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Abstract: Recently, large families of two-dimensional quantum field theories with fac-
torizing S-matrices have been constructed by the operator-algebraic methods, by first
showing the existence of observables localized inwedge-shaped regions. However, these
constructions have been limited to the class of S-matriceswhose components are analytic
in rapidity in the physical strip. In this work, we construct candidates for observables in
wedges for scalar factorizing S-matrices with poles in the physical strip and show that
they weakly commute on a certain domain.We discuss some technical issues concerning
further developments, especially the self-adjointness of the candidate operators here and
strong commutativity between them.

1. Introduction

In recent years, we have seen many interesting developments in constructing models
of quantum field theory (QFT) in the operator-algebraic approach [25]. Among them,
one of the most important contributions was the construction of 1 + 1 dimensional
scalar quantum field theories with factorizing S-matrices [27,29]. In that work, Lechner
took a large family of analytic functions that satisfy certain conditions and constructed
quantum field theories that have these functions as the two-particle S-matrix. This was
remarkable because, although physicists conjectured several properties and computed
many interesting quantities, a mathematically consistent construction of the models in
axiomatic approaches had not been obtained before, and also because these models
include many S-matrices that had not been considered by physicists, as the arguments
exploit only a few properties of the S-matrices and do not depend on specific expressions
or computations.Now, itwas clear at thefirst step of the construction [27] that thismethod
does not apply directly if the function S(ζ ) of the input has simple poles in the physical
strip, 0 < Im ζ < π . On the other hand, some integrable QFTs are believed to have
S-matrices with simple poles and they should correspond to bound states of elementary
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particles. The purpose of this paper is to extend the step of [27] to the cases with poles
in the physical strip.

In the models constructed in [27,29], if n particles are incoming, then after the scat-
tering process n particles are outgoing. Furthermore, the scattering process of n particles
can be systematically constructed from that of 2 particles. In this case, the S-matrix is
said to be factorizing. This property is expected for so-called integrable models, which
have infinitely many conserved currents. In some cases, for example the sine-Gordon
model, Fröhlich and Seiler constructed Euclidean Green’s functions [23] and proved
that the S-matrix is nontrivial. But, to the authors’ knowledge, it is unknown whether
it is factorizing. More general integrable models have more complicated Lagrangians,
and the understanding of these models is limited to the perturbation theory.

An alternative approach to integrable models is the form factor program [3,41]. In
this program, instead of quantizing the fields, one conjectures the S-matrix from the
symmetry of the Lagrangian. Then the matrix components of local fields (form factors)
are computed and then the n-point function should be reconstructed from these matrix
components. Although many interesting quantities have been computed, a convergence
proof of the form factor expansion of the n-point functions is still lacking in almost all
cases [3].

The recent operator-algebraic approach, initiated by Schroer [40], considers so-called
wedge-local fields, rather than point-like quantum fields. Wedge-local fields are observ-
ables localized in an infinitely extended, wedge-shaped region. Indeed, this infinite
extension allows one to take operators that are very simple in the momentum space
[27,33]. Thereafter, the algebra of local, finitely extended observables should be defined
as the intersection of two algebras corresponding to left- and right-wedges [29]. It is
noteworthy that the existence proof of local observables avoids explicit computations
of quantum fields, but it is reduced to a certain phase space property called modular
nuclearity [13,14]. The resulting net of local observables reproduces the S-matrix of the
input; therefore the inverse problem for a class of S-matrices has been solved.

Now, let us recall that theS-matrices treated in [27,29]must have analytic components
in the physical strip. In the operator-algebraic approach, there have been many other
constructions of algebras corresponding to wedges [1,7,8,15,21,24,30,32,43,44] and
some related constructions [6,31,35] which take an analytic function as an input, but it
was always assumed that the function has no pole in a certain region. On the other hand,
a pole in the physical strip of the S-matrix components is considered to correspond to a
bound state. Indeed, some integrable models, e.g.the sine-Gordon model, are believed to
have S-matrix with poles in the physical strip. These S-matrices have not yet been treated
in the operator-algebraic approach. For an S-matrix S without poles, Lechner constructed
a pair of operator-valued distributions φ, φ′ and proved that they commute when they
are smeared by test functions supported in the left- and right-wedges, respectively. This
computation involves a shift of the integral contour of a function containing S. If one
takes the same construction for S with poles in the physical strip, the shift of the integral
contour yields the residues of S at these poles. Hence, the fields φ, φ′ themselves cannot
be wedge-local.

The same problem has appeared also in the form factor program [3]. Solutions of
the form factor equations should represent the matrix components of local operators,
and their commutators should vanish when they are spacelike separated. Indeed, such
a formal proof has been given first by Smirnov for S-matrices without poles [41]. A
crucial part of the proof is again done by shifting integral contours, which is invalid
when the S-matrices have poles. For S-matrices with poles, they added further properties
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to form factors which make a correspondence between the poles and “bound states”.
Quella showed that these new properties allow one to cancel the residues which come
from first-order poles [36]. Higher poles are discussed by Babujian et al. [5] and local
commutativity appears to be formally maintained, at least for some specific models (the
so-called Z(N )-Ising models).

In this paper, for a certain S-matrixwith poles in the physical strip, we introduce a new
field ˜φ = φ +χ , by adding an operator χ , which we call the bound-state operator, to the
field φ of Lechner. It is the commutator of χ with its reflected operator χ ′ that cancels the
contribution of the residues coming from the commutator between φ and φ′, mentioned
above. The operator χ has a formal integral expression in terms of Zamolodchikov–
Faddeev operators z, z† with complex arguments.

To prove wedge-commutativity in operator-algebraic approach, one considers the
reflected field ˜φ′ using the action of the CPT operator and shows that its commutator
with ˜φ vanishes for test functions supported in right- and left-wedges, respectively, in
the weak sense, namely, the matrix elements of the commutator between suitable vectors
vanish. Strong commutativity remains to be proven. Yet, by assuming the existence of
nice self-adjoint extensions, we give an argument for the Reeh–Schlieder property. We
also argue that our wedge-local fields are non-temperate polarization-free generators
[10]. Besides, we classify the scalar S-matrices with poles in the physical strip that
satisfy the requirements of our analysis. The general form of the S-matrix that we obtain
is essentially given by a certain subclass of S-matrices known from [28]multipliedwith a
universal model independent factor which has poles in the physical strip. This especially
includes the S-matrices of the Bullough–Dodd model [22].

Further, we clarify how the (weak) wedge localization of the field ˜φ is related to the
properties of form factors [4]. We conjecture a generalization of the characterization
theorem of local observables in [12] to models with bound states. In [12] local observ-
ables are expanded into a series in terms of Zamolodchikov–Faddeev operators, where
the expansion coefficients are related to the form factors of the observable. We sketch
the outline of a proof that, if its expansion coefficients of an operator fulfill a set of
conditions, slightly modified from [12], then it formally commutes with our fields˜φ( f );
hence they are local to each other.

The paper is organized as follows: In Sect. 2 we recall the results of Lechner [27,29]
for S-matrices analytic in the physical strip, and we introduce our general notation. In
Sect. 3 we summarize the properties of scalar S-matrices with poles in the physical strip
in the models under investigation, and we construct the wedge-local fields˜φ,˜φ′. A proof
of weak wedge-commutativity is also given in this section. In Sect. 4 we show that our
wedge-local fields are compatible with the form factor program in the sense explained
above. Further, we explain how the form of the bound-state operator can be deduced by
formal arguments. In Sect. 5 we present our conclusions and open problems. Appendix A
is dedicated to the classification of scalar S-matrices fulfilling the properties introduced in
Sect. 3. Appendix C comments on the problem of finding suitable self-adjoint extensions
of the field ˜φ.

2. Preliminaries

2.1. Background: Haag–Kastler nets and wedge-local field in two dimensions. Here we
review the motivation to study wedge-local fields, the main objects which we construct
in this paper.
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In the operator-algebraic approach to quantum field theory (QFT), a model of QFT
is realized as a net of algebras of observables. A Haag–Kastler net, or a Poincaré
covariant net (of observables) assigns to each open region O ⊂ R

d a von Neumann
algebra A(O) on a common Hilbert space H. If O1 and O2 are spacelike separated,
thenA(O1) andA(O2) should commute by Einstein causality. In addition, one assumes
that there is a continuous unitary representation U of the Poincaré group on H and an
invariant ground state, the vacuum�. The triple (A, U,�) is subject to standard axioms
and considered as a model of quantum field theory [25].

If one has a Wightman field φ with certain regularity conditions, then one can con-
struct the corresponding net by defining A(O) := {eiφ( f ) : supp f ⊂ O}′′, where M′
means the set of bounded operators commuting with any element of M. The double
commutantM′′ is the smallest von Neumann algebra which includesM. Actually it is
required that φ( f ) and φ(g) have commuting spectral projections for f, g with space-
like separated support, and this follows from the regularity condition. In this way, a
Haag–Kastler net is considered as the operator-algebraic formulation of quantum field
theory.

One of the difficulties in constructing Haag–Kastler nets lies in the infiniteness of the
family {A(O)}which needs to comply with the axioms. Instead, Borchers observed that
for d = 2, actually the whole net can be recovered from the single von Neumann algebra
A(WR) associated with the (right-)wedge-shaped regions WR := {a ∈ R

2 : a1 > |a0|}
and the spacetime symmetry U (under a condition called Haag-duality). Furthermore,
by the Tomita–Takesaki theory of von Neumann algebras [42], it is enough to know the
restriction of U to the translation subgroup R

2 [9].
A Borchers triple (M, T,�) consists of a von Neumann algebraM onH, a unitary

representation T of R2 with joint spectrum in the closed positive lightcone V+ and a
vacuum vector � such that � is invariant under T (a), Ad T (a)M ⊂ M for a ∈ WR
andM� andM′� are dense inH (these properties are called cyclicity and separating
property of � for M, respectively). It is easy to see that if (A, U,�) is a Poincaré
covariant net, then (A(WR), U |R2 ,�) is a Borchers triple.

Conversely, starting with a Borchers triple (M, T,�), one can define a net as fol-
lows: in two-spacetime dimensions, any double cone can be represented as the in-
tersection of two-wedges (WR + a) ∩ (WL + b) =: Da,b, where WL is the reflected
(left-)wedge. Then one defines first von Neumann algebras A(Da,b) for double cones
Da,b by A(Da,b) := Ad T (a)(M) ∩ Ad T (b)(M′). For a general region O one takes
A(O) := (

⋃

Da,b⊂O A(Da,b))
′′. Then one can show that this “net” A, a collection of

algebras, satisfies isotony and locality. Furthermore, the representation T extends to a
representationU of the Poincaré group which makesA covariant and� is still invariant.
In this way one obtains a “net” (A, U,�), where the only missing property is that � is
cyclic for A(O).

Hence, in the operator-algebraic approach, the construction of Haag–Kastler nets can
be split into two steps: (1) to construct Borchers triples, (2) to prove the cyclicity of �.
In the following, we exhibit an attempt to (1). For this purpose, we construct wedge-
local fields.Wedge-local fields (φ, φ′) is a pair of operator-valued distributions such that
[φ( f ), φ′(g)] = 0 if supp f ⊂ WL and supp g ⊂ WR. Then it is natural to expect that
M = {eiφ′( f ) : supp g ⊂ WR}′′, together with appropriate U and �, gives a Borchers
triple (actually, this last step is our open problem).
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2.2. Zamolodchikov–Faddeev algebra and wedge-local fields. We consider quantum
field theories in 1 + 1 dimensional Minkowski space (and with the convention x · y =
x0y0 − x1y1) with factorizing S-matrices, which are characterized by the particle spec-
trum and the two-particle scattering function as the main input in the theory. In the
following, we introduce the mathematical framework and the notation we will use to
describe these models, following [27,29]. In particular, this subsection is meant to be an
overview on previous work on the topic [27] and to be an introduction to Sect. 3, where
we will consider models with scalar two-particle S-matrices which have poles in the
physical strip R + i(0, π).

2.2.1. Single-particle space, S-symmetric Fock space, space–time symmetries. Wepara-
metrize the momentum of a single particle with mass m > 0 by the rapidity θ :

p(θ) := m

(

cosh θ

sinh θ

)

, θ ∈ R.

The two-particle scattering function is generally a complex-valued meromorphic func-
tion S : R + i(0, π) → C with a certain number of symmetry properties.

These symmetry properties are the well-known properties of unitarity, hermitian
analyticity and crossing symmetry (see for example [26]) typically fulfilled by any two-
particle scattering function in a local integrable quantum field theory. We summarize
these properties in Sect. 3.1.

Using this function S(θ), one can define a representation Dn of the permutation group
Gn on L2(Rn) = L2(R)⊗n , which acts as

(Dn(σ )	n)(θθθ) = Sσ (θθθ)	n(θθθ
σ ), σ ∈ Gn,

where θθθ := (θ1, . . . , θn), θθθσ := (θσ(1), . . . , θσ(n)) and the factors Sσ (θθθ) are given by

Sσ (θθθ) :=
∏

j<k
σ( j)>σ(k)

S(θσ( j) − θσ(k)).

We are in particular interested in the space of S-symmetric functions in L2(Rn), namely
functions which are invariant under this action of Gn : for any permutation σ ∈ Gn it
holds that

	n(θθθ) = Sσ (θθθ)	n(θθθ
σ ).

