from 50%, which would be equivalent to the confidence

interval of 95%.

To calculate the ROC curves, we used the dot product of w and

the data point vectors for different frequency bands. We randomly

selected 80% of the data for computing the w vector and applied

the weight vector to the remaining test data point. This procedure

was repeated 50 times to calculate the variability of the ROC

curves. The coefficient of variation for each frequency point was

calculated by dividing the standard deviation of the power of that

frequency by its mean power across sites.

Results

We trained a monkey to detect a small change in the motion

direction of one of two moving RDPs (target) and to ignore the

other one (distracter). The monkey responded correctly to the

direction change of the target and ignored the distracter in 86% of

trials that were accomplished without any fixation break. The

monkey had to attend inside the RF in half of the trials and outside

the RF in the other half. We focused our analyses on the period

between the onset and the direction change of the target RDP.

Figure 1B shows the multi unit activity (MUA) after the target

onset for the two conditions in which the monkey attended inside

RF (attended) or outside RF (unattended). The solid and dashed

curves represent the attended and unattended conditions respec-

tively. It is obvious that the two curves become separated soon

around 350 ms after the target is presented and stay apart as time

passes (p%0.01 for all time points between 350–1400 ms; paired t-

test). This shows that the monkey has attended to the target and

ignored the distracter [3]. Also we observe that the distance

between the two curves slightly increases as time passes. This

might be due to the fact that before any direction change occurs,

the probability of direction change occurrence increases as time

passes; therefore the monkey’s expectation might become higher

approaching the end of the trial. However the effect of attention

remains across time.

Figure 2A&B show the power of LFP signals at different

frequencies for the attended and unattended conditions. We

showed the results in two separate bands, one within 1–48 Hz and

one within 52–200 Hz due to the 50 Hz noise (Note that the

dimensions differ between the two figures). As it is shown in

Figure 2C, the 1/f relationship across the power of different

frequencies can be seen clearly for both attention conditions,

which is consistent with previous reports [6]. The curves

corresponding to the two attention conditions diverge for

frequencies less than 12 Hz and between 80–112 Hz (Figure 2).

Attending inside the RF is associated with a decrease in LFP

power within frequencies less than 12 Hz, while it is associated

with the increase of LFP power within the high frequencies of 80–

112 Hz which correspond to the gamma band. These two effects

are consistent with previous reports suggesting the decrease of low

frequency synchrony and increase of high frequency synchrony in

the visual cortex with attention [8–10]. See also [13] for different

results in V1 within the gamma band.

To investigate whether the power of LFP at different

frequencies could help in decoding attentional conditions, we

calculated the PSD of LFP signals between 400–1400 ms after

target onset within the frequency range of 1–500 Hz for each trial

per recoding site. The PSDs were then averaged across trials for

each condition separately. This gave us a set of 224 PSDs, half of

them corresponding to the attended condition and the rest

corresponding to the unattended condition. We randomly selected

a subset of these signals consisting of an equal number of signals

for the two conditions and used them to train a linear SVM to

classify the conditions of attention. We tested the trained algorithm

with the rest of the PSDs and calculated the classification

performance by dividing the number of correct classifications by

size of the test data. Figure 3 shows the classification performance

for different numbers of training data from 2 data points up to 178

data points (equivalent to 80% of the data). We also calculated the

classification performance for the limited band of 1–200 Hz since

it is largely assumed that LFP information is mostly limited to

frequencies less than 200 Hz. Figure 3A shows the decoding

performance for different number of training data for trials in

which the target moved in any of the 8 possible directions. The

performances were calculated using the wide band (WB) (1–

200 Hz) and the extended wide band (EWB) (1–500 Hz) LFP

separately. Similarly Figure 3B&C show the decoding perfor-

mance for trials in which the target moved in the preferred or anti-

preferred direction respectively. Figure 3A shows that WB

outperforms the EWB across a variety of sizes for training data.

The maximum performance across the two cases differs signifi-

cantly (p%0.001 t-test). This is consistent with the assumption that

the WB band contains the major part of the LFP information.

