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This study aims to design epitope-based peptides for the utility of vaccine development by targeting glycoprotein G and envelope
protein F ofNipah virus (NiV) that, respectively, facilitate attachment and fusion ofNiVwith host cells. Using various databases and
tools, immuneparameters of conserved sequence(s) fromGandFproteins of different isolates ofNiVwere tested to predict probable
epitope(s). Binding analyses of the peptides with MHC class-I and class-II molecules, epitope conservancy, population coverage,
and linear B cell epitope prediction were analyzed. Predicted peptides interacted with seven or more MHC alleles and illustrated
population coverage of more than 99% and 95%, for G and F proteins, respectively. The predicted class-I nonamers, SLIDTSSTI
and EWISIVPNF, superimposed on the putative decameric B cell epitopes, were also identified as core sequences of the most
probable class-II 15-mer peptides GPKVSLIDTSSTITI and EWISIVPNFILVRNT. These peptides were further validated for their
binding to specific HLA alleles using in silico docking technique. Our in silico analysis suggested that the predicted epitopes, either
GPKVSLIDTSSTITI or EWISIVPNFILVRNT, could be a better choice as universal vaccine component against NiV irrespective of
different isolates which may elicit both humoral and cell-mediated immunity.

1. Introduction

Nipah virus (NiV), first reported in Malaysia in 1998 mainly
causing nonlethal respiratory disease in pigs, is a nonseg-
mented single stranded linear negative senseRNApathogenic
paramyxovirus virus [1, 2]. In humans, 105 deaths were
reported in Malaysia mainly due to inflammation of the
brain (encephalitis) or respiratory diseases [2]. Initially, it
was considered as the zoonotic virus and NiV infection
was prevalent among pig farmers, pork sellers, and army
personnel involved in the culling of pigs in Malaysia. Pigs
were supposed to be the amplifying host, whichwere believed
to be infected through fruits contaminated by body secretions
and/or body fluids of bats [2]. However, patients who have
never come into contact with pigs have been found to be
infected with NiV, thus implying direct transmission from
fruit bat. Person-to-person transmission of this virus has

also been manifested in Bangladesh [3, 4]. Though many
patients recover fully, the mortality rate should be taken into
consideration. In different districts of Bangladesh, around
50% mortality rate of the NiV infected patients has been
reported till 2011 [5]. Although the occurrences of NiV
infection are limited to few countries of the world so far, the
territory of the natural hosts of NiV infection (fruit bats)
is widely distributed in the world [5] from Australia and
Southeast and South Asia to west coast of Africa. To prevent
further infection, it is indeed the necessity of time to develop
effective vaccines and/or therapeutics.

Using available knowledge on immunity to other param-
yxoviruses [6–10], both F (fusion) and G (glycoprotein)
proteins of NiV have been chosen as the best candidate for
vaccine development against this deadly virus. Recombinant
NiV F and G proteins expressed in Vaccinia virus have
been shown to be immunogenic by inducing protective
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immune responses in hamsters [7]. A recombinant subunit
vaccine based on the Henipavirus attachment G glycoprotein
manages to completely protect subsequent NiV infection
[8]. Canarypox virus-based vaccine vectors carrying genes
encoding NiV F or G proteins induce neutralizing antibodies
in pigs and prevent viral shedding during NiV challenge [9].
Also, Yoneda and his group [10] reported live attenuated
recombinant measles virus vaccine expressing NiV envelop
glycoprotein G. However, all these vaccines could not surpass
animal test and, currently, there are no vaccines licensed for
human use.

Secreted and surface proteins of a pathogen are mostly
antigenic and responsible for pathogenicity [11].The envelope
protein assists viral admission through host cell surface
receptors and is also the primary target of B cells through
immunoglobulin molecules [11], which could be considered
as the good candidates for designing vaccine. Hence, B cell
epitope prediction is one of the steps in vaccine designing
[12]. Similarly, effective immune response depends on speci-
ficity and diversity of the antigen binding to the human
leukocyte antigen (HLA) [13] class I (recognizes CD8+ T-
cells) and class II (recognizes CD4+ T-cells) alleles [14, 15].
Moreover, because of the high HLA polymorphism, it is
essential to recognize peptides that bind more than one
HLA allele for the development of vaccines with impartial
and extensive human population coverage. This eventually
would help to curtail total number of predicted epitopes
without negotiating the population coverage required in the
design of multiepitope vaccines. Conventional techniques
for vaccine development are laborious and time consuming.
As a result computational methods, an alternative in silico
models [16], for predicting epitopes have attracted attention
of the researchers to reduce the cost and time of vaccine
development to fight with the rapidly growing devastating
organisms. Currently, several immunoinformatics tools are
available for predicting B and T cell epitopes with high
sensitivity and specificity. These tools are playing a vital
role in understanding the molecular basis of immunity
and, notably in the development of epitope based-peptide
vaccines, immunotherapy against cancer and autoimmune
diseases. In this study, we used some of the mostly referenced
computational in silicomethods for predicting epitope-based
peptides for the utility of vaccine development against the
deadly Nipah virus.

2. Methods

An outline of the methodology undertaken for this study has
been portrayed in Figure 1.

2.1. Retrieving Protein Sequences and Multiple Sequence
Alignment. The sequences of glycoprotein G and fusion
protein F of different isolates of NiV have been retrieved
from uniprot (http://www.uniprot.org) and NCBI protein
database (http://www.ncbi.nlm.nih.gov/protein) in FASTA
format. These sequences were deposited in the databases
obtained from different parts of NiV endemic regions such
as Faridpur, Manikgonj, and Rajbari districts of Bangladesh

as well as Malaysia and India at different time.The habitats of
isolates include pigs and humans.

Retrieved sequences were subjected to multiple sequence
alignment using MEGA 5.05 software package (http://www
.megasoftware.net). The CLUSTALW algorithm along with
1000 bootstrap value and other default parameters were used
to fabricate the alignment. The sequences were analyzed
with a view to recognize the immunologically pertinent
regions that were achieved by predicting epitopic peptides.
An amino acid stretch must be of a minimum length for
being considered as an epitope that we are aiming to design.
Due to representative length of peptide that binds to HLA
molecules, nonamers were selected as theminimum length of
the conserved sequences for the prediction of epitope-based
peptide in this study.

2.2. Prediction of Antigenicity and Transmembrane Properties
of the Conserved Sequences. Recognition of the molecules
by the antibodies and/or cells of the immune system are
known as their antigenicity. The conserved amino acid
sequences fromGandFproteinswere screened for predicting
their antigenicity using an online antigen prediction server,
VaxiJen v2.0 [17]. These sequences were tested for predicting
T cell epitopes.

On the other hand, the antigenic conserved sequences
were also scrutinized to distinguish their soluble and mem-
brane parts. To perform this prediction, each selected amino
acid sequence was subjected to transmembrane topology
prophecy using TMHMM v0.2 server [18] in order to dis-
criminate intracellular and surface proteins with high degree
of accuracy.