With these functionswe can define theHilbert spaceH of the theory. In the case ofmodels
with only one species of massive scalar particle, the single particle Hilbert space isH1 =
L2(R, dθ). We define the n-particle Hilbert space Hn as the subspace of S-symmetric
functions in L2(Rn) = H⊗n

1 and the Hilbert space of the theory asH := ⊕∞
n=0Hn with

H0 = C�. We introduce the orthogonal projection Pn := 1
n!
∑

σ∈Gn
Dn(σ ) thus we

can writeHn = PnH⊗n
1 , and we denote withD the dense subspace ofH of vectors with

finite particle number.
Furthermore, the Hilbert space H is endowed with a unitary representation of the

proper orthochronous Poincaré group, denoted byP↑
+ , which in two-dimensions consists

of translations and Lorentz boosts, acting on 	 = ⊕∞
n=0	n ∈ H as follows

(U (x, λ)	)n(θθθ) := ei
∑n

k=1 p(θk )·x	n(θ1 − λ, . . . , θn − λ).
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The space–time reflection acts on the Hilbert space by an antiunitary representation
U ( j) =: J as

(U ( j)	)n(θθθ) := 	n(θn, . . . , θ1).

Note that this action of the (proper) Poincaré group preserves the S-symmetrized spaces
Hn .

We will adopt the following convention for the one-particle wave function associated
with g ∈ S (R2) [27]:

g±(θ) := 1

2π

∫

d2x g(x)e±i p(θ)·x .

If g is supported in WR, then g+(θ) has an entire analytic continuation, which is bounded
in R + i(−π, 0). Furthermore, let g j (x) := g(−x). Then, if g is real, (g j )

+(θ) = g−(θ)

and g+(ζ ) = g−(ζ ). Finally, the proper Poincaré group acts onR2 and also on the space
of test functions naturally, which we denote by g(a,λ) (the space–time reflection acts by
g �→ g j ). One can easily check that it is compatible with the action on the one-particle
space:

(g(x,λ))
+(θ) = U1(a, λ)g+(θ).

2.2.2. Zamolodchikov–Faddeev algebra, generalized creation and annihilation opera-
tors. Recalling [27,29], we consider a representation of the Zamolodchikov–Faddeev
algebra in terms of certain generalized creation and annihilation operators acting on
H, z†(θ), z(θ). These operator-valued distributions can be defined by their action on
	 = (	n) ∈ D as follows:

(z†(θ)	)n+1(λλλ) =
√

n + 1

(n + 1)!
∑

σ∈Gn+1

Sσ (λλλ)δ(θ − λσ(1))	n(λσ(2), . . . , λσ(n+1)),

(z(θ)	)n−1(λλλ) = √
n	n(θ,λλλ),

and they formally fulfill the following algebraic relations:

z†(θ)z†(θ ′) = S(θ − θ ′)z†(θ ′)z†(θ),

z(θ)z(θ ′) = S(θ − θ ′)z(θ ′)z(θ),

z(θ)z†(θ ′) = S(θ ′ − θ)z†(θ ′)z(θ) + δ(θ − θ ′)1.

We shall note that z†( f ) = ∫ dθ f (θ)z†(θ) are unbounded operators on the space D of
finite particle number states.

They can alternatively be defined in terms of the corresponding unsymmetrized cre-
ators and annihilators a( f ), a†( f ) (acting from the left), f ∈ H1, by setting z#( f ) :=
Pa#( f )P , where P :=⊕∞

n=0 Pn is the orthogonal projection from the unsymmetrized
Fock space to the S-symmetric Fock space H [27].

Borchers triples for analytic S-matrices
For the class of two-particle scattering functions S(θ) which are analytic in the physical
strip θ ∈ R + i(0, π), local observables associated with wedge-regions, say with the
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standard left wedge WL, can be constructed by following an argument due to Schroer
[39] and Lechner [27]. Specifically, they define a quantum field φ as

φ( f ) := z†( f +) + z(J1 f −), f ∈ S (R2).

We note that this reduces to the free field if S(θ) = 1. In general, the field φ shares
many properties with the free field as shown in [28, Proposition 4.2.2]. In particular, it is
defined on the subspaceD ofH of vectors with finite particle number and it is essentially
self-adjoint on D for real-valued f (we denote its closure by the same symbol φ( f )).
It has the Reeh–Schlieder property, it solves the free Klein–Gordon equation and it
transforms covariantly under the representation U (x, λ) of the proper orthochronous
Poincaré group. The only exception is the property of locality. The field φ(x) is not
localized at the space–time point x in the usual sense, but rather in an infinitely extended
wedge with tip at x , WL + x . To make this more precise, we introduce the “reflected”
Zamolodchikov–Faddeev operators,

z(θ)′ := J z(θ)J, z†(θ)′ := J z†(θ)J,

and we define a new field φ′ as, f ∈ S (R2),

φ′( f ) := Jφ( f j )J.

It has been shown in [27, Proposition 2] that the two fields φ, φ′ are relatively wedge-
local, in the sense that the commutator [eiφ( f ), eiφ′(g)] is zero for any real-valued test
functions f, g with supp f ⊂ WL and supp g ⊂ WR, Hence, we can interpret φ, φ′ as
observables measurable in the wedges WL, WR, respectively. This result can be obtained
by computing the commutators of z# with z′# as shown in [28, Lemma 4.2.5] and by
shifting a certain integral contour which critically uses the analyticity of the two-particle
scattering function S(θ) in the physical strip θ ∈ R + i(0, π).

It should be remarked [27, Proposition 2] that also the properties of the test functions
f, g play an important role in the proof of wedge-locality. More specifically, the proof
uses the fact that if f ∈ S (WL) (similar arguments apply to g as well) then its Fourier
transform f + fulfills certain analyticity, boundedness and symmetry properties in the
strip R + i(0, π).

Starting from the fields φ, φ′ one can then define the corresponding von Neumann
algebras. The right-wedge algebra is given by

M = {eiφ′(g) : g ∈ S (R2) real-valued, supp g ⊂ WR}′′,
and other wedge algebras are defined by using the action of translations and reflection,

A(WR + x) := U (x, 0)MU (x, 0)∗, A(WL + y) := JA(WR − y)J.

Themost important consequence of commutativity between φ and φ′ is that� is separat-
ing forM. The strictly local observables can then be recovered from the intersection of
a right and left wedge algebras, as explained in Sect. 2.1. Furthermore, Lechner proved
[29] that the algebras A(O) are nontrivial, namely, are different from C1. In order to
show this, he proved modular nuclearity condition, a spectral property of the modular
operators associated with the theory. He showed that under a certain regularity condition
on the scattering function S for all regions O , at least with aminimal size [2], the vacuum
state � is cyclic and separating for the algebra A(O).

For the class of two-particle scattering functions S(θ) which are not analytic in the
physical strip θ ∈ R + i(0, π), the fields φ( f ), φ′( f ) fail to be wedge-local and the
situation becomes more complicated, as we will see in Sect. 3.2.
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2.3. Poles in the S-matrix and bound states. We now suppose that the two-particle
scattering function S(ζ ) has poles in the physical strip ζ ∈ R + i(0, π). Physically,
these poles are related to the notion of “bound state”, which here is interpreted as the
“fusion” of two bosons, and, although the S-matrix is factorizing, their components
are analytically related to each other. Let us recall the physicists’ arguments (see, for
example, [19]). This section only tries to physically motivate the conditions on the S-
matrices in Sect. 3.1.

Two elementary particles can be fused into a bound state if the total momentum of
the two particles, say “1” and “2”, lies on the mass shell of a third particle, say “b” [36],
namely

(pm1(ζ1) + pm2(ζ2))
2 = m2

b,

where mb is the mass of the third particle and pmi (θi ) := mi (cosh θi , sinh θi ).
Therefore, one can find ζb such that the momenta of the particles are related by

pm1(ζ1) + pm2(ζ2) = pmb (ζb), (1)

where ζ1, ζ2 and ζb are the (possibly complex) rapidities of the two fusing bosons and
of the bound particle, respectively.

To determine the rapidities of the particles involved and the position of the pole in the
rapidity complex plane, we essentially need to solve Eq. (1). In preparation for Sect. 3,
we will do that in a simpler case by considering a system with only one species of
particle. In that case, the fusion process becomes quite simple: Two bosons of the same
species fuse to form another boson of the same species, meaning also that the masses of
the particles are equal.

To solve Eq. (1), we make the ansatz that the difference of the rapidities of the fusing
bosons is purely imaginary, that is,

ζ1 − ζ2 = iλ.

Hence, we can parametrize the rapidities of the two fusing particles and of the bound
particle as ζ1 = θ + iλ1, ζ2 = θ + iλ2 and ζb = θ , with θ real. Using this parametrization
for the momenta of the particles, one can show that there is a unique solution (up to
addition of 2π i) to Eq. (1) given by λ1 = π

3 and λ2 = −π
3 . Demanding that the

difference λ1 − λ2 is in the physical strip, we obtain λ = 2π
3 .

In the physical literature, one associates bound states with the poles of the S-matrix
[19]. Specifically, we assume that the two-particle scattering function S(ζ ) has a simple
pole at the point iλ (the so called s-channel pole), and we denote its residue by R :=
res

ζ= 2π i
3

S(ζ ).
Due to the property of crossing symmetry (see (S3) in Sect. 3.1) of the scattering

function, S(ζ ) has another pole at π i
3 (the so called t-channel pole) with residue R′ :=

res
ζ= π i

3
S(ζ ).

Moreover, one can show that as a consequence of hermitian analyticity (S2) and
unitarity (S1) of the scattering function, the residue R is purely imaginary and one has
R′ = −R again by crossing symmetry of S.We assume that Im R > 0. Correspondingly,
unitarity (S1) also implies that S(ζ ) has zeros at the points ζ = − 2π i

3 ,−π i
3 .

Finally, we will assume that except for the two simple poles at 2iπ
3 , π i

3 there are no
other poles of S in the physical strip. An example of a 1 + 1-dimensional integrable
model with scalar S-matrix fulfilling these properties is the Bullough–Dodd model [22].
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A particle in these models is considered as the bound state of two of the same species,
and the two-particle S-matrix S satisfies a nontrivial equation, the so-called bootstrap
equation (S4).

3. Scalar Two-Particle S-Matrices

Here we present our wedge-local fields associated with scalar S-matrices with poles in
the physical strip.We specify the properties of these S-matrices and give examples. Then
an important operator χ( f ), which “binds f and the state”, is introduced. We use this
operator in order to construct our wedge-local fields.

3.1. Properties of scalar S-matrix with poles. Let us consider the simplest case where
the one-particle space has multiplicity one. Since we are interested in S-matrices with
poles in the physical strip, the bound state of two “elementary” particle must be the same
particle, therefore must have the same mass. As discussed in Sect. 2.3, one observes that
the only possibility for the pole in s-channel is 2π i

3 . By crossing symmetry, the S-matrix
must have another pole at π i

3 . Furthermore, the residue of S at 2π i
3 must be a positive

multiple of the imaginary unit i . This is interpreted as a consequence of hermiticity of
the Hamiltonian [18].1

Summarizing, we assume that our two-particle S-matrix S is defined on R + i(0, π)

except for poles indicated below, has therefore L∞-boundary values at R and R + π i ,
and has the following properties (c.f. [33]).

(S1) Unitarity. S(θ)−1 = S(θ), θ ∈ R.
(S2) Hermitian analyticity. S(−θ) = S(θ)−1, θ ∈ R.
(S3) Crossing symmetry. S is meromorphic and the boundary values satisfy S(θ) =

S(π i − θ), θ ∈ R.
(S4) Bootstrap equation. S

(

θ + π i
3

) = S(θ)S
(

θ + 2π i
3

)

, θ ∈ R.
(S5) Positive residue. S has a simple pole at 2π i

3 and Res
ζ= 2π i

3

S(ζ ) ∈ iR+. Except this

and the pole at π i
3 , there is no pole in the physical strip ζ ∈ R + i(0, π) and S(ζ )

is bounded in the complement of the union of neighborhoods of these poles.
(S6) Value at zero. S(0) = −1.

Actually, we will see in Appendix A that (S6) follows from (S1)–(S5). Note also that
we consider bosonic particles, yet the observables are represented on the S-symmetric
Fock space (see below).

We introduce η = i
√
2π |R|, in accordance with the literature [36], recalling that R

is the residue of S at ζ = 2π i
3 .

Examples Although specific expressions of S are not needed in our main construction,
we present here a family of examples, in order to show that the above set of axioms is
not empty.

1 In the last paragraph of this paper [18], they claim that a scalar S-matrix is impossible. The argument is
incomplete, because they assume that such an S-matrix should have the same zeros as the simplest S-matrix
which does not satisfy the condition on the residue, but actually zeros do not necessarily have physical meaning
and there is no reason to exclude them. Indeed, one of the author of the same paper [18] published later a
paper on the Bullough–Dodd model [22], which is believed to have a scalar S-matrix and be unitary.
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The simplest examples of S which are believed to be associated to theBullough–Dodd
model [22] are the following:

SB(θ) = tanh 1
2

(

θ + 2π i
3

)

tanh 1
2

(

θ − 2π i
3

) ·
tanh 1

2

(

θ + (B−2)π i
3

)

tanh 1
2

(

θ − (B−2)π i
3

)

tanh 1
2

(

θ − Bπ i
3

)

tanh 1
2

(

θ + Bπ i
3

) ,

where 0 < B < 2, B �= 1. If we introduce the notation f A(θ) := tanh 1
2 (θ+Aπ i)

tanh 1
2 (θ−Aπ i)

,

we can write it as SB(θ) = f 2
3
(θ) f B

3 − 2
3
(θ) f− B

3
(θ). It holds that SB(θ) = S2−B(θ).