However since the EWB band contains all the information of the

WB band, we would expect that the EWB curve would outperform

the WB curve given more training data. For the trials with targets

moving in the preferred or anti-preferred direction (Figure 3B&C)

the maximum performance decreases compared to the case of all

directions, which is due to the lack of trials (p%0.001 for both

conditions; t-test). For trials with the target moving in the preferred

direction however the EWB maximum performance is higher than

the WB maximum performance (p,0.001) (Figure 3B). This

suggests that there is some extra information in the 200–500 Hz

band that can help decoding when the target is preferred. Similar

to the trials with all directions, we found that for trials with anti-

preferred targets, the maximum performance in the WB band was

only 0.8% higher than the EWB band (p,0.01) (Figure 3C).

We then asked which frequency band contributed most to the

training of the learning algorithm by applying the classification

process explained above on different frequency bands. The

traditional bands were used for this purpose: delta (1–4 Hz), theta

(5–8 Hz), alpha (9–12 Hz), beta (13–30 Hz) and gamma (31–

200 Hz). We further divided the gamma band into two separate

bands for a more detailed study: low gamma (31–120 Hz) and

high gamma (121–200 Hz). Figure 4 shows the performance

results for the frequency bands separately, for all motion

directions. All frequency bands except high gamma reach a

performance significantly above chance level (50%) with quite a

small number of training data (a maximum of 18 data points) (See

Materials and Methods for details). Low gamma reached the

highest performance compared to the other bands (maximum of

82%65 (SD)). This suggests that gamma band activity has the

largest contribution to the decoding of attention condition. This is

consistent with the attentional modulation of LFP power observed

within 80–112 Hz (Figure 2) and also previous findings empha-

sizing the role of gamma oscillations in attentional processing [37].

The next highest performances correspond to delta and theta

bands with 78%65 (SD) and 77%65 (SD) respectively that are

both significantly smaller than the highest performance for low

Decoding of Attention from LFP

PLOS ONE | www.plosone.org 4 June 2014 | Volume 9 | Issue 6 | e100381



gamma (p%0.001 t-test). In order to justify the difference in

performance across the low and high frequency bands, we plotted

the ROC curves based on the features that the SVM algorithm

extracted for each band (Figure 5A). We calculated these features

by applying the SVM weight assigned to each frequency (Figure

S1) (See Materials and Methods for details). It is obvious that the

area under the ROC curve for the low gamma band is larger than

delta and theta bands (p,0.01). This is consistent with the finding

that SVM gives a higher decoding performance for low gamma

band compared to delta and theta bands. Next we looked at the

speed at which the low frequency and high frequency bands

converge to their highest performance. Figure 5B shows the

learning curve for delta, theta and low gamma bands limited to

small sets of training data (with less than 30 data points). Delta and

theta bands have higher performances for training sets of size

below 3 and 5 (respectively) compared to low gamma band

(p%0.001 corrected for multiple comparison). Noticeably low

gamma does not reach a significantly higher performance than

theta with any data size smaller than 11 (Figure 5B). This suggests

that delta and theta bands can reach higher performances

compared to the low gamma band with quite a small amount of

training data although low gamma finally reaches a performance

greater than that of both delta and theta. This effect could be a

consequence of differences in signal variability across the different

bands. We therefore calculated the coefficient of variation across

the recording sites for each of the bands (See Materials and

Methods for the details). The coefficient of variation in low gamma

band was significantly higher than that of both delta and theta

bands (p,0.01; Wilcoxon rank sum test) (Table 1). In order to

control for any potential effect of the cue, we did the same analyses

within the period 700–1700 ms after the target onset which is far

enough from the offset time of the cue. Similar results were

observed in this period, which rules out any potential effect of cue

on the results (Figure S2).

Next we asked if the preferred vs. anti-preferred directions

would differ in terms of decoding performance in the different

frequency bands. Therefore we carried out the same analyses

described above on trials in which the stimuli moved in the

preferred and anti-preferred direction of the recorded sites

(Figure 6 & Figure 7 respectively; see Materials and Methods for

the details of choosing preferred vs. anti-preferred directions).