2.3. Prediction of T Cell Epitopes from the Conserved Sequen-
ces. The cytotoxic T lymphocyte (CTL) epitopes from the
conserved peptides were predicted using the NetCTL 1.2
server available at http://www.cbs.dtu.dk/services/NetCTL/
that is based on the neural network architecture.This predicts
candidate epitopes based on the processing of the peptides
in vivo [19] which also covers 12 HLA-I super types (A1,
A2, A3, A24, A26 B7, B8, B27, B39, B44, B58, and B62). The
sensitivity and specificity levels were, respectively, set at 0.89
and 0.94, by setting the threshold level at 0.5 during analysis.
This would help to assess our findings more decisively by
generating more epitopes. A combined algorithm integrating
MHC class I binding, transporter of antigenic peptides (TAP)
transport efficiency, and proteosomal cleavage prediction
was involved to predict a total score. Based on this score,
the best candidates were selected for further analysis. To
calculate the IC

50
values required for the binding of peptide

molecules to the specific MHC alleles, Stabilized Matrix
Method (SMM)-based prediction tool in Immune Epitope
Database (IEDB) was applied. All the available MHC alleles
were selected and the peptide lengths were set at 9.0 before
making prediction. The parameters for immunogenicity
detection (TAP score, proteasomal score, and IC

50
values)

were normalized on a scale of 0 to 1 andwere given aweighted
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Figure 1: Flowchart summarizing the protocols undertaken to complete the epitope prediction.

score to prioritize the parameters in order to determine the
immunogenicity.

Conserved peptides were also tested for predicting epi-
topes that interact with MHC class II molecules by selecting
all the alleles in IEDB MHC class II binding prediction tool
(http://tools.immuneepitope.org/mhcii/). In this case, SMM-
align method [20] was employed to find out goodMHC class
II candidate binders. The top scoring peptides were selected
by setting cut-off values of IC

50
for the predicted binders

within 250 nM.

2.4. Population Coverage and Prediction of Epitope Conserv-
ancy. Prediction of T cell epitope is not enough for becoming
a good candidate peptide as vaccine. It should be taken into
consideration that, along with identification of MHC
allele-specific T cell epitope, the predicted epitope(s) should
effectively cover human population. Predicted epitopes
showed interaction with different MHC alleles. To find out
the human population coverage of the individual epitopes,
predicted epitopic sequences with the corresponding
Class I HLA alleles were submitted to the population
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coverage analysis tool of IEDB (http://tools.immunee-
pitope.org/tools/population/iedb input) by maintaining the
default analyses parameters just as it is (Population/Area =
78 populations grouped into 11 different geographical areas).
For calculating the population coverage in IEDB, latest data
from allelefrequencies.net database (2011 and onwards) were
used, which is the most comprehensive one available because
of its huge population datasets. For individual population
coverage, the tool computes the followings: (i) apprehended
population coverage; (ii) average number of hits by the
epitopes/HLA combinations recognized by different ethnic
groups or populations; and (iii) minimum number of hits
by the epitopes/HLA combinations recognized by 90% of
the population (PC90). These calculations were made on the
basis of HLA genotypic frequencies assuming nonlinkage
disequilibrium between HLA loci.

Epitope conservancy of the selected epitopes was tested
using epitope conservancy tool (http://tools.immuneepitope
.org/tools/conservancy/iedb input) available in IEDB analy-
sis resource. The conservancy level of each potential epitope
was calculated by looking for identities in all 18 protein
sequences of different strains retrieved from database.

2.5. Putative B Cell Epitope Prediction. Linear B cell epitopes
are of variable lengths of peptides from 2 to 85 compared
to that of T cell epitopes. Linear B cell epitopes were
predicted using ABCpred prediction server (http://www.im-
tech.res.in/raghava/abcpred/). To do so, conserved sequences
with ≥ 0.4 VaxiJen scores and exomembrane topology were
applied in prediction server by setting cut-off value at 0.51 and
the length of the epitopes was fixed as decamer. Overlapping
sequences were also filtered. The nonamers which were
significantly superimposed (≥ 7 amino acid overlaps) on
putative B cell epitope (decamer peptides) were considered
for interpretation.

2.6. Prediction of the 3D Structures of the Predicted Epitope
Peptides and HLA-C 07∗02 Allele for Molecular Docking. The
molecular docking of the predicted epitopic peptides was
performedwith the predicted structures of the respective best
fitted HLA alleles. The 3D structures of the peptides and
HLA alleles were also predicted. The 3D structures of the
selected peptides were designed using the PEP-FOLDPeptide
Structure Prediction server at the RPBSmobile portal [21, 22].
The best models provided by the server were chosen for the
docking study.

The 3D structure of HLA-C 07∗02 allele was predicted
using phyre2 protein prediction server (Protein Homology/
analogy Recognition Engine v2.0) [23]. The cds sequence
of HLA-C 07∗02 was obtained from NCBI protein database
(GenBank ID: BAA08625.1 or uniprot ID: P10321) and
the prediction of 3D structure was performed using tem-
plate chain A of H-2kb MHC class I molecule with PDB
ID: 1KJ3 that covered 76% of query sequence modeled
with 100% confidence. Structural evaluation and stereo-
chemical analyses were performed using different evaluation
and validation tools. Ramachandran plot obtained from

PROCHECK analysis helped to evaluate backbone confor-
mation. The Ramachandran plot of the phi/psi distribution
in the model is developed using PROCHECK [24] for check-
ing non-GLY residues at the excluded regions. The overall
model quality was validated using Z-score (determined by
PROSA web tool [25]) which is used to check whether the
input structure is within the range of scores typically found
in native proteins of similar size. The model was further
evaluated through ERRAT [26]. PyMOL graphics was used
to superimpose the predicted structure of HLA-C 07∗02 with
the crystal structure of HLA-C 07∗02.

2.7. Molecular Docking Study of HLA-Peptide Interaction

2.7.1. HLA-Epitope Binding Prediction. The AutoDOCK tool
from theMGL software package (version 1.5.6) was employed
for docking purpose [27, 28]. Both the allele (HLA-C 07∗02)
and ligand (epitope) files were firstly converted into PDBQT
format to use them for the docking study.The grid/space box
center was set at −15.059, −3.063, and −26.955 Å in the 𝑥-, 𝑦-,
and 𝑧-axes, respectively, to allow the epitope to bind to the
binding groove of the HLA-C 07∗02. The size was set at 20,
40, and 40 Å in the 𝑥, 𝑦, and 𝑧 dimensions, respectively. For
predicting binding of 15-mer epitopes in the binding groove
of class II allele (HLA-DR1 or DRB1∗01:01), the grid/space
box center was set at 9.292, 26.935, and 40.729 Å in the 𝑥-,
𝑦-, and 𝑧-axes, respectively (after converting DRB1∗01:01 and
epitope files into PDBQT format). The size was set at 58, 22,
and 38 Å in the 𝑥, 𝑦, and 𝑧 dimensions, respectively.

All the analyses were done at 1.00- Å spacing. The
exhaustiveness parameter (that influences the thoroughness
of global search algorithm)was kept at 8.00,while the number
of outputs was set at 10. These parameters were performed
in AutoDOCK tool. The docking was conducted using
AutoDOCK Vina program based on the above-mentioned
parameters. All the output PDBQT files were converted in
PDB format using OpenBabel (version 2.3.1) and visualized
in PyMOL molecular Graphics system. The best output was
selected on the basis of higher binding energy.