Furthermore, S1(θ) = f− 2
3
(θ) which has no pole in the physical strip R + i(0, π),

therefore we exclude this case.
It is interesting to note that the first factor

f 2
3
(θ) := tanh 1

2

(

θ + 2π i
3

)

tanh 1
2

(

θ − 2π i
3

) = sinh 1
2

(

θ + 2π i
3

)

cosh 1
2

(

θ + 2π i
3

)

cosh 1
2

(

θ − 2π i
3

)

sinh 1
2

(

θ − 2π i
3

)

= − sinh 1
2

(

θ + π i
3

)

sinh 1
2

(

θ − π i
3

)

sinh 1
2

(

θ + 2π i
3

)

sinh 1
2

(

θ − 2π i
3

)

satisfies all properties of the S-matrix but positivity of residue. Indeed, we have

Res
ζ= iπ

3

f 2
3
(ζ ) = − sinh 1

2

(

i2π
3

)

1
2

· sinh 1
2 (iπ)

sinh 1
2

(

− iπ
3

) = 2
√
3i,

Res
ζ= i2π

3

f 2
3
(ζ ) = − sinh 1

2 (iπ)

sinh 1
2

(

iπ
3

) · sinh 1
2

(

i4π
3

)

1
2

= −2
√
3i.

The remaining factor

f B
3 − 2

3
(θ) f− B

3
(θ) =

tanh 1
2

(

θ + (B−2)π i
3

)

tanh 1
2

(

θ − (B−2)π i
3

) · tanh
1
2

(

θ − Bπ i
3

)

tanh 1
2

(

θ + Bπ i
3

) ,

also satisfies (S1)–(S4) except for positivity of residue, namely, it has no pole in the
physical strip and satisfies

f B
3 − 2

3

(

2π i

3

)

f− B
3

(

2π i

3

)

= tan
( Bπ

6

)

tan
(

(4−B)π
6

)

tan
(

(2−B)π
6

)

tan
(

(B+2)π
6

) < 0,

where0 < B < 1or 1 < B < 2.Therefore, the product SB(θ) = f 2
3
(θ)· f B

3 − 2
3
(θ) f− B

3
(θ)

has a positive residue at 2π i
3 , and therefore, satisfies (S5). (S6) is now straightforward.

From the above computations, it is also clear that a product

SB1,B2,...Bn (θ) := f 2
3
(θ)

n
∏

k=1

f Bk
3 − 2

3
(θ) f− Bk

3
(θ),

where 0 < Bk < 2, Bk �= 1 and n is odd, satisfies all the properties of S-matrix. When
n > 1, no Lagrangian is known for such two-particle S-matrix. We will completely
classify all S-matrices which comply with (S1)–(S6) in Appendix A.



Wedge-Local Fields in Integrable Models 671

3.2. The bound-state operator. For a test function f supported in WL, let us introduce an
unbounded operatorχ( f ) on the S-symmetric Fock spaceH. This operator will preserve
the particle number and will be interpreted as the operator which “makes a bound state”.
Actually, in a model with scalar S-matrix, a bound state particle of two “elementary par-
ticles” is again the same elementary particle as there is only one species of particle [22].

Let us denote its component onHn byχn( f ). Firstly,χ0( f ) annihilates the vacuum�.
For ξ ∈ H1 = L2(R, dθ), we say that ξ(θ) has an L2-bounded analytic continua-

tion on a strip parallel toR (e.g.R+ i(−ε, 0) orR+ i(0, ε), ε > 0) if ξ(ζ ) is an analytic
function on that strip (with boundary value ξ(θ) at Im ζ = 0) such that for each fixed
−ε < α < 0 (respectively 0 < α < ε) the function θ �→ ξ(θ + iα) is an L2-function in
θ , with uniform L2-bound in α. The action χ1( f ) on H1 is given as follows:

Dom(χ1( f )) :=
{

ξ ∈ H1 : ξ(θ) has an L2-bounded analytic continuation to θ − iπ

3

}

,

(χ1( f )ξ)(θ) := −iη f +
(

θ +
iπ

3

)

ξ

(

θ − iπ

3

)

= √2π |R| f +
(

θ +
iπ

3

)

ξ

(

θ − iπ

3

)

,

(2)

where η and R are given in Sect. 3.1. Note that f +(θ + π i
3 ) is bounded, therefore, χ1( f )ξ

is L2. Then, we define:

χn( f ) := n Pn(χ1( f ) ⊗ 1 ⊗ · · · ⊗ 1)Pn,

χ( f ) =
∞
⊕

n=0

χn( f ),

where Dom(χ( f )) is the algebraic direct sum of Dom(χn( f )), hence is a subspace of
D and, of course, the domain of the product AB of possibly unbounded operators A, B
is given by {ξ ∈ Dom(B) : Bξ ∈ Dom(A)}. We will discuss the question of self-adjoint
extensions of these operators in Appendix C.

Let τ j ∈ Sn , 1 ≤ j ≤ n − 1, be the transposition which exchanges j and j + 1, and
let ρk = τk−1 · · · τ1 be the cyclic permutation

ρk : (1, 2, . . . , n) �→ (k, 1, 2, . . . , k − 1, k + 1, . . . , n);
note that ρ1 is the unit element ofSn . With this notation, since any permutation σ ∈ Sn
is a surjection of {1, . . . , n} onto itself, it can be written as the product ρσ(1)σ with a
permutation σ of n − 1 numbers (2, 3, . . . , n).

The operator χ1( f ) ⊗ 1⊗ · · · ⊗ 1 commutes with such Dn(σ ). As Pn = 1
n!
∑

σ∈Sn
Dn(σ ), it holds that Dn(σ )Pn = Pn and the n-particle component χn( f ) can alterna-
tively be expressed as follows:

χn( f ) = n Pn(χ1( f ) ⊗ 1 ⊗ · · · ⊗ 1)Pn

= 1

(n − 1)!
∑

σ∈Sn

Dn(ρσ(1))Dn(σ )(χ1( f ) ⊗ 1 ⊗ · · · ⊗ 1)Pn

= 1

(n − 1)!
∑

σ∈Sn

Dn(ρσ(1))(χ1( f ) ⊗ 1 ⊗ · · · ⊗ 1)Pn

=
∑

1≤k≤n

Dn(ρk)(χ1( f ) ⊗ 1 ⊗ · · · ⊗ 1)Pn .
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Note that, if	n is S-symmetric and in thedomainofχ1( f )⊗1⊗· · ·⊗1,	n(θ1, . . . , θn)

has a meromorphic continuation in θk and it holds that

	n

(

θ1 − π i

3
, θ2, . . . , θn

)

=
∏

2≤ j≤k

S

(

θ j − θ1 +
π i

3

)

	n

(

θ2, . . . , θk, θ1 − π i

3
, θk+1, . . . , θn

)

.

Therefore, each term in the last expression of χn( f ) above can be further written as
follows for k ≥ 2 and for 	n = Pn	n :

(Dn(ρk)(χ1( f ) ⊗ 1 ⊗ · · · ⊗ 1)	n)(θ1 . . . θn)

=
∏

1≤ j≤k−1

S(θk − θ j )((χ1( f ) ⊗ 1 ⊗ · · · ⊗ 1)	n)(θk , θ1, . . . , θk−1, θk+1, . . . θn)

= −iη
∏

1≤ j≤k−1

S(θk − θ j ) f +
(

θk +
π i

3

)

	n

(

θk − π i

3
, θ1, . . . , θk−1, θk+1, . . . θn

)

= −iη
∏

1≤ j≤k−1

S(θk − θ j )S

(

θ j − θk +
π i

3

)

f +
(

θk +
π i

3

)

	n

(

θ1, . . . , θk − π i

3
, . . . θn

)

= −iη
∏

1≤ j≤k−1

S

(

θk − θ j +
π i

3

)

f +
(

θk +
π i

3

)

	n

(

θ1, . . . , θk − π i

3
, . . . θn

)

,

wherewe reordered the variables in the third equality, andwe used the bootstrap equation
in the last equality. Note that, although S-factors have poles, these poles are cancelled
by the zeros of 	n by the definition of the domain of χn( f ) in Eq. (2) and the whole
expression remains L2 (this is the meaning that 	n ∈ Dom(χn( f )). In this expression,
the one-particle component χ1( f ) acts on each variable of 	n up to a correction of S
factors. As the one-particle action (2) realizes the idea that the state of one elementary
particle ξ is fused with f + into the same species of particle, as in Sect. 2.3, we might
call it the “bound state operator”.

Similarly, for a test function g supported in the right wedge WR, we introduce the
reflected bound state operator χ ′(g):

Dom(χ ′
1(g)) :=

{

ξ ∈ H1 : ξ(θ) has an L2-bounded analytic continuation to θ +
iπ

3

}

,

(χ ′
1(g)ξ)(θ) := −iηg+

(

θ − iπ

3

)

ξ

(

θ +
iπ

3

)

= √2π |R|g+
(

θ − iπ

3

)

ξ

(

θ +
iπ

3

)

,

χ ′
n(g) := n Pn(1 ⊗ · · · ⊗ 1 ⊗ χ ′

1(g))Pn .

For a real g, this operator is indeed related to χ by the CPT operator J :

χ ′(g) = Jχ(g j )J.

To see this, let us consider the one-particle components. Since J1 acts as the complex
conjugation, it takes an analytic function in the lower strip to an analytic function in the
upper strip, therefore the domains of χ ′(g) and of Jχ(g j )J coincide. Recall that for a
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real g, (g j )
+(θ) = g−(θ) and g+(ζ ) = g−(ζ ). If ξ ∈ Dom(χ ′

1(g)), (J1ξ)(ζ ) = ξ(ζ )

and we have

(χ ′
1(g)ξ)(θ) = √2π |R|g+

(

θ − π i

3

)

ξ

(

θ +
π i

3

)

= √2π |R|g−
(

θ +
π i

3

)

ξ

(

θ +
π i

3

)

= √2π |R|g−
(

θ +
π i

3

)

(J1ξ)

(

θ − π i

3

)

= (J1χ(g j )J1ξ)(θ).

As Jn commutes with Pn , we have χ ′
n(g) = Jnχn(g j )Jn . Since the whole operators

χ(g) and χ ′(g) are defined as the direct sum, the desired equality follows.
This operator χ ′(g) has an alternative expression as χ( f ) does:

χ ′
n(g) =

∑

1≤k≤n

Dn(ρ′
k)(1 ⊗ · · · ⊗ 1 ⊗ χ ′

1(g))Pn,

where ρ′
k = τn−k+1τn−k+2 · · · τn−1 are the cyclic permutations

ρ′
k : (1, . . . , n − 1, n) �−→ (1, . . . n − k, n − k + 2, . . . , n − 1, n, n − k + 1)

and

(Dn(ρ
′
k)(1 ⊗ · · · ⊗ 1 ⊗ χ ′

1(g))	n)(θ1 . . . θn)

= √

2π |R|
∏

n−k+2≤ j≤n

S

(

θ j − θn−k+1 +
π i

3

)

g+
(

θn−k+1 − π i

3

)

× 	n

(

θ1, . . . , θn−k+1 +
π i

3
, . . . θn

)

,

for k ≥ 2.
Let us check basic properties of χ( f ). As χ ′(g) is defined similar to χ( f ), they share

a number of properties. The following propositions have the obvious counterparts for
χ ′(g).

Proposition 3.1. For a real test function f supported in WL, the operator χ( f ) is densely
defined and symmetric.

Proof. First let us look at χ1( f ). By its definition, it is densely defined. To see that
it is symmetric, we take two vectors ξ, η ∈ Dom(χ1( f )) which have smooth Fourier
transforms with compact support. Such vectors form a core for χ1( f ). Indeed, we can

write χ1( f ) = √
2π |R|x f �

1
6
1 , where x f is the multiplication operator by f +

(

θ + π i
3

)

and �1ξ(θ) = ξ(θ − 2π i) with the obvious domain. As �i t
1 implements the real shift

(�i t
1 ξ)(θ) = ξ(θ + 2π t), the Fourier transform diagonalizes �1, and the vectors above
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form a core. Then, ξ, η are the Fourier transforms of compactly supported smooth func-
tions, therefore they are rapidly decreasing. Recall that f +(θ + iα) is rapidly decreasing

as well, if 0 ≤ α ≤ π . Furthermore, η(ζ ) is analytic in ζ . Now we compute:

〈η, χ1( f )ξ 〉 = √2π |R|
∫

dθ η(θ) f +
(

θ +
π i

3

)

ξ

(

θ − π i

3

)

= √2π |R|
∫

dθ η

(

θ − π i

3

)

f +
(

θ +
2π i

3

)

ξ(θ)

= √2π |R|
∫

dθ η

(

θ − π i

3

)

f +
(

θ +
π i

3

)

ξ(θ)

= 〈χ1( f )η, ξ 〉,

where we used the Cauchy theorem in the second equality and f +(ζ ) = f −(ζ ) =
f +(ζ + iπ) in the third. As this equality holds on a core of χ1( f ), so does it on the
whole domain and we obtain the symmetry of χ1( f ).

Let us check that χn( f ) is densely defined. As Pn is bounded, it is enough to see that
(χ1( f ) ⊗ 1⊗ · · · ⊗ 1)Pn is densely defined. The range of Pn is the set of S-symmetric
functions, while the domain of χ1( f ) ⊗ 1 ⊗ · · · ⊗ 1 is the functions which has an
L2-bounded analytic continuation to π i

3 in the first variable. Let us take an arbitrary set
{ξ1, . . . ξn} of n vectors in the domain of χ1( f ). Then,

(Pn(ξ1 ⊗ · · · ⊗ ξn))(θ1, . . . , θn)

= 1

n!