Consistent with the case of all directions (Figure 4), for the

preferred direction delta, theta and low gamma bands reached a

performance significantly above chance level (50%) with less than

30 data points. Low gamma band again reached the highest

performance compared to the other bands (maximum of 74%66

Figure 3. Performance of decoding attention condition using LFP power at different frequencies. A. Decoding performance for trials in
which any of 8 possible directions (0 to 2p radians with steps of p/4) were presented. B. Decoding performance for trials in which the preferred
direction was shown as the target. C. Performance for trials with the anti-preferred direction as the target. Performances are shown given different
sizes of training data. The solid lines indicate the performance using LFP powers between 1–200 Hz (marked as WB) and the dashed lines show the
performance using LFP powers between 1–500 Hz (marked as EWB). Error bars show SEM.
doi:10.1371/journal.pone.0100381.g003
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(SD)). Similar to what we observed for all directions, we found that

both delta and theta bands reached significantly higher perfor-

mances compared to low gamma with less than 5 training data

(p%0.001 Wilcoxon rank sum test). This effect was also reflected

in the differences between the coefficients of variation calculated

for each band (Table 2), i.e. coefficient of variation across

recording sites was significantly smaller for low frequency bands

(delta and theta) compared to low gamma (p,0.01 Wilcoxon rank

sum test).

For the anti-preferred case, it is specifically remarkable that the

decoding performance in the frequencies of low gamma range

significantly decreased by 7% compared to the case of preferred

targets: According to Table 2, the peak performance for low

gamma range was 74%66 (SD) for trials with preferred targets,

while it decreased to 67%65 (SD) in the same band for trials with

anti-preferred targets (p%0.001 t-test). Conversely delta and theta

bands increased or did not change their maximum decoding

performance when the direction switched to anti-preferred; Delta

band had a 5% increase in its maximum performance (p,0.001 t-

test), but theta band did not have any significant change in its

maximum performance (p.0.05 t-test). Similar to delta band, we

found that alpha had an increase of 7% in its peak performance

compared to the case of preferred targets (p%0.001 t-test)

(Table 2).

Discussion

We found that the focus of attention can be decoded using the

power of the LFP in a wide range of frequencies. This is consistent

with previous findings regarding the influence of spatial attention

on the power of LFP at different frequencies in the visual cortex

[9], [10], [13]. This is also in agreement with studies that have

shown an increase of decoding performance in the visual cortex by

attention [29], [38]. It is further compatible with the high

performance for decoding attention using ECoG signals reported

by Rotermund et al. [32], especially the high performance of

decoding at the high frequencies. However Rotermund et al. [32]

did not report any significant decoding power for low frequency

bands (,30 Hz), while we reported here that low frequency bands

(,30 Hz) can reach the performance of 78% (Table 1). This

Figure 4. Performance of decoding for trials with the target moving in any of the 8 equally separated directions. Each plot shows the
decoding performance for the frequency band written above it given different sizes of training data. Error bars represent SEM.
doi:10.1371/journal.pone.0100381.g004
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suggests that even LFP signals at frequencies as low as delta band

contain information about attention which may be due to the

locality of LFP signals relative to ECoG signals [5], [39].

The highest decoding performance across the traditional

frequency bands was observed in low gamma. Previous reports

have shown that gamma power is linked to spiking activity in the

visual cortex [40], [41] which is thought to be associated with

communication between cortical areas [37]. Therefore the high

performance of low gamma power might be related to the

information coded in spike rate which was also observed earlier in

the inferior temporal cortex [29]. We also found that the

performance of decoding attention using low gamma is signif-

icantly higher when the target is preferred relative to anti-

preferred. This could be a result of the reduced effect of

spontaneous noise on the neural response to preferred stimuli,

since neurons fire at a higher rate in response to preferred target.

On the other hand due to the multiplicative effect of attention on

neural firing [42], the discrimination between the responses in the

two conditions becomes easier when the stimulus is preferred.

Conversely the decoding performance at low frequencies (delta

and alpha bands) was significantly higher for the anti-preferred

direction compared to the preferred direction (Table 2). This

suggests that attention has more influence on the power of low

frequency LFPs when evoked by anti-preferred rather than

preferred stimuli.

Despite the weaker decoding performance for the low frequency

bands relative to low gamma band, we found that the power of low

frequency bands (,9 Hz) could help the classifier reach a higher

decoding performance with a low number of training data

compared to low gamma band. This suggests that BCIs could

use the low frequency power to gain some coarse information

about the coding strategy of the brain given just a few sample trials

and further achieve a more accurate learning of the code within

the rest of trials.