2.7.2. Control. The 3D structure of MHC class I H-2Kb
molecule complexed with octapeptide PKB1 (“KVITFIDL”)
was retrieved from Protein Data Bank Database (ID: IKJ3)
and visualized using PyMOL Graphics. The octapeptide
was excluded before applying the structure of H-2Kb for
comparing the validated data obtained for predicted structure
of HLA-C 07∗02.

Also, to assess HLA-C 07∗02-epitope docking results,
octapeptide PKB1 (“KVITFIDL”) was used as the control.
This peptide was docked with HLAs, HLA-C 07∗02, and H-
2Kb.The test epitope(s) and the control peptide were docked
by setting similar parameters for each trial and successful
binding of this peptide to these HLAs was demonstrated.
Finally, H-2Kb - KVITFIDL docking result was used as con-
trol to compare with the test docking results of HLA-C 07∗02
complexed with selected epitopes. A comparative analysis of
the best binding energy (Kcal/mol) and the arrangement of
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the test and control epitope at the binding groove of MHC
allele HLA-C 07∗02 was also performed.

Crystal structure of HLA-DRB1 complexed with an
endogenous peptide (“GSDWRFLRGYHQYA”)was retrieved
from protein databank (PDB ID: 1AQD). The peptide was
excluded from the structure and its binding to the bind-
ing groove of HLA-DRB1 was used as the control model
to compare the binding models of the predicted epitopes
“SEWISIVPNFILVRN” and “VFYQASFSWDTMIKF” using
AutoDOCK Vina.

3. Results

3.1. Retrieval of Protein Sequences and Identification and
Selection of Conserved Sequences. A total of 18 sequences of G
and F proteins of different isolates ofNiV have been retrieved.
CLUSTALW programme in MEGA software generated sev-
eral conserved sequences with varying lengths. A total of 15
and 8 conserved sequences were found in G and F proteins
of NiV, respectively. Conserved sequences generated in this
method have been presented in Table 1.

3.2. Antigenicity and Transmembrane Properties of the Con-
served Sequences. Analysis revealed that 9 and 5 conserved
sequences, respectively, from G and F proteins met the
criteria of default threshold level, ≥ 0.4, in VaxiJen (Table 1).
On the other hand, transmembrane topology showed that
of all VaxiJen passed conserved sequences, 5 sequences each
fromG (out of 9) and F (out of 5) proteins fulfilled the criteria
of exomembrane characteristics (Table 1).

3.3. Identification of T Cell Epitopes. T cell epitopes are
processed peptides which could be recognized by the T cell
receptors presented through Class I/Class II molecules on
antigen presenting cells. VaxiJen analyses were used for the
identification and reevaluation of T cell epitopes because
some T cell epitopes tend to lose the antigenicity when
reanalyzed. So, to increase the confidence level of prediction
about the epitopes presented as a good T cell based epitope,
these were cross-checked with the VaxiJen scores.

3.3.1. MHC Class I Epitope Identification and Selection from
Conserved Sequences. NetCTL prediction tool covering all
supertypes created a total of 146 and 151 nonamers from the
conserved sequences of G and F proteins, respectively. Anal-
ysis in SMM based IEDB MHC I prediction tool retrieved
59 T cell epitopes (peptides from G protein) that interacted
with 29 possible MHC I alleles with the IC

50
value <250 nM.

Using the same IC
50
value in case of conserved sequences of F

protein, 37 different MHC class I molecules showed binding
interaction with 150 T cell epitopes ranging from two to as
many as ten MHC class I alleles. Next step analyses were
proceeded with the peptides that showed interaction with
≥ 5 MHC class I alleles and had VaxiJen score ≥ 0.5. A
total of 26 nonamers from F protein and 12 nonamers from
G protein fulfilled these criteria which have been presented
in Table 2. Further observation and evaluation revealed that
of all predicted sequences “IGFCLITKR” epitope derived

from fusion protein had the highest VaxiJen score (2.4587).
Further, “ISCPNPLPF” and “SLIDTSSTI” (VaxiJen scores:
0.9212 and 0.509, resp.) from G protein and “TVNPSLISM”
(VaxiJen score: 0.7251) from F protein interacted with as
many as 8 MHC class I alleles.

3.3.2. MHC Class II Epitope Identification and Selection from
Conserved Sequences. While a study reported that a binding
affinity (IC

50
) threshold of 500 nM identifies peptide binders

recognized by T cells and this threshold can be used to select
peptides [29], we kept binding affinity within 250 nM to get
better confidence level in predicting epitopes for MHC Class
II alleles.This generated 15 amino acid residues containing 96
and 273 peptides, respectively, from the conserved sequences
of G and F proteins that showed interaction with many
different and/or common MHC II alleles with an IC

50
value

ranging from 3 to 250 nM. A good epitope should also
interact with as many as MHC alleles. Thus, among the total
peptides, it was found that only 10 peptides from G protein
while 69 peptides from F protein showed interaction with
≥ 5 MHC Class II alleles. To find out the most probable
peptide-based epitopes with better confidence level, selected
peptides were further tested using VaxiJen score and peptides
having score of ≥ 0.5 were annotated. Sixteen peptides from
F protein and 9 peptides from G protein could be considered
as the most potential epitopes for MHC Class II alleles.
Among all themost probable epitopes “IPANIGLLGSKISQS”
from glycoprotein and “SNIEIGFCLITKRSV” from fusion
proteins had the highest VaxiJen scores of 1.4106 and 1.8516,
respectively. The most probable epitopic candidates interact-
ing with several MHC class II alleles along with their VaxiJen
scores have been shown in Table 3.

3.4. Population Coverage and Epitope Conservancy. Over a
thousanddifferent humanMHC(HLA) alleles are known and
different HLA types are expressed at different frequencies in
different ethnicities. Identified epitopes that bind to several
MHCalleles would be considered as the best probable epitope
only if their combined frequency in a population show good
coverage by approaching 100% or close to 100%.

Elicitation of the immune response of the >90% (average
value) world population could be covered by the most poten-
tial nine epitopes predicted from glycoprotein G. Maximum
coverage 98.84% (Figure 2(a)) was found in the population of
Finland and Finland Caucasoid followed by 97.39%, 96.70%,
and 96.65% in the population of Mexico Amerindian,
Philippines and Philippines Austronesian, and United States
Polynesian, respectively. Population of Southeast Asia and
South Asia showed maximum coverage of 90.44% and
85.19%, respectively. On the other hand, nonamers derived
from F protein showed an average coverage value of 97.72%
among the world population. The highest coverage, 100%
(Figure 2(c)), was obtained in Chile Amerindian population
followed by 99.98%, 99.96%, 99.71, and 99.61% coverage
by the population of Peru and Peru Amerindian, Mexico
Amerindian, United States Amerindian, and United States
Polynesian, respectively. Figures 2(b) and 2(d) represent
class I coverage by the overall population of Southeast Asia.
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Table 2: Most probable predicted epitopes interacting with different MHC class I alleles.