⎛

⎜

⎜

⎝

∑

σ∈Sn

∏

j<k
σ( j)>σ(k)

S(θσ( j) − θσ(k)) · ξσ(1)(θ1) · · · ξσ(n)(θn)

⎞

⎟

⎟

⎠

is of course S-symmetric, but has poles which come from the S-factors. Such vectors
are a dense subspace of PnHn . Note that all these poles come from the poles of S at
θ j − θk = πli

3 , l = 1, 2 and 1 ≤ k < j ≤ n. In order to compensate these poles, we can
multiply it (n − 2)! times by

Cn(θθθ) :=
∏

1≤k< j≤n

(θ j − θk − π i
3 )(θk − θ j − π i

3 )

(θ j − θk − iα)(θk − θ j − iα)
,

where α < 0 or π < α. This is a bounded invertible symmetric function in the real
variables θθθ . Therefore, the multiplication operator MCn by Cn preserves Hn and its
image of a dense subspace is again dense. The functions in the image have an analytic
continuations in the first (actually any) variable to π i

3 and are S-symmetric, therefore in
the domain of (χ1( f ) ⊗ 1 ⊗ · · · ⊗ 1)Pn .

Now the symmetry of χn( f ) follows from the symmetry of χ1( f ) and a general fact
(ABC)∗ ⊃ (C∗ B∗ A∗). The whole operator χ( f ) is by definition the direct sum of these
operators, therefore densely defined and symmetric as well. ��

In Sect. 2.2, we saw that there is an action U of the Poincaré group on H. Let us
check that χ( f ) is covariant with respect to U .
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Proposition 3.2. Let f be a test function supported in WL and (a, λ) ∈ P↑
+ such that

a ∈ WL. Then it holds that AdU (a, λ)(χ( f )) ⊂ χ( f(a,λ)).

Proof. As both χ( f ) and U are the direct sums χ( f ) = ⊕n χn( f ) and U (a, λ) =
⊕

n Un(a, λ) respectively, we can restrict ourselves to Hn . Furthermore, by definition
χn( f ) = n Pn(χ1( f ) ⊗ 1⊗ · · · ⊗ 1)Pn and Pn commutes with Un(a, λ) = U1(a, λ) ⊗
· · ·⊗U1(a, λ), therefore it is enough to show thatU1(a, λ)χ1( f )U1(a, λ)∗ ⊂ χ1( f(a,λ)).

Considerfirst a pure boost (0, λ).Note thatU (0, λ)preserves thedomainDom(χ1( f )).
We saw in Sect. 2.2 that (U1(0, λ) f +)(θ) = f +(θ − λ) = ( f(0,λ))

+(θ). On the other
hand, for ξ ∈ Dom(χ1( f )) = Dom(χ1( f(0,λ))) we have

(U1(0, λ)χ1( f )U1(0, λ)∗ξ)(θ) = (χ1( f )U1(0, λ)∗ξ)(θ − λ)

= −iη f +
(

θ − λ +
π i

3

)

· (U1(0, λ)∗ξ)

(

θ − λ − π i

3

)

= −iη f +
(

θ − λ +
π i

3

)

· ξ

(

θ − π i

3

)

= (χ1( f(0,λ))ξ)(θ).

Hence the covariance with respect to boosts holds.
Next we take a pure translation (a, 0), where a ∈ WL. As U1(a, λ)∗ multiplies by

e−ia·p(θ),which has a bounded analytic continuation inR+i(−π, 0), the domain ofχ1( f )

is preserved. Again, recall the one-particle action (U1(a, 0) f +)(θ) = eia·p(θ) f +(θ) =
( f(a,0))

+(θ). For a vector ξ ∈ Dom(χ1( f )) = Dom(χ1( f(a,0))), it holds that

(U1(a, 0)χ1( f )U1(a, 0)∗ξ)(θ) = eia·p(θ)(χ1( f )U1(a, 0)∗ξ)(θ)

= −iηeia·p(θ) f +
(

θ +
π i

3

)

· (U1(a, 0)∗ξ)

(

θ − π i

3

)

= −iηeia·p(θ) f +
(

θ+
π i

3

)

· e
−ia·p

(

θ− π i
3

)

ξ

(

θ− π i

3

)

.

As we have

p

(

θ +
π i

3

)

+ p

(

θ − π i

3

)

= m

(

1
2 cosh θ + i

√
3
2 sinh θ

1
2 sinh θ + i

√
3
2 cosh θ

)

+ m

(

1
2 cosh θ − i

√
3
2 sinh θ

1
2 sinh θ − i

√
3
2 cosh θ

)

= m

(

cosh θ

sinh θ

)

= p(θ),

or equivalently, p(θ) − p
(

θ − π i
3

) = p
(

θ + π i
3

)

, we obtain

(U1(a, 0)χ1( f )U1(a, 0)∗ξ)(θ) = −iηe
ia·
(

p(θ)−p
(

θ− π i
3

))

f +
(

θ +
π i

3

)

· ξ

(

θ − π i

3

)

= −iηe
ia·p
(

θ+ π i
3

)

f +
(

θ +
π i

3

)

· ξ

(

θ − π i

3

)

= (χ1( f(a,0))ξ)(θ),

and this is the covariance with respect to translations. ��
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Formal expression

We argue that our operator χ( f ) defined above is formally equivalent to

−iη
∫

dθ f +
(

θ +
π i

3

)

z†(θ)z

(

θ − π i

3

)

.

This formal expression preserves the particle number, because it consists of a creation
operator z† and an annihilation operator z. In this argument, we do not paymuch attention
to domains. We will not use this formal expression later in proofs, yet it is interesting to
observe that the operator χ( f ) has such a simple expression.

We know that z( f ) = Pa( f )P and z†( f ) = Pa†( f )P , where P = ⊕n Pn is the
projection from the unsymmetrized Fock space to the S-symmetric Fock space. Let us
take an S-symmetric vector 	n ∈ Hn . The unsymmetrized annihilation operator a(ζ )

substitutes the first variable by a fixed number ζ . As 	n is an S-symmetric function
with n variables, then after the action of a, it is still an S-symmetric function with n − 1
variables. This means that we can remove several factors of P in the above formal
expression and obtain

− iη
∫

dθ f +
(

θ +
π i

3

)

z†(θ)z

(

θ − π i

3

)

	n

= −iηPn

∫

dθ f +
(

θ +
π i

3

)

a†(θ)a

(

θ − π i

3

)

	n .

Let us look at the integrand formally. For a fixed θ , the action of the annihilation operator
gives

(

a

(

θ − π i

3

)

	n

)

(θ1, . . . , θn−1) = √
n	n

(

θ − π i

3
, θ1, . . . , θn−1

)

.

Thereafter, the action of the creation operator gives the following:
(

a†(θ)a

(

θ − π i

3

)

	n

)

(θ1, . . . , θn) = nδ(θ − θ1)	n

(

θ − π i

3
, θ2, . . . , θn

)

and after the integration and the multiplication by −iη, we get

− iηn
∫

dθ f +
(

θ +
π i

3

)

a†(θ)a

(

θ − π i

3

)

	n(θ1, . . . , θn)

= −iηn
∫

dθ f +
(

θ +
π i

3

)

δ(θ − θ1)	n

(

θ − π i

3
, θ2, . . . , θn

)

= −iηn f +
(

θ1 +
π i

3

)

	n

(

θ1 − π i

3
, θ2, . . . , θn

)

.

If we look at the action on the first variable, this is exactly nχ1( f ). Recall that χn( f ) =
n Pn(χ1( f ) ⊗ · · · ⊗ 1)Pn . As 	n was arbitrary, we get finally

χn( f )	n = −iη
∫

dθ f +
(

θ +
π i

3

)

z†(θ)z

(

θ − π i

3

)

	n,

which is the desired expression. Similarly, we have

χ ′
n(g) = −iη

∫

dθ g+
(

θ − π i

3

)

z′†(θ)z′
(

θ +
π i

3

)

.
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3.3. The wedge-local fields. We define the (left) wedge-local field by

˜φ( f ) = φ( f ) + χ( f ).

The domain of φ( f ) includes that of χ( f ), therefore the domain of˜φ( f ) coincides with
the latter.

The reflected field is given by

˜φ′(g) := φ′(g) + χ ′(g) = J˜φ(g j )J.

Proposition 3.3. Let f be a real test function supported in WL. Then the operator ˜φ( f )

defined above has the following properties.

(1) ˜φ( f ) is a symmetric operator.
(2) ˜φ is a solution of the Klein–Gordon equation, in the sense that˜φ((�+m2) f ) = 0.
(3) ˜φ( f ) is covariant with respect to U, in the sense that if f is supported in WL and

if (a, λ) ∈ P↑
+ such that a ∈ WL, then it holds that U (g)˜φ( f )U (g)∗ ⊂ ˜φ( f(a,λ)).

Proof. (1) We saw in Proposition 3.1 that χ( f ) is symmetric, and we know from [27,
Proposition 1(2)] that φ( f ) is symmetric. Therefore, the sum˜φ( f ) = φ( f )+χ( f )

is symmetric as well.
(2) This follows from the facts that ((� + m2) f )+ = 0, as in [27, Proposition 1(3)]

and that f appears only through f + in the definition of χ( f ).
(3) We showed the covariance of χ( f ) in Proposition 3.2 and the covariance of φ( f )

is shown in [27, Proposition 1(4)], therefore the sum χ( f ) = φ( f ) + χ( f ) is
covariant, too. ��

Of course, similar properties hold for ˜φ′(g).
Compared with [27, Proposition 1], our fields are of a subtler nature. The operator

˜φ( f ) does not preserve its domain (see Appendix C), neither is essentially self-adjoint.

Weak commutativity

Here we prove our main result. As the domains of ˜φ( f ) and ˜φ′(g) are subtle, we cannot
always form the products˜φ( f )˜φ′(g) and˜φ′(g)˜φ( f ), and the commutator [˜φ( f ),˜φ′(g)].
Instead, we consider the weak form of commutation. Consider the following linear space
of vectors:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

∏

j S
(

θ − θ j + π i
3

)

	n(θ, θ1, . . . , θn−1) and
	 ∈ Dom(˜φ( f )) ∩ Dom(˜φ′(g))

∏

j S
(

θ − θ j + 2π i
3

)

	n(θ, θ1, . . . , θn−1) have L2(Rn−1)-
valued bounded analytic continuations in θ to θ ± εi,
for some ε > 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

The intersection Dom(˜φ( f )) ∩Dom(˜φ′(g)) has an interesting property. The n-particle
component	n of a vector	 has an analytic continuation in θ1 in the negative imaginary
part, but by S-symmetry, it can be analytically continued in any variable (with possible
poles at the poles of S). At the same time, it has analytic continuation in all the variables
in the positive imaginary part, as it is in Dom(˜φ′(g)). Therefore, 	n is not only the
L2-boundary value of an analytic function, but it has a continuous value at θ j ∈ R.

Now, by (S6), S(0) = −1 and 	n is S-symmetric, therefore 	n(θ1, . . . , θn) has a
zero at θ j − θk = 0. In the expression below,

∏

j

S

(

θ − θ j +
π i

3

)

	n(θ, θ1, . . . , θn−1),
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the S-factors have simple poles at θ − θ j = 0, and they are cancelled by the zeros
of 	n(θ, θ1, . . . , θn). Therefore, it still has pointwise meaning. We conjecture that the
additional condition that it has an L2-bounded analytic continuation in θ should be
automatic, and the linear space above should be simply the intersection Dom(χ( f )) ∩
Dom(χ ′(g)). Yet, as the domains are a subtle question, we content ourselves in the
present work by showing the weak commutativity on this space. One can easily check
that it is dense inH by considering the vectors constructed in Proposition 3.1.

For vectors �,	 in the above space, we show weak commutativity, which is,
〈˜φ( f )�,˜φ′(g)	〉 = 〈˜φ′(g)�,˜φ( f )	〉. From weak commutativity and some estimate
of operators, strong commutativity can follow (e.g. [20]). Unfortunately, we have not
yet been able to establish such estimates and in this work we restrict ourselves to these
weak relations. See also Appendix C.

Theorem 3.4. Let f and g be real test functions supported in WL and WR, respectively.
Then, for each �,	 in the linear space above, it holds that

〈˜φ( f )�,˜φ′(g)	〉 = 〈˜φ′(g)�,˜φ( f )	〉.
Proof. Recall that the vectors �,	 have finitely many non-zero components and our
operators acts componentwise:

˜φ( f ) = φ( f ) + χ( f ) = z†( f +) + χ( f ) + z(J1 f −),

˜φ′(g) = φ′(g) + χ ′(g) = z′†(g+) + χ ′(g) + z′(J1g−).

In this proof, it should be kept in mind that � and 	 are already S-symmetric.
Let us compute the commutator [˜φ( f ),˜φ′(g)], which by the above expands into

several terms that we will compute individually.

The commutator [χ( f ), z′(J1g−)]
We can actually compute this commutator in the operator (not the weak) form, as we do
not encounter the problem of domains. Recall that, if g is real, J1g− = g+.

Let us look at the expression we derived early in Sect. 3.2, in which χn( f ) is written
as a sum of n terms. Its first n − 1 terms act in the first n − 1 variables in the same way
as n − 1 terms in χn−1 do. On the other hand, z′(g+) acts only on the n-th variable θn .
Therefore, the only remaining term in this commutator is the one which comes from the
n-th term in the expression, which is

([χ( f ), z′(J1g−)]	n)(θ1, . . . , θn−1)

= iη
√

n
∫

dθ g+(θ)
∏

1≤ j≤n−1

S

(

θ − θ j +
π i

3

)

f +
(

θ +
π i

3

)

	n

(

θ1, . . . , θn−1, θ − π i

3

)

.