Using the power of wide band LFPs (1–500 Hz), our classifier

reached the performance of 79% when considering the preferred

direction (Figure 3B). However when we used only the limited

wide band of 1–200 Hz we achieved lower performances with very

low number of data points (,7). Also we observed that the values

of the 1–500 Hz curve went higher than the 1–200 Hz curve

especially at the 2 highest numbers of training data points (p,0.05

t-test) (Figure 3B). This would suggest that there is some extra

information about attentional state in the power of frequencies

higher than 200 Hz. This information might be related to spikes as

proposed before [43].

Conclusions

In this study we showed that attention can be decoded using the

power of LFP signals recorded from area MT of macaque

Figure 5. Comparison of decoding across delta, theta and low gamma bands. A. ROC curves of the low frequency bands (delta & theta) vs.
low gamma band using the features extracted by the SVM algorithm. B. The learning curve of the three bands limited to the size of training data less
than 30. Delta, theta and low gamma bands are represented using dotted, dashed and solid lines respectively. Error bars show SEM.
doi:10.1371/journal.pone.0100381.g005

Table 1. Peak value of decoding performance and coefficient of variation for different LFP bands in trials with any of the 8 motion
directions.

Frequency Band Performance (%) (±SD) Coefficient of Variation (±SD)

Delta (1–4 Hz) 78 (65) 6.8 (69)

Theta (5–8 Hz) 77 (65) 2.7 (61)

Alpha (9–12 Hz) 67 (66) 2.7 (60.5)

Beta (13–30 Hz) 67 (65) 11.2 (610)

Low Gamma (31–120 Hz) 82 (65) 16.7 (631)

High Gamma (121–200 Hz) 50 (62) 335.4 (62293)

doi:10.1371/journal.pone.0100381.t001
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monkey. Low gamma band has the strongest contribution to the

decoding performance especially when the preferred target of the

recorded site is presented. It was found that the power of low

frequencies (,9 Hz) can be used for decoding attention with very

few training data. We finally suggest that the decoding perfor-

mance may be improved if spiking data were to be incorporated

into the LFP power.

Supporting Information

Figure S1 SVM weights given to different frequencies of
each band. These weights were calculated by training the SVM

with 80% of the dataset. The variation of each weight was

calculated by randomly selecting the training data 50 times.

(TIF)

Figure S2 Decoding performances for different num-
bers of training data for all the 8 possible directions

within the period 700–1700 ms after the target onset.
Each plot presents the performance for the frequency bands

written above it. Error bars represent SEM.

(TIF)
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Figure 6. Performance of decoding for trials with the target moving in the preferred direction. Each plot shows the decoding
performance for the frequency band written above it given different sizes of training data. Error bars represent SEM.
doi:10.1371/journal.pone.0100381.g006
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Figure 7. Decoding performance for trials with the target moving in the anti-preferred direction. Each plot shows the decoding
performance for the frequency band written above it given different sizes of training data. Error bars represent SEM.
doi:10.1371/journal.pone.0100381.g007

Table 2. Peak value of decoding performance and coefficient of variation for different LFP bands in trials with preferred vs. anti-
preferred targets.

Performance (%) (±SD) Coefficient of Variation (±SD)

Frequency Band Preferred Target Anti-Preferred Target P-value (t-test) Preferred Target Anti-Preferred Target

Delta (1–4 Hz) 66 (65) 71 (65) %0.001 4.6 (63) 8.5 (611)

Theta (5–8 Hz) 67 (65) 68 (64) .0.05 8.0 (69) 2.9 (61)

Alpha (9–12 Hz) 58 (66) 65 (65) %0.001 7.9 (63) 3.7 (61)

Beta (13–30 Hz) 57 (66) 57 (67) .0.1 22 (620) 25 (637)

Low Gamma (31–120 Hz) 74 (66) 67 (65) %0.001 44 (6147) 54 (6260)

High Gamma (121–
200 Hz)

50 (65) 50 (63) .0.1 172 (61166) 80.6 (6138)

doi:10.1371/journal.pone.0100381.t002
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