(a)

Epitopes from fusion protein Interacting MHC Class I alleles Position VaxiJen score

EGIAIGPPV HLA C∗1203, HLA C∗0303, HLA A∗6802, HLA C∗1402,
HLA A∗0206

441–449 0.6844

EWISIVPNF HLA C∗0303, HLA C∗1203, HLA C∗1402, HLA A∗2301,
HLA C∗0702

307–315 0.72

FILVRNTLI HLA C∗0303, HLA C∗1203, HLA C∗0701, HLA A∗0206,
HLA A∗0201, HLA C∗0602

315–323 0.72

IIVRVYFPI HLA C∗1203, HLA C∗0303, HLA A∗0206, HLA A∗6802,
HLA A∗0201

276–284 0.72

ISIVPNFIL HLA C∗0303, HLA B∗1502, HLA C∗1203, HLA B∗5801,
HLA C∗1502

309–317 0.72

LLDTVNPSL HLA C∗0501, HLA C∗1203, HLA A∗0201, HLA C∗1402,
HLA B∗1502, HLA A∗0206

480–488 0.7251

TVNPSLISM HLA C∗1203, HLA C∗0501, HLA C∗0303, HLA B∗3501,
HLA C∗0702, HLA C∗1402, HLA B∗1502, HLA C∗0701

483–491 0.7251

VGILHYEKL HLA C∗0303, HLA C∗1203, HLA B∗1502, HLA C∗0702,
HLA C∗1402

25–33 0.67

VYFPILTEI HLA C∗1402, HLA C∗1203, HLA A∗2301, HLA C∗0303,
HLA C∗0602, HLA C∗0702, HLA C∗0701

280–288 0.72

AQITAGVAL HLA C∗0303, HLA B∗3901, HLA A∗0206, HLA B∗1501,
HLA B∗1502, HLA C∗1203, HLA B∗4001

126–134 0.813

EGIAIGPPV HLA C∗1203, HLA C∗0303, HLA A∗6802, HLA C∗1402,
HLA A∗0206

441–449 0.6844

IGFCLITKR HLA C∗0303, HLA C∗1203, HLA A∗3101, HLA A∗6801,
HLA C∗1402

328–336 2.4587

ISFIIVEKK HLA C∗1203, HLA A∗6801, HLA A∗1101, HLA C∗1502,
HLA C∗0303, HLA C∗1402

513–521 2.2805

ISMLSMIIL HLA B∗1502, HLA C∗1203, HLA C∗1402, HLA C∗0303,
HLA C∗1502

489–497 0.5006

ITFISFIIV HLA C∗1203, HLA A∗6802, HLA A∗0206, HLA C∗1402,
HLA A∗3001

510–518 0.914

LSLDLALSK HLA C∗1502, HLA A∗3001, HLA A∗1101, HLA C∗1203,
HLA C∗0303, HLA C∗1402

197–205 0.9847

ILTEIQQAY HLA C∗1502, HLA C∗1203, HLA A∗1101, HLA C∗0303,
HLA C∗1402, HLA A∗3001

284–292 0.721

MLSMIILYV HLA-A∗02:01, HLA-A∗02:06, HLA-A∗68:02, HLA-
C∗12:03, HLA-C∗14:02

491–499 0.6397

NTYSRLEDR HLA A∗6801, HLA C∗0303, HLA C∗1203, HLA C∗1402,
HLA C∗0701, HLA C∗1502, HLA A∗3101

523–531 1.5575

PTSSGDLYY HLA A∗2902, HLA C∗1203, HLA C∗0303, HLA A∗0101,
HLA B∗1502, HLA C∗1402, HLA C∗0501

535–543 0.5252

TAAQITAGV HLA A∗6802, HLA C∗1203, HLA C∗0303, HLA C∗0501,
HLA C∗1502

124–132 0.7373

TELSLDLAL HLA C∗0303, HLA B∗1502, HLA B∗4001, HLA B∗4002,
HLA C∗1203, HLA B∗3901, HLA C∗0702

195–203 0.9593

VRPTSSGDL HLA B∗1502, HLA C∗0602, HLA C∗1402, HLA C∗1203,
HLA C∗0701, HLA C∗0702

533–541 1.0043

YEKLSKIGL HLA B∗1502, HLA C∗1203, HLA C∗0303, HLA B∗4001,
HLA B∗4002

30–38 0.67

YIKEAQRLL HLA C∗1203, HLA B∗1502, HLA C∗0701, HLA C∗0602,
HLA C∗0303, HLA C∗0702

473–481 0.7251
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(a) Continued.

Epitopes from fusion protein Interacting MHC Class I alleles Position VaxiJen score

YYIIVRVYF HLA A∗2301, HLA C∗1402, HLA A∗2402, HLA C∗0702,
HLA C∗1203, HLA C∗0303, HLA B∗1502 274–282 0.72

(b)

Epitopes from glycoprotein Interacting MHC Class I alleles Position VaxiJen score

FIEISDQRL HLA B∗1502, HLA C∗0303, HLA C∗1203, HLA C∗0501,
HLA C∗0702, HLA C∗1502 428 1.5463

FPAVGFLVR HLA C∗0303, HLA C∗1203, HLA A∗6801, HLA B∗1502,
HLA B∗3501 364–372 1.053

ISCPNPLPF HLA C∗0303, HLA B∗5801, HLA C∗1203, HLA B∗1501,
HLA B∗1502, HLA C∗1402, HLA C∗1502, HLA B∗3501 164–172 0.921

ITIPANIGL HLA C∗0303, HLA C∗1203, HLA A∗6802, HLA B∗1502,
HLA A∗0206, HLA C∗1502, HLA C∗1402 118–126 1.2697

TEIGPKVSL HLA C∗0303, HLA B∗4001, HLA C∗1203, HLA B∗1502,
HLA B∗4002, HLA B∗3901 103–111 1.337

TLYFPAVGF HLA C∗0303, HLA C∗1402, HLA B∗1502, HLA C∗1203,
HLA A∗3201 361–369 0.9600

VFYQASFSW HLA C∗1203, HLA C∗1402, HLA C∗0303, HLA B∗5801,
HLA A∗2301 452–460 1.2161

VGFLVRTEF HLA C∗1203, HLA C∗0702, HLA C∗1402, HLA B∗1502,
HLA C∗0303 367–375 1.443

YFPAVGFLV HLA C∗1203, HLA A∗0206, HLA C∗1402, HLA A∗6802,
HLA A∗0201 363–371 0.834

MPYGPSGIK HLA C∗0303, HLA C∗1203, HLA B∗1502, HLA A∗0301,
HLA C∗1402, HLA A∗1101 349–357 1.243

RLSIGSPSK HLA C∗0303, HLA C∗1203, HLA A∗0301, HLA A∗3001,
HLA C∗1402, HLA A∗1101 435–443 1.134

SLIDTSSTI HLA C∗0303, HLA C∗1203, HLA A∗0201, HLA B∗1502,
HLA C∗1402, HLA A∗0206, HLA A∗3201, HLA B∗1501 110–118 0.509

Supplementary File 1, in Supplementary Material available
online at http://dx.doi.org/10.1155/2014/402492, represents
descending order of percentages of class I coverage by the all
populations present in the database.