For the later convenience, we further rewrite this using the S-symmetry of 	n :

([χ( f ), z′(J1g−)]	n)(θ1, . . . , θn−1)

= iη
√

n
∫

dθ g+(θ)
∏

1≤ j≤n−1

S

(

θ − θ j +
π i

3

)

f +
(

θ +
π i

3

)
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× S

(

θ − θ j − π i

3

)

	n

(

θ − π i

3
, θ1, . . . , θn−1

)

= iη
√

n
∫

dθ g+(θ)
∏

1≤ j≤n−1

S(θ − θ j ) f +
(

θ +
π i

3

)

	n

(

θ − π i

3
, θ1, . . . , θn−1

)

= iη
√

n
∫

dθ g+

(

θ − π i

3

)

∏

1≤ j≤n−1

S

(

θ − θ j +
π i

3

)

f +
(

θ +
2π i

3

)

	n (θ, θ1, . . . , θn−1)

= iη
√

n
∫

dθ g+
(

θ − 2π i

3

)

∏

1≤ j≤n−1

S

(

θ − θ j +
π i

3

)

f +
(

θ +
2π i

3

)

	n (θ, θ1, . . . , θn−1) ,

where in the second equality we used the bootstrap equation, in the third equality the
assumed property of 	 explained before this Theorem 3.4 and Lemma B.2, and the last
equality follows because g is real.

The commutator [z(J1 f −), χ ′(g)]
This can be computed in a similar way as before. By paying attention that z reduces the
number of variables and shifts the indices of the remaining ones, the result is:

[(z(J1 f −), χ ′(g)]	n)(θ1, . . . , θn−1)

= −iη
√

n
∫

dθ f +(θ)
∏

1≤ j≤n−1

S

(

θ j − θ +
π i

3

)

g+
(

θ − π i

3

)

	n

(

θ +
π i

3
, θ1, . . . , θn−1

)

= −iη
√

n
∫

dθ f +
(

θ +
π i

3

)

∏

1≤ j≤n−1

S

(

θ j − θ +
2π i

3

)

g+
(

θ − 2π i

3

)

	n (θ, θ1, . . . , θn−1)

= −iη
√

n
∫

dθ f +
(

θ +
2π i

3

)

∏

1≤ j≤n−1

S

(

θ − θ j +
π i

3

)

g+
(

θ − 2π i

3

)

	n (θ, θ1, . . . , θn−1) ,

where we used the assumed domain property of 	, Lemma B.2, the crossing symmetry
of S, and that f is real. This coincideswith the result of the commutator [χ( f ), z′(J1g−)]
up to a sign, therefore they cancel each other.

The commutators [z†( f +), χ ′(g)] and [χ( f ), z′†(g+)]
One can show that these two commutators cancel each other by taking adjoints and
repeat the computation as in the commutators before. More precisely, before we have
computed weak commutators such as 〈K	, Z�〉 − 〈Z∗	, K�〉, where K corresponds
to eitherχ( f ) orχ ′(g) and Z is the annihilation operators z(J1 f −) or z′(J1g−). Herewe
must compute numbers such as 〈K	, Z∗�〉 − 〈Z	, K�〉, which is complex conjugate
to the previous one.

The commutator [φ( f ), φ′(g)]
This part has been essentially done in [27, P.13]. The difference is that S has two poles
in the physical strip, therefore we obtain residues when we shift the integration contour.
This commutator preserves the particle number, therefore, it suffices to compute its
action at fixed n. Let us take 	,� with only n particle components. By considering that
the poles of S are simple, the result is (note that we switched f and g from [27])

([φ( f ), φ′(g)]	n)(θ1, . . . , θn)

= −
∫

dθ

⎛

⎝g−(θ) f +(θ)

n
∏

j=1

S(θ − θ j ) − g−(θ + π i) f +(θ + π i)
n
∏

j=1

S(θ − θ j + π i)

⎞

⎠
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× 	n(θ1, . . . , θn)

= −2π i

( n
∑

k=1

Rg−
(

θk +
2π i

3

)

f +
(

θk +
2π i

3

)

∏

j �=k

S

(

θk − θ j +
2π i

3

)

−
n
∑

k=1

Rg−
(

θk +
π i

3

)

f +
(

θk +
π i

3

)

∏

j �=k

S

(

θk − θ j +
π i

3

))

× 	n(θ1, . . . , θn)

= −2π i

( n
∑

k=1

Rg+
(

θk − π i

3

)

f +
(

θk +
2π i

3

)

∏

j �=k

S

(

θk − θ j +
2π i

3

)

−
n
∑

k=1

Rg+
(

θk − 2π i

3

)

f +
(

θk +
π i

3

)

∏

j �=k

S

(

θk − θ j +
π i

3

))

× 	n(θ1, . . . , θn),

where we used that the residue of S at π i
3 is −R, which follows from the crossing

symmetry. In order to justify the second equality, we should note that if any pair of θk’s
does not coincide, then the integrand has a simple pole and we have the equality. The
complement of such θθθ ’s has Lebesgue measure zero, therefore we obtain the equality.
Actually, although this expression looks unbounded as a function of θk because of the
poles of S, it is actually bounded since these poles at θk − θ j = 0 cancel each other.
(This is not surprising, since φ( f ) and φ′(g) are bounded onHn .)

The commutator [χ( f ), χ ′(g)]
Now we come to the most important part of the computations. As both χ( f ) and χ ′(g)

preserves each n-particle space, we assume again that 	,� have only n-particle com-
ponents.

Let us recall the expressions of χ( f ), χ ′(g) we derived in Sect. 3.2:

χn( f ) =
∑

1≤k≤n

Dn(ρk)(χ1( f ) ⊗ 1 ⊗ · · · ⊗ 1)Pn,

χ ′
n( f ) =

∑

1≤ j≤n

Dn(ρ′
j )(1 ⊗ · · · ⊗ 1 ⊗ χ ′

1(g))Pn .

Therefore, the term 〈χ ′(g)�, χ( f )	〉 of the commutator is
∑

j,k

〈Dn(ρ′
j )(1 ⊗ · · · ⊗ 1 ⊗ χ ′

1(g))�, Dn(ρk)(χ1( f ) ⊗ 1 ⊗ · · · ⊗ 1)	〉.

Actually, ρk here can be replaced by any permutation σ such that σ(1) = k. Let us
choose the transposition τ1,k : (1, k) �→ (k, 1). τ1,1 coincides with the unit element of
Sn . Similarly, we can use the transposition τn− j+1,n instead of ρ′

j . Then it is clear that
τ1,k and τn− j+1,n commute unless k = n or j = n or k = n − j + 1. For pairs of k and j
such that the two transpositions commute, the scalar product reduces to the following:

〈Dn(τn− j+1,n)(1 ⊗ · · · ⊗ 1 ⊗ χ ′
1(g))�, Dn(τ1,k)(χ1( f ) ⊗ 1 ⊗ · · · ⊗ 1)	〉

= 〈(1 ⊗ · · · ⊗ 1 ⊗ χ ′
1(g))�, (χ1( f ) ⊗ 1 ⊗ · · · ⊗ 1)	〉

= 〈(χ1( f ) ⊗ 1 ⊗ · · · ⊗ 1)�, (1 ⊗ · · · ⊗ 1 ⊗ χ ′
1(g))	〉, (3)

where the last equality follows by Lemma B.1 (by writing χ1( f ) = √
2π |R|x f �

1
6
1 ,

etc.). If k = n, j �= 1, n (respectively k �= 1, n and j = n), one has τn− j+1,nτ1,n =
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τ1,n− j+1τn− j+1,n (resp. τ1,nτ1,k = τ1,kτn,k), and we can reduce these contributions to
the same value (3). The case k = j = n is also easy and gives the same contribution.
We will see that they get cancelled by the term 〈χ( f )�, χ ′(g)	〉 of the commutator
[χ( f ), χ ′(g)].

The remaining terms are those with k = n − j + 1. Here, χ1( f ) and χ ′
1(g) act on the

same variable:

〈Dn(ρ′
n−k+1)(1 ⊗ · · · ⊗ 1 ⊗ χ ′

1(g))�, Dn(ρk)(χ1( f ) ⊗ 1 ⊗ · · · ⊗ 1)	〉

= 2π |R|
∫

dθ1 · · · dθn

k−1
∏

l=1

S

(

θk − θl +
π i

3

)

f +
(

θk +
π i

3

)

	n

(

θ1, . . . , θk − π i

3
, . . . , θn

)

×
n
∏

l=k+1

S

(

θl − θk +
π i

3

)

g+

(

θk − π i

3

)

�n

(

θ1, . . . , θk +
π i

3
, . . . , θn

)

= −2π i R
∫

dθ1 · · · dθn

k−1
∏

l=1

S

(

θk − θl +
2π i

3

)

f +
(

θk +
2π i

3

)

	n (θ1, . . . , θn)

×
n
∏

l=k+1

S

(

θl − θk +
2π i

3

)

g+

(

θk − 2π i

3

)

�n (θ1, . . . , θn)

= −2π i R
∫

dθ1 · · · dθn

k−1
∏

l=1

S

(

θk − θl +
2π i

3

)

f +
(

θk +
2π i

3

)

	n (θ1, . . . , θn)

×
n
∏

l=k+1

S

(

θk − θl +
2π i

3

)

g+
(

θk − π i

3

)

�n (θ1, . . . , θn)

= −2π i R
∫

dθ1 · · · dθn

∏

l �=k

S

(

θk − θl +
2π i

3

)

f +
(

θk +
2π i

3

)

	n (θ1, . . . , θn) g+
(

θk − π i

3

)

× �n (θ1, . . . , θn),

where we used the assumption that the product of 	,� and the S factor remains L2,
Lemma B.2 and the condition (S5) which implies that R = i |R|.

Note that this is the second term in the commutator [χ( f ), χ ′(g)], therefore it gets
another minus sign. The expression so obtained is equal to the first contribution from
the commutator [φ( f ), φ′(g)] with reversed sign and coupling with �, therefore, they
cancel each other.

Let us examine the term 〈χ( f )�, χ ′(g)	〉 in the commutator [χ( f ), χ ′(g)]. The
computation is similar to the previous case and we obtain the following. As before, for
pairs of k and j such that k �= n − j + 1, one has the contributions:

〈Dn(τn− j+1,n)(1 ⊗ · · · ⊗ 1 ⊗ χ ′
1(g))�, Dn(τ1,k)(χ1( f ) ⊗ 1 ⊗ · · · ⊗ 1)	〉

= 〈(1 ⊗ · · · ⊗ 1 ⊗ χ ′
1(g))�, (χ1( f ) ⊗ 1 ⊗ · · · ⊗ 1)	〉

= 〈(χ1( f ) ⊗ 1 ⊗ · · · ⊗ 1)�, (1 ⊗ · · · ⊗ 1 ⊗ χ ′
1(g))	〉,

and this cancels the contribution in Eq. (3).
The remaining terms in 〈χ( f )�, χ ′(g)	〉 are:

〈Dn(ρk)(χ1( f ) ⊗ 1 ⊗ · · · ⊗ 1)�, Dn(ρ′
n−k+1)(1 ⊗ · · · ⊗ 1 ⊗ χ ′

1(g))	〉

= −2π i R
∫

dθ1 · · · dθn

n
∏

l=k+1

S

(

θl − θk +
π i

3

)

g+
(

θk − π i

3

)

	n

(

θ1, . . . , θk +
π i

3
, . . . , θn

)
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×
k−1
∏

l=1

S

(

θk − θl +
π i

3

)

f +
(

θk +
π i

3

)

�n

(

θ1, . . . , θk − π i

3
, . . . , θn

)

= −2π i R
∫

dθ1 · · · dθn

n
∏

l=k+1

S

(

θl − θk +
2π i

3

)

g+
(

θk − 2π i

3

)

	n (θ1, . . . , θk , . . . , θn)

×
k−1
∏

l=1

S

(

θk − θl +
2π i

3

)

f +
(

θk +
2π i

3

)

�n (θ1, . . . , θk , . . . , θn)

= −2π i R
∫

dθ1 · · · dθn

n
∏

l=k+1

S

(

θl − θk +
2π i

3

)

g+
(

θk − 2π i

3

)

	n (θ1, . . . , θn)

×
k−1
∏

l=1

S

(

θl − θk +
2π i

3

)

f +
(

θk +
π i

3

)

�n (θ1, . . . , θn)

= −2π i R
∫

dθ1 · · · dθn

n
∏

l �=k

S

(

θk − θl +
π i

3

)

g+
(

θk − 2π i

3

)

	n (θ1, . . . , θn) f +
(

θk +
π i

3

)

× �n (θ1, . . . , θn).

The last expression is equal to the second contribution from the weak form of the
commutator 〈�, [φ( f ), φ′(g)]	〉 up to the sign, therefore, they cancel each other.

Altogether, we have seen that all the terms in [˜φ( f ),˜φ′(g)] cancel. ��
Reeh–Schlieder property

As the fields˜φ( f ) and˜φ′(g) do not preserve their domains, especially one cannot iterate
them on the vacuum more than once (see Appendix C), the Reeh–Schlieder property
does not hold for polynomials of these fields. Instead, if we assume the existence of nice
self-adjoint extensions, we can argue as below. But as we do not have such extensions,
we refrain from stating it as a theorem.

Let us suppose that for each g there is a self-adjoint extension of ˜φ′(g), which we
denote by the same symbol, such that˜φ′ is covariant with respect toU . Suppose also that,
for each f , ˜φ( f ) has a nice self-adjoint extension, such that ˜φ′(g) and ˜φ( f ) strongly
commute. We consider the von Neumann algebra

M = {ei˜φ′(g) : supp g ⊂ WR}′′,
and we have to show thatM� = H. Actually, asM is an algebra of bounded operators
containing the identity operator 1, we can freely use the fact that M� = MM�.

Take first the one-particle space. We have ˜φ′(g)� = g+ ∈ H1 and this is in the
above closure because i˜φ′(g)� = d

dt eit˜φ′(g)� and � is in the domain of ˜φ( f ) [37, The-
orem VIII.7]. By the one-particle Reeh–Schlieder property (e.g. [34, Theorem 3.2.1]),
it follows that (C� ⊕ H1) ⊂ M�.

Note thatH1∩Dom(˜φ′(g)), which includesH1∩Dom(χ ′(g)), has a dense subspace.
For any such vector ξ ∈ H1∩Dom(χ ′(g)), it holds i˜φ′(g)ξ = d

dt eit˜φ′(g)ξ ∈ (C�⊕H1⊕
H2) and their projection toH2 is dense inH2 (as it comes from the action of z†). We can
subtract the (C�⊕H1)-component sinceM is an algebra, and obtain thatH2-component
belongs toMM� = M�. Therefore, it follows that (C� ⊕ H1 ⊕ H2) ⊂ M�.

The rest is shown by induction: assume that (C� ⊕ · · · ⊕Hn) ⊂ M�. By differen-
tiation, we obtain i˜φ′(g)	 = d

dt eit˜φ′(g)	 ∈ (C� ⊕ · · · ⊕Hn+1) and we can extract the
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Hn+1-component. Such Hn+1-components are obtained by z†, thus form a dense sub-
space inHn+1. Namely, we showed that (C� ⊕ · · · ⊕ Hn+1) ⊂ M�, which completes
the induction.

(Non-)temperateness of the fields

Let us assume that we have a Haag–Kastler net. Borchers et al. [10] called an operator
G which is affiliated to the wedge-algebra and generates a one-particle state from the
vacuum a polarization-free generator. A polarization-free generator is said to be tem-
perate if there is a translation-invariant dense domain of G such that, for any vector	 in
that domain, a �→ GU (a, 0)	 is strongly continuous and polynomially bounded. The
existence of temperate polarization-free generators restrict drastically the possibility of
interaction.

We argue that the closure of our field ˜φ( f ) (which we denote by the same symbol)
has no such polynomially growing vector. Indeed, let 	 be a vector in the domain of the
closure of˜φ( f ). Even if 	 is only in the domain of the closure of˜φ( f ) = φ( f )+χ( f ),
the operator φ( f ) is continuous on each space of fixed particle number Hn , thus each
n-particle component 	n of 	 is in the domain of χn( f ), and ˜φ( f ) can be computed
componentwise. If we look at the one-particle component of χ( f )U (a, 0)	, we get

(χ1( f )U1(a, 0)	1)(θ) = √2π |R| f +
(

θ +
π i

3

)

e
ia·p
(

θ− π i
3

)

	1

(

θ − π i

3

)

.

If a tends to the negative spacelike direction, this grows exponentially. As we remarked,
the contribution from φ( f ) is bounded, hence this shows that ˜φ( f )U (a, 0)	 is not
polynomially bounded.

4. The Form Factor Program and Polarization-Free Generators

In this section, we discuss the connection of our approach to the form factor program
[3,41].Wewill also present how to derive our new term χ( f ) under certain assumptions.

Both in the form factor program and in the operator-algebraic approach, we have to
construct local observables. In the form factor program, the matrix elements of local
operators are considered and they are subject to several conditions, the form factor
axioms, and one has to find solutions (form factors) of these conditions. On the other
hand, in the operator-algebraic approach, it has been proved [10] that, in anymodel, there
are polarization-free generators, namely operators which are localized in a wedge-region
and generate one-particle states from the vacuum. Therefore, if a Haag–Kastler net exists
for an integrable QFT, there must be polarization-free generators. As they are localized
in a wedge, they must commute with operators localized in the causal complement of the
wedge, especially with local operators which come from form factors. Here we perform
such formal computations.

4.1. Compatibility with the form factor program.
Operator expansion for analytic S-matrix

In [12], we investigated the structure of strictly local observables in integrable quan-
tum field theories in 1+1 dimensions in the case where the theory has only one species of
massive scalar particle and the two-particle scattering function is analytic in the physical
strip.
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Specifically, we extracted more information on the properties of these local observ-
ables A by expanding them into a series of normal-ordered strings of z†, z,

A =
∞
∑

m,n=0

∫

dθθθdηηη

m!n! f [A]
m,n(θθθ,ηηη)z†(θ1) · · · z†(θm)z(η1) · · · z(ηn). (4)

It was shown in [11] that this expansion holds for every operator or quadratic form A in a
certain regularity class and it is independent of the localization region of A. It is similar
to the well-known form factor expansion, although it is not identical to it; for a pointlike
field A, the definition of the coefficients f [A]

m,n(θθθ,ηηη) formally agree with the form factors
for certain regions of the arguments.More specifically, following [3, Section 3][36, p.11]
we have that

f [A]
0,n (θθθ) = 〈�, Az†(θn) . . . z†(θ1)�〉 = F A(θ1, . . . , θn)

for θn > · · · > θ1 and where F A denotes the form factor of A. For the other coefficients
f [A]
m,n(θθθ,ηηη), there is an explicit expression in term of vacuum expectation values of A

[11], and it was shown in [12] that if A is a general observable localized in a bounded
region, then the f [A]

m,n are boundary values of a common meromorphic function, i.e., one
has

f [A]
m,n(θθθ,ηηη) = Fm+n(θθθ + i000,ηηη + iπππ − i000).

Choosing the bounded region to be a standard double cone of radius r > 0 around the
origin, these Fk(ζζζ ) (ζζζ ∈ C

k) fulfill the following properties, which we write informally
here (the exact statement of these properties can be found in [12]).

(F1) They are meromorphic on C
k . In particular, except for possible first-order poles

at ζn −ζm = iπ (“kinematic poles”), they are analytic on the tube region Im ζ1 <

· · · < Im ζk < Im ζ1 + 2π .
(F2) They are S-symmetric, that is, for all complex arguments ζ1, . . . , ζk , the following

relation holds:

Fk(ζ1, . . . , ζ j+1, ζ j , . . . , ζk) = S(ζ j − ζ j+1)Fk(ζ1, . . . , ζ j , ζ j+1, . . . , ζk).

(F3) They are S-periodic, i.e.,

Fk(ζ1, . . . , ζk−1, ζk + 2iπ) = Fk(ζk, ζ1, . . . , ζk−1)

(a similar property holds also in the other variables.)
(F4) The value of their residue at ζk − ζ1 = iπ is given by

res
ζk−ζ1=iπ

Fk(ζζζ ) = 1

2π i

(

1 −
k
∏

p=1

S(ζ1 − ζp)
)

Fk−2(ζ2, . . . , ζk−1)

(and a similar formula holds for the residues at the other kinematic poles.)
The remaining properties concern the bounds that these functions fulfill, namely

(F5) θθθ → Fk(θθθ + i000) is square integrable.



Wedge-Local Fields in Integrable Models 685

(F6) At real infinity the growth behaviour of Fk is essentially given by

|F(θθθ + iλλλ)| ∼
k
∏

j=1

emr cosh θ j | sin λ j |.

These relations between form factors and local observables can be made precise and
suitable variations of (F1)–(F6) holds for Fk if and only if A is localized in a double
cone (see [12, Theorem 5.4]).

The functions Fk have a rich pole structure: Apart from the so-called kinematic poles,
they have further singularities on hyperplanes in C

k , which are due to the poles of the
scattering function “outside the physical strip”.

Cases with poles in the physical strip

In the present paper, the scattering function has additional poles in the physical strip. We
will therefore expect that properties (F1)–(F6) need to be modified to take into account
these extra poles of the S-matrix. We call these new properties (P1)–(P6). In particular,
for (P1) we demand that the functions Fk are meromorphic with the pole structure as in
(F1) and additional poles at ζn −ζm = 2π i

3 with n > m. The presence of these additional
poles, which are a consequence of the poles of the S-matrix inside the physical strip, is
a well-known feature in the form factor program [4].

Further, we expect that properties (P2) and (P3) can stand unmodified from (F2) and
(F3), while (P5), which is required for the well-definedness of the expansion (4), will
possibly need small modifications from (F5); these depend on details of the domain of
definition of (4) in a theory with bound states, which we do not enter here.

We will also need to properly adapt (F6) to account for the extra poles of Fk(ζζζ ) at
ζn − ζm = 2π i

3 with n > m, yielding a new condition (P6).
However the essential new ingredient to be added to [12, Definition 5.3] is described

as follows:

(P7) The Fk have first order poles at ζn − ζm = 2π i
3 , where 1 ≤ m < n ≤ k and one

has

res
ζ2−ζ1= 2π i

3

Fk(ζζζ ) = η

2π
Fk−1

(

ζ1 +
π i

3
, ζ3, . . . , ζk

)

;

the residues at the other poles can again be inferred from (F2).

A similar formula can be found in the form factor program [4] up to a constant factor,
where it characterizes the form factors of point-like localized fields inmodels with bound
states.

Sample computations

We would like to show that if the form factors Fk of an observable A fulfill (P1)–(P7)
then A is local with respect to the wedge local field ˜φ, namely [A,˜φ( f )] = 0 and
[A,˜φ′(g)] = 0 where f and g are suitably regular functions (c.f. [27, P.13], Proposition
3.1 and Theorem 3.4) with supports in WL − (0, r) and WR + (0, r), respectively.

Here we will only show that [A,˜φ′(g)] = [A, χ ′(g)] + [A, φ′(g)] = 0 in matrix
elements between one-particle states 	,� on the level of formal computation.
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We compute the commutator 〈�, [A, χ ′(g)]	〉 = 〈�, Aχ ′(g)	〉 − 〈�,χ ′(g)A	〉
using the actions of (4) and of χ ′(g) derived in Sect. 3.2 on the vectors 	,�. We obtain

〈�, Aχ ′(g)	〉
= −iη lim

ε↘0

∫

dθdξ F2 (θ + iε, ξ + iπ − iε) g+
(

ξ − π i

3

)

�(θ)	

(

ξ +
π i

3

)

(5a)

−iηF0

∫

dξ g+
(

ξ − π i

3

)

�(ξ)	

(

ξ +
π i

3

)

; (5b)

〈�,χ ′(g)A	〉
= −iη lim

ε↘0

∫

dξdρ F2

(

ξ +
π i

3
− 2iε, ρ + iπ − iε

)

g+
(

ξ − π i

3

)

�(ξ)	(ρ)

(6a)

−iηF0

∫

dξ g+
(

ξ − π i

3

)

�(ξ)	

(

ξ +
π i

3

)

, (6b)

noting that in the expansion (4) the coefficients which contribute to the matrix elements
〈�, Aχ ′(g)	〉 and 〈�,χ ′(g)A	〉 are F0 and F2. We observe that the ε-prescription in
the argument of F2 in (5a) was introduced in [12], even if F2(ζζζ ) is actually analytic
at ζ2 − ζ1 = iπ . Further, the vector (A	)1(ζ1) = ∫ dζ2 F2(ζ1, ζ2)	(ζ2) in (6a) is no
longer analytic at ζ1 = π i

3 due to the pole of the integrand at ζ2 − ζ1 = 2π i
3 , so that

χ ′ as given in Sect. 3.2 cannot be applied to (A	)1(ζ1). However, by the symmetry of
χ ′(g), we can apply it to the vector � and then shifting the integral contour, we obtain
the boundary value indicated in (6a).

The terms (5b) and (6b) depending on F0 cancel each other.
We shift the integral contour in (5a) in the variable ξ by − iπ

3 + i0 (taking care to
not cross the pole hyperplane of F2(ζζζ ) at Im(ζ2 − ζ1) = 2π

3 ). For this the integrand is
required to decay at infinity which should follow from the growth properties of g± and
from (P6).

(5a) = −iη lim
ε↘0

∫

dθdξ F2

(

θ + iε, ξ + iπ − iπ

3
+ 2iε

)

g+
(

ξ − 2π i

3

)

�(θ)	(ξ).

Hence, we find

〈�, [A, χ ′(g)]	〉 = − iη lim
ε↘0

∫

dθdξ F2

(

θ + iε, ξ +
2iπ

3
+ 2iε

)

g+
(

ξ − 2π i

3

)

�(θ)	(ξ) (7a)

+ iη lim
ε↘0

∫

dξdρ F2

(

ξ +
π i

3
− 2iε, ρ + iπ − iε

)

g+
(

ξ − π i

3

)

�(ξ)	(ρ).

(7b)

We consider now the commutator 〈�, [A, φ′(g)]	〉 = 〈�, Az′†(g+)	〉 − 〈�, z′†(g+)

A	〉 + 〈�, Az′(Jg−)	〉 − 〈�, z′(Jg−)A	�〉, where we inserted the expression of
φ′(g).

Using the action of (4) and of z′, z′† on the one-particle vectors 	,�, and noting
that to these matrix elements the coefficients in (4) which contribute are F1 and F3, one
computes

〈�, [A, φ′(g)]	〉 = lim
ε↘0

∫

dθdρdξ F3(θ + iε, ξ + iπ − 2iε, ρ + iπ − iε)g+(ξ)�(θ)	(ρ)

(8a)
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+
∫

dξdρ F1(ξ + iπ − i0)g+(ξ)�(ρ)	(ρ)S(ξ − ρ) (8b)

− lim
ε↘0

∫

dθdρdξ F3(θ + iε, ξ + 2iε, ρ + iπ − iε)g−(ξ)�(θ)	(ρ) (8c)

−
∫

dρdξ F1(ξ + i0)g−(ξ)�(ρ)	(ρ)S(ξ − ρ), (8d)

where we used that (Jg−)(ξ) = g−(ξ); for the direction of the boundary values in F3
and F1 see [12, Definition 4.3].