Conservation analyses of epitopes (http://tools.immun-
eepitope.org/tools/conservancy/iedb input) with all G and F
protein sequences fromdifferent strains ofNiV demonstrated
that the predicted epitopes were conserved among their
respective G and F protein sequences.

3.5. Prediction and Selection of B Cell Epitopes. According to
the criteria set for the prediction of B cell epitopes, Table 4
demonstrated the epitopes predicted from F and G proteins
using ABCpred server and on the basis of VaxiJen scores. F
protein generated 24 predicted peptides (scores: 0.54–0.75)
while G protein generated 18 predicted peptides (scores:
0.52–0.85) which could be considered as the probable B cell
epitopes. Among all these epitopes “VSNMSQCTEI” and
“GEQTLLMIDN” from F protein showed the highest score of
0.75 while epitope “SQSTASINEN” from G protein had the
highest score of 0.85 (not shown in the table). With regard
to antigenic scores obtained from VaxiJen, “ISVTCQCQTT”
and “LKNKIWCISL” sequences derived, respectively, from F
and G proteins had the highest antigenic scores of 1.0871 and
2.3553, respectively (Table 4). Further, out of these sequences,

only “EWISIVPNFI” decamer from F protein as well as
“EISDQRLSIG” and “SLIDTSSTIT” from G protein showed
sequence similarity with the superimposed T cell nonameric
epitopes.

3.6. Description of the Three-Dimensional Structure of HLA-C
07∗02. Figures 3(a) and 3(b) represent the secondary and the
predicted 3D structure ofHomo sapiensMHC class I HLA-C
07∗02 allele, respectively. Predicted structure was evaluated
using Z-score, ERRAT, and Ramachandran plots to verify
its quality and reliability. To assess stereochemical quality of
the structure, PROCHECK tool was used. This tool using
Ramachandran plot showed that >90% of residues are in
the favorable region (Figure 3(c)) that ultimately assured the
quality of the protein structure. PROSA web tool provided
Z-score (signify overall model quality) that determined
whether the structure is within the range of scores found
in native proteins of comparable size. The Z-score of the
protein was−8.73 (Figure 3(d)). Results fromERRAT showed
that overall model quality of the predicted structure was
91.078% (Figure 3(e)) that was almost similar to that of H-
2Kb molecule (93.704%) that reassured the reliability of the
model.TheZ-scores, Ramachandran plot, and ERRAT results
confirmed the quality of the homology model of the HLA-C
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Table 3: Most probable predicted epitopes interacting with different MHC class II alleles.

(a)

Epitopes from fusion
protein Interacting class II MHC alleles Antigenic

scores

FILVRNTLISNIEIG HLA DRB1∗0701, HLA DRB1∗0101, HLA DRB1∗0405, HLA DRB5∗0101, HLA
DRB1∗0404, HLA DRB1∗1101, HLA DRB1∗1302, HLA DRB1∗0401 1.109 315

EIGFCLITKRSVICN HLA-DRB1∗11:01 HLA-DRB1∗07:01 HLA-DRB1∗01:01 HLA-DRB1∗04 HLA-
DRB1∗09:01 1.4646 327

IEIGFCLITKRSVIC HLA-DRB1∗11:01 HLA-DRB1∗07:01 HLA-DRB1∗01:01 HLA-DRB1∗04 HLA-
DRB1∗09:01 1.7736 326

NIEIGFCLITKRSVI HLA-DRB1∗11:01 HLA-DRB1∗07:01 HLA-DRB1∗01:01 HLA-DRB1∗04 HLA-
DRB1∗09:01 1.5682 325

SNIEIGFCLITKRSV HLA-DRB1∗11:01 HLA-DRB1∗07:01 HLA-DRB1∗01:01 HLA-DRB1∗04 HLA-
DRB1∗09:01 1.8516 324

SVGILHYEKLSKIGL HLA-DRB1∗11:01 HLA-DRB1∗01:01 HLA-DRB4∗01:01 HLA-DRB1∗04 HLA-
DPA1∗03:01/DPB1∗04:02 1.3695 24

VGILHYEKLSKIGLV HLA-DRB1∗11:01 HLA-DRB1∗01:01 HLA-DRB4∗01:01 HLA-DPA1∗03:01/DPB1∗04:02
HLA-DRB5∗01:01 1.2192 25

DNSEWISIVPNFILV
HLA DRB1∗0701, HLA DRB1∗0101, HLA DRB5∗0101, HLA DRB1∗0405, HLA
DRB1∗1501, HLA DRB1∗1302, HLA DRB1∗0404, HLA DRB1∗09, HLA
DPA1∗0201/DPB1∗0101

0.938 304

EWISIVPNFILVRNT HLA DRB1∗0701, HLA DRB1∗1501, HLA DRB1∗0101, HLA DRB5∗0101, HLA
DRB1∗0404, HLA DRB1∗0405, HLA DRB1∗1302, HLA DPA1∗0201/DPB1∗0101 0.781 307

IISLGKYLGSVNYNS HLA DRB1∗0401, HLA DRB1∗0101, HLA DRB1∗0405, HLA DRB1∗0404, HLA
DQA1∗0501/DQB1∗0301, HLA DRB1∗1101 0.633 426

NDNSEWISIVPNFIL HLA DRB1∗0701, HLA DRB1∗0101, HLA DRB5∗0101, HLA DRB1∗0405, HLA
DRB1∗1501, HLA DRB1∗1302, HLA DRB1∗0404, HLA DRB1∗09 0.58 303

NFILVRNTLISNIEI HLA DRB1∗0701, HLA DRB1∗0101, HLA DRB1∗0405, HLA DRB5∗0101, HLA
DRB1∗0404, HLA DRB1∗1101, HLA DRB1∗1302, HLA DRB1∗0401, HLA DRB1∗1501 0.74 314

PNFILVRNTLISNIE
HLA DRB1∗0701, HLA DRB1∗0101, HLA DRB1∗0405, HLA DRB5∗0101, HLA
DRB1∗0404, HLA DRB1∗1101, HLA DRB1∗1302, HLA DRB1∗0401, HLA DRB1∗1501,
HLA DRB4∗0101

0.612 313

SEWISIVPNFILVRN
HLA DRB1∗0701, HLA DRB1∗0101, HLA DRB5∗0101, HLA DRB1∗1501, HLA
DRB1∗0405, HLA DRB1∗1302, HLA DRB1∗0404, HLA DRB1∗09, HLA
DPA1∗0201/DPB1∗0101

0.728 306

WISIVPNFILVRNTL HLA DRB1∗0701, HLA DRB1∗0101, HLA DRB5∗0101, HLA DRB1∗1501, HLA
DRB1∗0405, HLA DRB1∗0404, HLA DRB1∗1302, HLA DPA1∗0201/DPB1∗0101 0.681 308

GILHYEKLSKIGLVK HLA-DRB1∗11:01 HLA-DRB1∗01:01 HLA-DRB4∗01:01 HLA-DPA1∗03:01/DPB1∗04:02
HLA-DRB1∗09:01 0.6020 26

(b)

Epitopes from
glycoprotein Interacting MHC class II alleles VaxiJen

scores
Position

ANIGLLGSKISQSTA HLA DRB1∗0101, HLA DQA1∗0501/DQB1∗0301, HLA DRB1∗0404, HLA DRB1∗1501,
HLA DRB1∗1101 1.1268 122–136

DTLYFPAVGFLVRTE
HLA DRB1∗0101, HLA DPA1∗0201/DPB1∗0101, HLA DPA1∗0103/DPB1∗0201, HLA
DPA1∗01/DPB1∗0401, HLA-DPA1∗0301/DPB1∗0402, HLA DRB1∗0701, HLA
DQA1∗0501/DQB1∗0301

0.9628 360–374

GDTLYFPAVGFLVRT
HLA DRB1∗0101, HLA DPA1∗0201/DPB1∗0101, HLA DPA1∗0103/DPB1∗0201, HLA
DPA1∗01/DPB1∗0401, HLA DPA1∗0301/DPB1∗0402, HLA DRB1∗0701, HLA
DQA1∗0501/DQB1∗0301

0.6663 359–373

GPKVSLIDTSSTITI HLA DRB1∗0701, HLA DRB1∗1302, HLA DRB1∗0101, HLA DRB1∗0404, HLA
DRB1∗0401 0.8609 106–120

IPANIGLLGSKISQS HLA DRB1∗0101, HLA DQA1∗0501/DQB1∗0301, HLA DRB1∗0404, HLA DRB1∗1501,
HLA DRB1∗1101 1.4106 120–134
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(b) Continued.

Epitopes from
glycoprotein Interacting MHC class II alleles VaxiJen

scores Position

ITIPANIGLLGSKIS HLA DRB1∗0101, HLA DRB1∗0404, HLA DRB1∗1501, HLA DRB1∗1101, HLA
DQA1∗0501/DQB1∗0301 1.2611 118–132

PANIGLLGSKISQST HLA DRB1∗0101, HLA DQA1∗0501/DQB1∗0301, HLA DRB1∗0404, HLA DRB1∗1501,
HLA DRB1∗1101 1.1782 121–135

TLYFPAVGFLVRTEF
HLA DRB1∗0101, HLA DPA1∗0201/DPB1∗0101, HLA DPA1∗01/DPB1∗0401, HLA
DPA1∗0103/DPB1∗0201, HLA DPA1∗0301/DPB1∗0402, HLA DRB1∗0701, HLA
DQA1∗0501/DQB1∗0301

1.1201 361–375

VFYQASFSWDTMIKF HLA DRB3∗0101, HLA DRB1∗0701, HLA DPA1∗0103/DPB1∗0201, HLA
DPA1∗0201/DPB1∗0101, HLA DRB1∗0101 0.507 452–466

Table 4: Predicted linear B cell epitopes.

Epitopes from fusion protein VaxiJen Scores ABCpred Scores Epitopes from glycoprotein VaxiJen Scores ABCpred Scores
AYIQELLPVS 0.5449 0.72 SQSTASINEN 0.5024 0.85
HDLVGDVRLA 0.7435 0.72 EISDQRLSIG 1.6593 0.78
VPNFILVRNT 0.8719 0.68 TITIPANIGL 1.109 0.75
ISVTCQCQTT 1.0871 0.65 IGPKVSLIDT 0.6982 0.72
EWISIVPNFI 0.7234 0.61 DKVMPYGPSG 0.7825 0.7
LPVSFNNDNS 0.7892 0.58 QLASEDTNAQ 0.6684 0.7
YKNNTHDLVG 0.6676 0.56 IGLLGSKISQ 1.2309 0.66

IGTEIGPKVS 1.3442 0.65
LKNKIWCISL 2.3553 0.62
PYGPSGIKQG 1.2519 0.6
SLIDTSSTIT 0.5981 0.58

NCFLLKNKIW 1.0781 0.53
ISLVEIYDTG 0.7707 0.52

Decameric epitopes having antigenic score ≥0.5 were only considered.

07∗02. Further, the predicted three-dimensional structure of
HLA-C 07∗02 was superimposed on the alpha chain of H-
2Kb and it was found that the two structures were completely
overlaid on each other (Figure 3(f)).

3.7. Molecular Docking of HLA-Epitope Interaction. Using
AutoDock Vina, binding models of predicted epitopes to
their respective HLA molecules (both class I and class II)
were generated (Figures 4 and 5). In case of class I HLA-
C07∗02, epitope “EWISIVPNF” bound to the binding groove
with the binding energy −6.9 Kcal/mol (Figure 4(a)). Also,
this epitope bound to the binding groove of H-2Kb with
the binding energies of −7.7 Kcal/mol (Figure 4(b)). Control
peptide “KVITFIDL” bound to the grooves of HLA-C07∗02
and H-2Kb with the binding energies −6.7 Kcal/mol and −7.3
Kcal/mol, respectively (Figures 4(c) and 4(d)).

The binding affinities (reflected by the lower bind-
ing energies) for the “EWISIVPNFILVRNT” and “GPKVS-
LIDTSSTITI” to DRB1∗01:01 were estimated to be −6.6
Kcal/mol and −4.6 Kcal/mol, respectively, while for the con-
trol peptide “GSDWRFLRGYHQYA”, it was −6.2 Kcal/mol.
The bindingmodels generated fromMolecular docking using
AutoDOCK Vina have been presented in Figure 5.

4. Discussion

The world is now the habitat of more than seven billion peo-
ple. With the advent of medical technology, new kinds of dis-
eases are also emerging along with new viruses. Developing
world, in particular, ismore affected by these sorts of diseases.
Diseases which have earlier been recognized as zoonotic are
now spreading from human to human. However, medical
science has always tried to cope with the problems with the
pace of replicating disease. Nipah virus infection is one of
the reasons of fatalities in humans and livestock in countries
like Australia, Bangladesh, India, Malaysia, and Singapore.
Nipah outbreaks have resulted in acute respiratory distress
syndrome and encephalitis, person-to-person transmission
with fatality rates of 40–75% in humans [1–4]. Although
a number of NiV vaccine studies have been reported, till
date, there is no vaccines or drugs licensed for human
use. In this study, we made an attempt to design epitopes
which could be tested for their efficacy in eliciting immunity
through humoral and cell mediated immune responses. The
glycoprotein G and fusion protein F facilitate the attachment
and fusion of NiV with host cell membranes [30]. For these
two vital involvements at the gateway, these proteins were
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Figure 2: Population coverage byMHCClass I restricted epitopes predicted fromG and F proteins of NiV. In case of epitopes fromG protein:
(a) shows maximum coverage by the population of Finland and (b) represents coverage by the overall population of South-East Asia. In case
of epitopes from F protein: (c) displays the highest coverage by the population of Cheli Amerindian and (d) depicts coverage by the overall
population of South-East Asia.

targeted for designing most potential epitopes using in silico
computational methods after retrieving sequences from the
databases. Conserved sequences which were used for the
analyses have been presented in Table 1.