By shifting the integral in (8c) in the variable ξ from R to R + iπ , we find (8a) up to
residues (again bounds at infinity enter). Specifically, the analytically continued function
F3(θ + iε, ξ ′, ρ + iπ − iε) has a pole at ξ ′ − θ − iε = 2π i

3 and at ρ + iπ − iε − ξ ′ = 2π i
3 .

Using (P7), the residue at the first pole is given by

res
ξ ′−θ−iε= 2π i

3

F3(θ + iε, ξ ′, ρ + iπ − iε) = − η

2π
F2

(

θ + iε +
iπ

3
, ρ + iπ − iε

)

.

This residue gives a contribution to the difference of the two integrals (8c) and (8a),
namely

(8a) + (8c)

= −iη
∫

dθdρ F2

(

θ + iε +
π i

3
, ρ + iπ − iε

)

g−
(

θ + iε +
2π i

3

)

�(θ)	(ρ),

where the orientation of the residue is fixed using [12, Lemma 3.4].
In computing the second residue

+ res
ρ+iπ−iε−ξ ′= 2π i

3

F3(θ + iε, ξ ′, ρ + iπ − iε)

= res
ρ+iπ−iε−ξ ′= 2π i

3

S(ξ ′ − θ − iε)S(ρ + iπ − iε − θ − iε)F3(ξ
′, ρ + iπ − iε, θ + iε)

= η

2π
F2

(

θ + iε, ρ +
2π i

3
− iε

)

, (9)

we can assume θ �= ρ since it suffices to compute a meromorphic function on any open
set.Note that the two S-factors are analytic near the pole hyperplaneρ+iπ−iε−ξ ′ = 2π i

3
and only F3 has a pole there. In the second equality we used (P7) and the Bootstrap
equation (S4). The sign of the residue is fixed by using [12, Lemma 3.4].

This residue gives a contribution to the difference of the integrals in (8c) and (8a),
namely

(8a) + (8c) = +iη
∫

dθdρ F2

(

θ + iε, ρ +
2iπ

3
− iε

)

g−
(

ρ + iπ − iε − 2π i

3

)

�(θ)	(ρ).
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Summarizing our results, we have

〈�, [A, φ′(g)]	〉 = − iη lim
ε↘0

∫

dθdρ F2

(

θ + iε +
π i

3
, ρ + iπ − iε

)

g+
(

θ + iε − π i

3

)

�(θ)	(ρ)

(10a)

+ iη lim
ε↘0

∫

dθdρ F2

(

θ + iε, ρ +
2π i

3
− iε

)

g+
(

ρ − iε − 2π i

3

)

�(θ)	(ρ)

(10b)

+
∫

dξdρ F1(ξ + iπ − i0)g+(ξ)�(ρ)	(ρ)S(ξ − ρ) (10c)

−
∫

dρdξ F1(ξ + i0)g−(ξ)�(ρ)	(ρ)S(ξ − ρ), (10d)

where we used that g+(θ) = g−(θ ± iπ).
In (7a) the coefficient F2(ζζζ ) approaches the pole in the direction ζ2 − ζ1 = 2π i

3 + iε,
instead in (10b) it approaches the pole in the direction ζ2 − ζ1 = 2π i

3 − iε. So the
difference of these boundary values is again a residue that we can compute using (P7)
and [12, Lemma 3.4],

res
ξ−θ=0

F2

(

θ, ξ +
2π i

3

)

= +
η

2π
F1

(

θ +
π i

3

)

.

This residue gives a contribution to the difference of (7a) and (10b), namely

(7a) + (10b) = +(iη)2
∫

dθ F1

(

θ +
iπ

3

)

g+
(

θ − 2π i

3

)

�(θ)	(θ). (11)

Likewise, the difference of the boundary values in the integrals (7b) and (10a) gives the
residue

res
ρ−ξ=0

F2

(

ξ +
π i

3
, ρ + iπ

)

= − η

2π
F1

(

ρ +
2π i

3

)

,

yielding

(7b) + (10a) = −(iη)2
∫

dρ F1

(

ρ +
2π i

3

)

g+
(

ρ − π i

3

)

�(ρ)	(ρ). (12)

We now consider (10c) and (10d). When shifting the integral contour in (10d) in the
variable ξ from R toR+ iπ , F1 is analytic, but the factor S(ζ ) has poles at ζ = 2π i

3 , π i
3 ,

the residues of which we denote by R, R′, respectively. Using [12, Equation (3.14)], the
difference of the boundary values in the integrals (10c) and (10d) gives the following
residue

(10c) + (10d) = −( res
ξ−ρ= 2π i

3

+ res
ξ−ρ= π i

3

)

∫

dρ F1(ξ)g−(ξ)�(ρ)	(ρ)S(ξ − ρ)

= −2π i R
∫

dρ F1

(

ρ +
2π i

3

)

g−
(

ρ +
2π i

3

)

�(ρ)	(ρ)

−2π i R′
∫

dρ F1

(

ρ +
π i

3

)

g−
(

ρ +
π i

3

)

�(ρ)	(ρ). (13)
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Comparing this with (12) and (11), we find

−(13) = (12) + (11),

where we used that R′ = −R, η = i
√
2π |R|, R = i |R| and g+(ρ) = g−(ρ ± iπ).

Hence, the matrix element 〈�, [A,˜φ′(g)]	〉 vanishes.

4.2. A guesswork for the bound-state operator. Our operator χ( f ) appears to be new
and it is worth presenting how one can “find” it by formal arguments. Again in this
subsection we ignore all subtleties with domains and assume that we can compute
everything termwise.

Borchers et al. proved in [10] that, for any Haag–Kastler net with mass eigenvalues,
one can construct polarization-free generators, namely (unbounded) operators which
create one-particle states from the vacuum and are affiliated to the von Neumann algebra
associated to wedges. In particular, if we could construct a Haag–Kastler net for a given
scattering function S, then there would have to be polarization-free generators. On the
other hand, the expansion (4) in Sect. 4.1 should exist, possibly in a modified form. Let
us assume that B is a polarization free generator. As B generates only a one-particle
state from the vacuum, by a (termwise) straightforward computation, one realizes that
f [B]
m,0 must vanish except m = 0, 1. We may assume that B is symmetric, then also f [B]

0,n
survive only if n = 0, 1.

Let h be a real test function such that supp h ⊂ WL − (0, r). The field φ(h) =
z†(h+) + z(J1h−) of [27] has only (m, n) = (0, 1), (1, 0) components. As we know
that this cannot be wedge-local, let us consider the simplest variation of it. The (0, 0)
component is a scalar and has no effect on the commutation relations. Assume B has
a (1, 1) component, namely that B = z†(h+) + X + z(J1h−), that X preserves the
one-particle space and X� = X∗� = 0.

Suppose that we have the Haag–Kastler net. If B is affiliated to A(WL − (0, r)),
then it must commute with operators A which arise from form factors as in Sect. 4.1.
Especially, for a one-particle vector �, the commutator 〈�, [A, B]�〉 must vanish. We
may assume that both A and B are symmetric, and thus h+ = J1h−. The vector � is
annihilated by z(J1h−) and X , therefore, the only remaining terms are

〈�, [A, B]�〉 =〈�, Az†(h+)�〉 + 〈A�, X�〉 − 〈z†(h+)�, A�〉
=
∫

dθ1dθ2

(

f [A]
0,2 (θ1, θ2)h

+(θ2)�(θ1) − f [A]
1,1 (θ2, θ1)h+(θ2)�(θ1)

)

+ 〈A�, X�〉
=
∫

dθ1dθ2
(

F [J A∗ J ]
2 (θ1 + i0, θ2 + i0)h+(θ2)

− F [J A∗ J ]
2 (θ1 + i0, θ2 + iπ − i0)h+(θ2 + π i)

)

�(θ1) + 〈A�, X�〉
=
∫

dθ1 iηF [J A∗ J ]
1

(

θ1 +
π i

3

)

h+
(

θ1 +
2π i

3

)

�(θ1) + 〈A�, X�〉

=
∫

dθ1 iηF [J A∗ J ]
1 (θ1)h

+
(

θ1 +
π i

3

)

�

(

θ1 − π i

3

)

+ 〈A�, X�〉

=
∫

dθ1 iηF [A]
1 (θ1 + iπ − i0)h+

(

θ1 +
π i

3

)

�

(

θ1 − π i

3

)
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+ 〈A�, X�〉
= − 〈A�,χ(h)�〉 + 〈A�, X�〉,

where in the 3rd equality we used S-periodicity of F2, and the relations between form
factors of A and J A∗ J in [16, Proposition 8.9] (which is also used in the 6th equality).
In the 4th equality, we used the residue formula (P7) and then in the 5th equality we
shifted the integral contour by −π i

3 , where we assumed that � does not have poles
(again, this is a guesswork). Now, if we assume the Reeh–Schlieder property for the net
A, there must be sufficiently many local observables A, in particular, there are many
such A’s that H1 is spanned by the one-particle components of A�’s. As we require
that the above commutator should vanish, it must hold that X� = χ(h)�. Namely, we
correctly guessed the one-particle action of χ(h). We know that this choice works, as
we saw in Sect. 3.3.

Note that χ(h) cannot be written exactly in the form of (4), due to its subtle do-
main property. Recall [16] that the expansion (4) is available only for certain regular
operators. We were fortunate that this guesswork resulted in a correct answer, but in
more complicated models it fails [17]. On the other hand, if the Haag–Kaslter net for
the model existed at all, there would have to be polarization-free generators [10]. This
failure might be a consequence of the complicated domains, or one would have to add
higher component in the expansion (4). After all, we are not excludingwedge-local fields
which are more complicated, yet have better domain properties.

5. Conclusions and Outlook

In the present work, our aim was to extend Lechner’s construction of two-dimensional
models of quantumfield theorywith a factorizing scatteringmatrix tomodels with bound
states,which are associatedwith poles of theS-matrix in the physical strip.Weconsidered
scalar S-matrices with only one pair of poles in the physical strip, corresponding to two
bosons of the same species which fuse into another boson of the same species.

The properties of the new class of S-matrices include the presence of these extra
poles in the physical strip (and the values of the corresponding residues of the S-matrix
at these points) and the Bootstrap equation, in addition to the properties that can be found
in [28]. Quantum integrable models with underlying S-matrix fulfilling this new set of
properties include the Bullough–Dodd model.

For this class of S-matrices we constructed wedge-local fields ˜φ( f ) by adding the
bound-state operator χ to the wedge-local field of Lechner. However, with the simple
domain taken here, the field˜φ( f ) is expected not to be self-adjoint andwehave not shown
strong commutativity. Rather, we have shown that the field ˜φ( f ) weakly commute with
its reflected field ˜φ′(g) on a common domain.

Furthermore, we gave a partial answer to the question of compatibility of our con-
struction with the form factor program. In particular, we conjectured that a suitable
variation of the characterization theorem for local observables in [12] holds in our class
of models: we argued explicitly that this is true at least in one-particle states.

Open problems

One of the major open problems is to show the strong commutativity of the fields ˜φ( f )

and ˜φ′(g) in order to obtain a Borchers triple. This would mean not only proving the
existence of self-adjoint extensions of the two fields, but also selecting extensions that
strongly commute. This is a highly non-trivial task for which the results available in the



Wedge-Local Fields in Integrable Models 691

literature can offer only partial answers. Some results on the construction of extensions
have already been obtained by one of the authors [45].

Following Buchholz and Lechner [14], the natural next step would then be to show
the Bisognano–Wichmann property, i.e., the geometric action of the modular group.
Thereafter, one would like to establish modular nuclearity condition [29] in order to
prove that the wedge algebras so generated are split, and therefore the non-triviality of
the double-cone algebras.

Another interesting problem would be an extension of our construction, valid for the
moment only for scalar S-matrices, to a larger class of integrable models with bound
states, such as the Z(N )-Ising model [5] and the sine-Gordon model [46] for a certain
range of the coupling constant. Indeed, in the Z(3)model one canfind amulti-component
field which fulfills weak wedge-commutativity at least on the level of formal computa-
tion [17]. In the Z(N ) (with N > 3) and sine-Gordon models, this will hold only for
certain components of the fields. The construction involves a multi-component gener-
alization of the bound-state operator χ , which will now modify the multi-component
field of Lechner–Schützenhofer [33]. The matrix-valued analogue of the properties of S
introduced in Sect. 3 will need to include the Yang–Baxter equation, which will play an
important role in the proof of wedge-commutativity.
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A. Classification of Scalar S-Matrices

Herewe classify all the functions S(ζ )which satisfy the conditions (S1)–(S5) in Sect. 3.1.
Let us take such an S. By (S5), S has simple poles at ζ = π i

3 , 2π i
3 . Recall the function

f 2
3
(ζ ) = − sinh 1

2

(

ζ + π i
3

)

sinh 1
2

(

ζ − π i
3

)

sinh 1
2

(

ζ + 2π i
3

)

sinh 1
2

(

ζ − 2π i
3

) ,

which satisfies (S1)–(S4). It has simple poles exactly at ζ = π i
3 , 2π i

3 , and is bounded
below in R + i[0, π ]. Let us consider

S(ζ ) = S(ζ )

f 2
3
(ζ )

.

Now this S satisfies (S1)–(S4), is analytic and bounded in R + i(0, π). Therefore, by
the exponential map from R + i(0, π) onto the unit disk in C, it follows that S is an
inner function and admits the factorization S = c · S∞ · SBlaschke into a constant c with
|c| = 1, the singular factor S∞ which has no zero and the Blaschke factor SBlaschke [38,
Theorem 17.15]. Both of them satisfy (S1). See also [35, Appendix A] and [32, Section
1] for its description in R + i(0, π).

http://creativecommons.org/licenses/by/4.0/
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Let us look at the bootstrap equation (S4), where the boundary value is represented

as S(θ) = S(θ+ π i
3 )

S(θ+ 2π i
3 )

. The right-hand side is meromorphic, therefore, S must have a

meromorphic continuation in a neighborhood of R as well. Yet, by (S1), the boundary
value has modulus 1, hence it is actually continuous in a neighborhood of R. In general,
an inner function can have essential singularities at the boundary. It follows from the
observations above that the only possible essential singularities in the picture of R +
i(0, π) is θ = ±∞, as in [35, Appendix A].

By the uniqueness of the factorization, the properties (S2)–(S3) must be satisfied
by the constant, the singular and the Blaschke factors separately. Therefore, c = ±1.
Consider next the singular part S∞. It admits an integral representation as [38, Theorem
17.15] and it has essential singularities at points in the support of the measure. By
considering the symmetry (S2) and the possible essential singularities as above, it has
the form S∞(θ) = eia(eθ−e−θ ), a ≥ 0. By a straightforward computation, this satisfies
(S4) and S∞(π i

3 ) = S∞( 2π i
3 ) > 0.

Let us then turn to the Blaschke factor SBlaschke . It can be written as the following
infinite product:

SBlaschke (ζ ) =
∏

n

cn
eζ − eαn

eζ − eαn
,

where αn ∈ R + i(0, π) and cn = −|βn |
βn

1−βn

1−βn
, is a constant, in accordance with [38,

Theorem 15.21], where βn = eαn −i
eαn+i (and cn = 1 if αn = π i

2 (and hence βn = 0)
by convention). These αn’s are exactly the zeros of SBlaschke . By (S2), αn is purely
imaginary or it must appear in a pair with −αn (including multiplicity). Next, by (S3),
Im αn = π

2 or it must appear in a pair with iπ − αn . In each case, it is straightforward

to see that the constant factors cn cancel each other and SBlaschke (ζ ) =∏n
eζ −eαn

eζ −eαn .
As S and S∞ satisfy the bootstrap equation (S4), so does c · SBlaschke . Therefore, if

there is any αn such that Im αn < π
3 , then 0 < Im αn + π

3 < π and αn + π i
3 must be

another zero. If π
3 < Im αm , then by combining (S3) and (S4), we may assume that there

is an αn such that Im αn < π
3 .

We summarize these observations. Let αn with Re αn �= 0 appear in the product.
Then, if Im αn = π

3 (if Im αm = 2π
3 , by (S3) we may assume that there is αn such that

Im αn = π
3 ), then the factor

(eζ − eαn )(eζ − e−αn )(eζ − eπ i−αn )(eζ − eπ i+αn )

(eζ − eαn )(eζ − e−αn )(eζ − eπ i−αn )(eζ − eπ i+αn )

must appear. If Im αn �= π
3 , then we may assume that Im αn < π

3 and

(eζ − eαn )(eζ − e−αn )(eζ − eπ i−αn )(eζ − eπ i+αn )

(eζ − eαn )(eζ − e−αn )(eζ − eπ i−αn )(eζ − eπ i+αn )

× (eζ − eαn+ π i
3 )(eζ − e−αn+ π i

3 )(eζ − eπ i−(αn+ π i
3 ))(eζ − eπ i+αn+ π i

3 )

(eζ − eαn− π i
3 )(eζ − e−(αn+ π i

3 ))(eζ − eπ i−αn+ π i
3 )(eζ − eπ i+αn+ π i

3 )

must appear. Both of these factors satisfy (S1)–(S3), and also (S4) by straightforward
computations. Furthermore, these factors take positive numbers if ζ is purely imaginary:
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each of these products satisfies (S2), hence it takes non-zero real value on the imaginary
axis, therefore, it has a fixed sign, but at ζ = 0 it can be directly checked that it takes 1,
hence must take positive values on the imaginary axis.

Finally, if SBlaschke has a zero at αn such that Re αn = 0, then the factors f Bk
3 − 2

3
(ζ )

f− Bk
3

(ζ ) of Sect. 3.1 must appear. These factors satisfies (S1)–(S4), and f Bk
3 − 2

3
(π i
3 )

f− Bk
3

( 2π i
3 ) = f Bk

3 − 2
3
( 2π i

3 ) f− Bk
3

( 2π i
3 ) < 0. Now, as the Blaschke factor is deter-

mined by zeros, SBlaschke satisfies (S4) by itself, which implies that c also must sat-
isfy (S4), namely c = 1. In order to assure (S5), SBlaschke can have an odd number
of factors as f Bk

3 − 2
3
(ζ ) f− Bk

3
(ζ ) (infinite is impossible, because S(ζ ) would have an

essential singularity at ζ = 0, which we have excluded), so that the residues of the
factor f 2

3
gets multiplied by a negative number in the whole two-particle S-matrix

S(ζ ) = f 2
3
(ζ ) · S∞(ζ )SBlaschke (ζ ) (recall that f 2

3
has only simple poles). Now it is

obvious that SBlaschke (0) = 1.
Finally, a general S is of the form

S(ζ ) = f 2
3
(ζ ) · eia(eζ −e−ζ )SBlaschke (ζ ),

where the Blaschke factor SBlaschke contains only combinations specified above and
should satisfies the Blascke condition.

Now, as one has f 2
3
(0) = −1, eia(e0−e0) = 1, SBlaschke (0) = 1, it holds that S(0) =

−1, namely we have (S6).

B. Lemmas on Shifting Integral Contour

Here we state some easy facts explicitly for the sake of clarity.

Lemma B.1. Let A1 and A2 be positive self-adjoint operators which strongly commute.
If 	,� ∈ Dom(A1) ∩ Dom(A2), then for any 0 ≤ ε ≤ 1, we have that 	,� ∈
Dom(A1−ε

1 Aε
2) and it holds that

〈A1�, A2	〉 = 〈Aε
1A1−ε

2 �, A1−ε
1 Aε

2	〉.
This might seem obvious, and indeed the proof is not too complicated, yet one should

note that A1A2	 etc. are ill-defined.

Proof. Consider the joint spectral decomposition with respect to A1 and A2. Any vector
	 is a (possibly vector-valued) L2-function on this spectral space of two variables a1, a2,
such that A1 and A2 act by multiplication with ea1 , ea2 , respectively.

Now, the hypothesis that 	 ∈ Dom(A1) means that 	(a1, a2) and ea1	(a1, a2)

are both L2. This implies that e2(1−ε)a1 |	(a1, a2)|2(1−ε) is L
1

1−ε . Similarly, if 	 ∈
Dom(A2), then ea2	(a1, a2) is L2 and hence, e2εa2 |ξ(a1, a2)|2ε is L

1
ε .

The first claim of the present lemma is that 	 ∈ Dom(A1−ε
1 Aε

2), which is equivalent
to e2(1−ε)a1+2εa2 |	(a1, a2)|2 being L1. This is a consequence of Hölder’s inequality and
of the estimates above.
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The desired equality is obtained simply by writing it as the spectral integral:

〈A1�, A2	〉 =
∫

da1da2 ea1�(a1, a2)e
a2	(a1, a2)

=
∫

da1da2 eεa1+(1−ε)a2�(a1, a2)e
(1−ε)a1+εa2	(a1, a2)

= 〈Aε
1A1−ε

2 �, A1−ε
1 Aε

2	〉.
��

Lemma B.2. Let K be a Hilbert space. Let ε > 0 and 	,� be K-valued analytic
functions in R+ i(−ε, 0) such that for −ε < α < 0, 	(θ + iα),�(θ + iα) are K-valued
L2-functions in θ , uniformly bounded in α. Then it holds that

∫

dθ 〈�(θ − εi),	(θ)〉 =
∫

dθ 〈�(θ),	(θ − εi)〉.

Proof. � and 	 can be considered as vectors in L2(R, dθ) ⊗ K and in the domain of
the operator A ⊗ 1, where (Aitξ)(θ) = ξ(θ + tε). One can either apply Lemma B.1,
or essentially repeat the proof of Proposition 3.1 by scaling the variable and putting a
constant instead of f +. ��

C. Comments on the Domains

We have seen that, if f is a real test function supported in WL, then χ( f ) is a symmetric
operator. Then the question arises whether χ( f ) is (essentially) self-adjoint and, if not,
what the appropriate extension is.

There are many self-adjoint extensions

We claim that the answer to the first question is in general no. Indeed, if one considers a
similar operator which is a product of a multiplication operator by an analytic function
and an imaginary shift, then its properties depend very much on the analytic function.
More precisely, the deficiency indices of the product operator are tightly related to the
zeros of the analytic function and its decay rate as |Re ζ | → ∞ [45]. In our case, as f +

is strongly decreasing, we expect that χ1( f ) = x f �
1
6 should have deficiency indices

(∞,∞).
It is actually very easy to see that there are more than one self-adjoint extension if

f is of a special form. Namely, let f = h ∗ h̄ be a convolution. Then, after simple
computations, one obtains

χ1( f ) ⊂ √2π |R| · xh�
1
12 · �

1
12 x∗

h ,

χ1( f ) ⊂ √2π |R| · �
1
12 yh · y∗

h�
1
12 ,

where xh is defined in Proposition 3.1 and yh is the multiplication operator by the

function h+(θ + π i
2 ). It is easy to see that �

1
12 x∗

h and �
1
12 y∗

h are densely defined and

closed, therefore xh�
1
12 and yh�

1
12 are closable. For any closed operator X , X∗ X is self-

adjoint by a theorem of von Neumann [37, X.25]. Therefore, we have two extensions

xh�
1
12 · �

1
12 x∗

h and �
1
12 yh · y∗

h�
1
12 , which are self-adjoint due to the theorem of von
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Neumann. One can see that they are indeed different extensions when h+ has zeros in
the strip.

Self-adjoint extensions ofχn( f ) aremore complicated.One can find extensions using
the above decomposition of χ1( f ) and again the theorem of von Neumann, but it is hard
to establish strong commutativity between ˜φ( f ) and ˜φ′(g).

Therefore, the situation is quite different from that of [27]. There, the wedge-local
field φ( f ) (for an analytic S, hence without the χ( f ) term) is bounded on each subspace
of a fixed particle number, essentially self-adjoint on the space of finite particle number
and bounded by the Hamiltonian. In particular, there is only one self-adjoint extension,
which is the closure of φ( f ) defined on the space of finite particle number.

Standard tools fail

In our case, χ( f ) is already unbounded on each of Hn . It is neither bounded by the
Hamiltonian, therefore one cannot use Nelson’s commutator theorem with it [37, Theo-
rem X.36]. The imaginary shift operator � (or some powers of it) can bound χ1( f ), but
it cannot bound the commutator. Indeed, the self-adjoint domain should highly depend
on f , therefore the commutator theorem which would imply essential self-adjointness
on the domain of a common operator should not be used here.

Another standard tool to prove self-adjointness is the analytic vector theorem of
Nelson [37, Theorem X.39]. Again, this theorem cannot be used here because it would
prove essential self-adjointness, while the right self-adjoint domain of χ1( f ) should
depend on f . But it is interesting to see that the vacuum vector � is not an analytic
vector for ˜φ( f ) = φ( f ) + χ( f ). Indeed, ˜φ( f )� = f + ∈ H1. But by definition f +

has a double-exponentially diverging continuation on the lower strip, and the second
application of ˜φ( f ) which contains χ( f ) requires such a continuation. Although χ( f )

contains the multiplication by f +(· + iπ
3 ), altogether it is generically not L2. The third

application of˜φ( f ) is even worse. In other words,� is not in the naive domain of˜φ( f )2.
As χ( f ) is generically not essentially self-adjoint on a naive domain, there is no

hope to apply simply perturbation results, e.g. the Kato–Rellich theorem [37, Theorem
X.12], which would imply that the perturbed operator has again the same domain of
self-adjointness of the unperturbed operator under control.

Different extensions correspond to different physics

As remarked above, it is not difficult to find a single self-adjoint extension of χ( f ).
Thereafter, one can show that ˜φ( f ) is essentially self-adjoint on a simple domain2.
However, proving that ˜φ( f ) and ˜φ′(g) strongly commute turns out to be hard. Indeed,
as the operators ˜φ( f ) and ˜φ′(g) depend on the chosen extensions, we have to choose
right extensions so that the two extensions strongly commute.

Neither is this problem trivial, nor should it be dismissed as “technical”. The problem
of self-adjoint extensions appears also in the study of differential operators. It is very
well known (e.g. [37, Section X.1, Example 2]) that different self-adjoint extensions of
a same differential operator may correspond to different boundary conditions, therefore
to different systems and different physics, depending on interpretations.

We will need self-adjoint extensions of ˜φ( f ) and ˜φ′(g) which strongly commute.
As the strong commutativity depends on the chosen extensions, finding the right self-
adjoint extensions of χ( f ) and χ ′(g) is unavoidable. By comparing with the situation of
differential operators, it is reasonable to believe that the problem of several self-adjoint

2 We owe this argument to Henning Bostelmann.
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extensions, which does not appear in the cases with analytic S-matrices, is rooted in the
essential properties of bound states, therefore worth a serious investigation.

We plan to systematically study this issue in [45].
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