Most antigens and vaccines trigger not only B cell
response but also T cell response. Vaccine induces production
of antibodies that are synthesized by B cells and mediates
effector functions by binding specifically to a toxin or a
pathogen [31]. However, over time, humoral response from
memory B cells can easily be overcome by surge of antigens
while cell mediated immunity often elicits lasting immunity
[32, 33]. Cytotoxic CD8+T lymphocytes (CTL) restrict the
spread of infectious agents by recognizing and killing infected
cells or secreting specific antiviral cytokines [34]. Thus,
T cell epitope-based vaccination is a unique process of
eliciting strong immune response against infectious agents,
for example, viruses [35]. Peptide antigens are generally 8–
10 amino acids long, with residues involved in either MHC
or TCR binding or both. Specificity for class I binding is
largely conferred by two or three dominant anchor residues
[36], while antigen specificity of MHC-peptide complex
recognition is generally determined by the few side chains
of the peptide antigen that are solvent-exposed (between one
and three residues) and available for T-cell receptor (TCR)
contacts. This paradigm strengthens the basis of software
algorithms that predict 8-9-mer class I epitopes from protein
sequences. In the current study, peptide lengths were set

at 9 before making software based class I T cell epitope
prediction using immune epitope database (IEDB). Predicted
nonameric epitopes showed good population coverage. On
the other hand, in case of MHC Class II epitopes, it was
found that alleles for only HLA DRB1 are present in the
database for calculating population coverage, while other
alleles likeHLADRB4 orHLADRBA5 are absent. As a result,
population coverage for class II alleles was not considered
in this study. However, the data from Table 3 demonstrated
that all the 15-mer epitopes showed interaction with one of
the most common HLA alleles, HLA-DRB1∗01:01. Epitope
conservancy analysis in IEDB revealed that all the predicted
epitopes showed very good conservancy with 100% protein
sequence match. This is to mention here that the IEDB
[37, 38] is conceivably the most wide-ranging database of
experimentally characterized B cell and T cell epitopes. It
provides users with access to several epitope-related analysis
and prediction tools that allows retrieving both intrinsic
biochemical and extrinsic context dependent information
about epitopes [37]. This makes it possible to easily assemble
customized datasets [39]. Furthermore, meta-analyses of
pathogens of interest [40–42] were accomplished by several
researchers using IEDB that further boosts up its utility in the
analysis and prediction of epitopes.

Initial observation of the data demonstrated that among
all the predicted epitopes “IGFCLITKR,” a F protein
derived peptide, has the highest VaxiJen score 2.4587 while
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Figure 3: Quality of the predicted 3D structure of HLA-C∗07:02. The structure was predicted using phyre2 protein modeling software. (a),
(b), (c), (d), and (e), respectively, indicate the secondary structure of the HLA-C∗07:02 MHC class I molecule including labeled helices H1,
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statistics; Z-score for quality of the 3D structure and (f) represents superimposed alpha helical structure ofH-2Kb on predictedHLA-C∗07:02.
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(a) (b)

(c) (d)

Figure 4: Docking to predict the binding of predicted and control epitopes to MHC class I molecule, HLA-C∗07:02 and H-2Kb. Binding
of “EWISIVPNF” to the binding grooves (a) of the predicted structure of HLA-C∗07:02 (binding energy: −6.9 Kcal/mol) and (b) of the
3D structure of H-2Kb (binding energy: −7.7 Kcal/mol); (c) binding of control peptide (PKB1, KVITFIDL) to the predicted 3D structure of
HLA-C∗07:02 (−6.7 Kcal/mol) and (d) H-2Kb (−7.3 Kcal/mol).

“TVNPSLISM” derived from F protein as well as “ISC-
PNPLPF” and “SLIDTSSTI” from G protein showed inter-
action with the highest numbers of MHC class I alleles
(as many as eight alleles, Table 2). Thus, either of these
peptides could be regarded as the most probable epitope.
Moreover, according toVaxiJen scores, the “SNIEIGFCLITK-
RSV” and “IPANIGLLGSKISQS” could be the most probable
candidates (Table 3). On the other hand, with regard to
the coverage of MHC alleles, the most probable peptides
are “DTLYFPAVGFLVRTE”, “GDTLYFPAVGFLVRT” and
“TLYFPAVGFLVRTEF” fromGprotein as they interact with
seven different class II alleles while themost probable peptide
“PNFILVRNTLISNIE” from F protein as it interacts with ten
different class II alleles.

However, further investigation of the data revealed that
“EWISIVPNF” and “ISIVPNFIL” class I epitopes from F
protein have been recognized as the core sequences of four
Class II overlapping epitopes that include “SEWISIVPN-
FILVRN,” “DNSEWISIVPNFILV,” “EWISIVPNFILVRNT,”
and “NDNSEWISIVPNFIL” sequences, while epitopes “FIL-
VRNTLI,” “VGILHYEKL,” “IGFCLITKR,” and “YEKLSKIG”
were found as the core sequences of “NFILVRNTLISN-
IEI,” “SVGILHYEKLSKIGL,” “EIGFCLITKRSVICN,” and

“SVGILHYEKLSKIGL” epitopes, respectively. On the other
hand, in case of G protein, “ITIPANIGL,” “VFYQASFSW,”
and “SLIDTSSTI” share sequencewithMHCClass II epitopes
“ITIPANIGLLGSKIS,” “VFYQASFSWDTMIKF,” and “GPK-
VSLIDTSSTITI,” while “FPAVGFLVR” and “YFPAVGFLV”
as well as “TLYFPAVGF” and “VGFLVRTEF” Class I
epitopes share common sequences of Class II epitopes “DTL-
YFPAVGFLVRTE” and “TLYFPAVGFLVRTEF,” respec-
tively. All these MHC class II epitopes were found to interact
with one of themost commonHLAalleles,HLA-DRB1∗01:01.
These data have been presented in Tables 2 and 3. Moreover,
the overlapping prospective class II epitopeswith a single core
nonamer presented in Table 3 were not redundant because
each variety of class II HLA molecule has a unique peptide
binding pocket and prefers distinct amino acids at certain
positions of the peptide. This peptide preference is mainly
determined by the primary and auxiliary anchor residues,
where one specific or a closely related amino acid is required
for efficient peptide binding [43, 44]. In addition, peptide
residues immediately flanking the core region have been
indicated to make contact with the MHC molecule outside
of the binding groove and to contribute to MHC-peptide
interaction [45]. This has been reflected by the fact that
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(a) (b)

(c)

Figure 5: Docking to predict the binding of predicted and control epitopes to MHC class II molecule, HLA-DRB1∗01:01. Binding of
containing predicted epitopes to the binding groove of class II MHC allele HLA-DRB1∗01:01. (a) “EWISIVPNFILVRNT” (–6.6 Kcal/mol);
(b) “GPKVSLIDTSSTITI” (−4.6 Kcal/mol); (c) endogenous peptide A2 (GSDWRFLRGYHQYA) (−6.2 Kcal/mol).

the overlapping sequences (Table 3) even having the same
core nonamer bind to varying numbers of class II MHC
alleles with different binding affinities. Recently, Yadav and
Mishra (2013) reported that QTEGVSNLV and LMMTRLV
epitopes from glycoprotein G of NiV had highest binding
affinity for MHC Class I HLA-A∗01:01 and HLA-A∗02:01,
respectively [46]. In their study, the sequence of glycopro-
tein G of NiV was retrieved from http://www.uniprot.org
(Accession Number Q9IH62) after ignoring the sequences of
glycoprotein G from other isolates from the NiV endemic
regions. In the present study, all the available sequences of
glycoprotein G and fusion protein F were retrieved from
databases and multiple sequence alignment generated con-
served sequenceswhichwere tested inVaxiJen to predict their
probable antigenicity. This, we believe, would generate more
acceptable epitope(s) that should be effective universally.

Along with the T-cell epitope, attention was also given to
the B-cell epitope, which can induce primary and secondary
humoral immunity. Out of the total B cell epitopes (25 from
F protein and 18 from G protein), only 7 and 13 epitopes,
respectively, from F and G proteins with VaxiJen score of
≥ 0.5were selected for further analysis (Table 4).When T cell
epitopes (nonamers from F and G proteins) were superim-
posed, only “EWISIVPNF” from F protein showed similarity
with the linear B cell decameric epitope “EWISIVPNFI.”
On the other hand, “SLIDTSSTI” and “FIEISDQRL” from
G protein showed similarity with the decameric epitopes
“SLIDTSSTIT” and “EISDQRLSIG” (7 amino acid overlap).
The rationale behind such evaluation is due to the relay

hypothesis [47] which hypothesized that superimposition of
CTL epitopes with B cell epitope and T helper epitope would
ensure good T cell response with specific T cell memory
and will be beneficial for the formulation of the vaccine. In
addition, among the T and B cell epitopes studied, 15-mer
“EWISIVPNFILVRNT” epitope from F protein completely
showed sequence similarity to two decameric B cell epitopes
“EWISIVPNFI” and “VPNFILVRNT” along with the non-
americ Class I T cell epitope “EWISIVPNF,” while other three
15mers (“SEWISIVPNFILVRN,” “DNSEWISIVPNFILV,” and
“NDNSEWISIVPNFIL”) showed partial similarity. Similarly,
in case of epitopes from G protein, “ANIGLLGSKISQSTA”
class II epitope had sequence similarity with B cell epitope
“IGLLGSKISQ,” while only “GPKVSLIDTSSTITI” had simi-
larity with both the B cell epitope “SLIDTSSTIT” and super-
imposed class I epitope “SLIDTSSTI.” Considering all these
observations, nonamers “EWISIVPNF” and “SLIDTSSTI”
as well as 15mers “EWISIVPNFILVRNT” and “GPKVS-
LIDTSSTITI,” respectively, from the fusion and glycoproteins
of NiV were considered as the most probable candidates for
vaccine development.

The Class I T cell epitopes “EWISIVPNF” and
“SLIDTSSTI” have been found to interact with HLA-C∗
03:03, HLA-C∗12:03, and HLA-C∗14:02 alleles with varying
affinities except HLA-C∗07:02, HLA-A∗23:01, HLA-A∗
02:01, HLA-B∗ 15:02, HLA-A∗02:06, HLA-A∗32:01, and
HLA-B15∗01 alleles. When the frequencies of these alleles
were analyzed among the world population in http://www
.allelefrequencies.net, the highest frequency was observed in
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case of HLA-C∗07:02 in Australian, Asian (Indian, Chinese,
Japanese, and Pakistanis), Europeans, and South Americans
compared to the frequencies of other alleles. Thus, for
docking, 3D structure of HLA-C∗07:02 was used with
the predicted structure of “EWISIVPNF.” As “SLIDTSSTI”
epitope did not show any interaction with HLA-C∗07:02
allele, this nonamer was not used for docking. The binding
energies of predicted epitope “EWISIVPNF” for its binding
to the binding grooves of HLA-C∗07:02 were −6.9 Kcal/mol
(Figure 4(a)). On the other hand, this peptide could also
bind to the binding groove of H-2Kb having almost similar
affinity with the binding energies found to be −7.7 Kcal/mol
(Figure 4(b)). Further, the binding energies of the control
peptide (PKB1, KVITFIDL) to the binding grooves of HLA-
C∗07:02 andH-2Kbwere found to be almost close to those of
the predicted epitopes, −6.7 and −7.3 Kcal/mol, respectively
(Figures 4(c) and 4(d)). Due to lack of crystal structure of
HLA-C∗07:02 along with foreign peptide, we could not show
binding of control peptide with this allele for comparing
our docking result. HLA-C alleles are considered to have
apparently minor role in mediating antigen-specific T cell
response along with its low expression on the cell surface.
However, it has been observed that HIV-1 Nef has the ability
to selectively downregulate HLA class I A and Bmolecules to
minimize cytotoxic T lymphocyte scrutinywhilemaintaining
HLA-C expression and this has led to an approval of the
role of HLA-C as a T-cell restriction element, particularly
in HIV-1 infection [48]. Besides, HLA-C alleles are often in
strong linkage disequilibrium with HLA-B alleles, making
it difficult to distinguish HLA-C from HLA-B-restricted
responses. Sometimes HLA-C shares sequence homology
with other classical human class I HLA-A and HLA-B
molecules. Moreover, HLA-C epitopes have been mistakenly
identified as restricted by HLA-A or HLA-B (e.g., some B14
epitopes in HIV-1 p24 are now thought to be Cw8-restricted,
Los Alamos Immunology Database [49]). Thus, it is indeed
important to verify the rationale behind the identification of
HLA-C restricted probable epitopes using animal models or
in vivo studies. On the other hand, “EWISIVPNFILVRNT”
and “GPKVSLIDTSSTITI” 15mers were docked to test
their interaction with the binding cleft of one of the most
important and prevalent class II MHC molecules HLA-
DRB1∗01:01. The binding energies of these two predicted
epitopes were –6.6 and −4.6 kcal/mol (Figures 5(a) and 5(b)).
This binding energy was compared with the binding energy
of endogenous 14mer epitope (“GSDWRFLRGYHQYA”) to
HLA-DRB1∗01:01 and found to be the same as the predicted
epitope (−6.2 kcal/mol, Figure 5(c)). Almost similar binding
energy of the simulations of “EWISIVPNFILVRNT” and
the control peptide “GSDWRFLRGYHQYA” indicates
the satisfactory accuracy of the predicted epitope though
“GPKVSLIDTSSTITI” peptide showed relatively higher
binding affinity.

5. Conclusion

Experimental approaches for predicting epitopes eliciting
both humoral and T cell immunity are time-consuming,

costly, and not applicable to the large scale screening.
Computermodelingmethods can help tominimize the num-
ber of experiments by scanning systematically best candidate
peptides with higher population coverage and interaction of
these peptides with as many as HLA alleles can ultimately
bring a momentum in vaccine development. Our proposed
predicted epitopes “EWISIVPNF” and “SLIDTSSTI” (that
overlap/superimpose on class II and B cell decameric epi-
topes) showed good MHC class I coverage by the world
population even by the population fromSoutheastAsiawhere
Nipah virus infection has been reported (Figures 2(b) and
2(d)) alongwith 100% epitope conservancy. However, aptness
of these peptides as probable vaccine would be accepted upon
successful experiments using model animals.
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