Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation

Supplementary Information

CLAUDIA BARELLI^{1,2,3*}, DAVIDE ALBANESE^{4*}, CLAUDIO DONATI⁴, MASSIMO PINDO⁵, CHIARA DALLAGO⁵, FRANCESCO ROVERO², DUCCIO CAVALIERI⁴, KIERAN MICHAEL TUOHY⁶, HEIDI CHRISTINE HAUFFE¹ & CARLOTTA DE FILIPPO^{6,7}

¹ Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy

² Tropical Biodiversity Section, MUSE – Museo delle Scienze, Corso del Lavoro e della Scienza 3,
38123 Trento, Italy

³ Reproductive Biology Unit, German Primate Centre, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany

⁴ Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy

⁵ Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy

⁶ Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy

⁷ Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy

^{*} These authors contributed equally to this work.

Photo courtesy of Raffaele Merler.

Supplementary Figure S1. Red colobus monkeys (*Procolobus gordonorum*) living in the Udzungwa Mountains (Tanzania) are arboreal forest dwellers. This primate species provides an excellent model for investigating variation in gut microbial communities across host habitats because it has a specialized diet, making it particularly sensitive to habitat degradation. Colobines are mainly folivorous, selective feeders, preferentially consuming fresh young shoots and leaves¹ which typically have a higher energy and nutrient concentration and lower fibre content than mature leaves². Moreover, like other colobines, the Udzungwa red colobus is a foregut fermenter with a complex four-chambered stomach³. The stomach is also enlarged, allowing for food accumulation and prolonged digestion. As in ruminants, such a protracted digestive retention time enables intestinal bacterial communities to ferment dietary polysaccharides, allowing the host to extract sufficient energy from its herbivorous diet.

Photo courtesy of Francesco Rovero (a) and Rasmus Gren Havmøller (b).

Supplementary Figure S2. Ground views of the two selected forest blocks in the Udzungwa Mountains, Magombera (a) and Mwanihana (b). The Udzungwa Mountains (7°40' S to 8°40' S and 35°10′ E to 36°50′ E; Fig. 1, main text) extend over 19,000 km² and represent a mosaic of moist forest blocks of variable sizes (from 12 km² to >500 km²), interspersed with naturally drier areas and/or habitat modified by agriculture, human settlements, and logging⁴. Rainfall in the moister forest slopes ranges from 2,000 to 2,500 mm/yr, concentrated in two periods: November-December and March–May. Overall, elevation spans from 270 (Kilombero Valley in the eastern side) to 2,576 m a.s.l. (Mount Luhomero). The two study forests have contrasting habitat types, elevation gradients, and protection levels: Magombera (Ma) is a remnant, ground-water and evergreen lowland forest patch which is separated from other forest blocks by the surrounding intensive agriculture and human settlements⁵. In addition, Ma is one of the smallest forest patches in the Udzungwas (Fig. 1 main text), it is not protected and 40% is heavily degraded⁵, which make the forest encroached by nearby villagers for firewood, pole and timber harvesting and occasionally for hunting. Instead, the Mwanihana forest (Mw) is a forest escarpment with forest zones ranging from lowland deciduous to montane evergreen⁶. Mw is well protected and it is part of the Udzungwa Mountains National Park (UMNP).

Supplementary Figure S3. Box-plots of significant bacterial population differences at the Genus level (Welch's t-test, P<0.05).

Supplementary Figure S4. PCoA of the between samples distances measured using weighted UniFrac distance.

Supplementary Figure S5. Pairwise unweighted UniFrac distances between sympatric groups, stratified by forest (P=0.124, Wilcoxon rank sum test).

Supplementary Figure S6. T-test statistics of the relative abundances of KEGG modules grouped by biochemical pathway relative to PICRUSt analysis. Colours of the bars indicate significance measured by False Discovery Rate. Red: q<0.005; orange: 0.005<=q<0.05; grey: not significant.

Magombera

Mwanihana

ID	Altitude	Group	Forest	Lat	Long	Date
MA03_01	282	Ma1	Magombera	-7.8127	36.975	31/01/13
MA03_02	282	Ma1	Magombera	-7.8127	36.975	31/01/13
MA03_03	282	Ma1	Magombera	-7.8127	36.975	31/01/13
MA03_04	282	Ma1	Magombera	-7.8127	36.975	31/01/13
MA03_05	282	Ma1	Magombera	-7.8127	36.975	31/01/13
MA06_01	283	Ma2	Magombera	-7.8335	36.9811	30/01/13
MA06_02	283	Ma2	Magombera	-7.8335	36.9811	30/01/13
MA06_03	283	Ma2	Magombera	-7.8335	36.9811	30/01/13
MA06_04	283	Ma2	Magombera	-7.8335	36.9811	30/01/13
MA06_05	283	Ma2	Magombera	-7.8335	36.9811	30/01/13
MA20_01	264	Ma3	Magombera	-7.83665	36.99762	01/02/13
MA20_03	264	Ma3	Magombera	-7.83665	36.99762	01/02/13
MA20_04	264	Ma3	Magombera	-7.83665	36.99762	01/02/13
MA25_01	283	Ma4	Magombera	-7.81587	36.95482	31/01/13
MA25_02	283	Ma4	Magombera	-7.81587	36.95482	31/01/13
MA25_04	283	Ma4	Magombera	-7.81587	36.95482	31/01/13
Mw_01	492	Mw1	Mwanihana	-7.849439	36.884545	28/08/13
Mw_02	492	Mw1	Mwanihana	-7.849439	36.884545	28/08/13
Mw_09	492	Mw1	Mwanihana	-7.849439	36.884545	28/08/13
Mw_12	492	Mw1	Mwanihana	-7.849439	36.884545	28/08/13
Mw_07	643	Mw2	Mwanihana	-7.825414	36.887414	30/08/13
Mw_08	643	Mw2	Mwanihana	-7.825414	36.887414	30/08/13
Mw_10	643	Mw2	Mwanihana	-7.825414	36.887414	30/08/13
Mw_11	643	Mw2	Mwanihana	-7.825414	36.887414	30/08/13
Mw_13	643	Mw2	Mwanihana	-7.825414	36.887414	30/08/13
Mw_14	643	Mw2	Mwanihana	-7.825414	36.887414	30/08/13
Mw_15	643	Mw2	Mwanihana	-7.825414	36.887414	30/08/13
Mw_03	572	Mw3	Mwanihana	-7.77507	36.902821	01/09/13
Mw_04	572	Mw3	Mwanihana	-7.77507	36.902821	01/09/13
Mw_05	572	Mw3	Mwanihana	-7.77507	36.902821	01/09/13
Mw_06	572	Mw3	Mwanihana	-7.77507	36.902821	01/09/13

Supplementary Table S1. Sample metadata. Information includes sample IDs, site altitude, animal group, forest, latitude, longitude, date of sampling.

Phylum		
	Magombera	Mwanihana
Firmicutes	75.416	65.977
Bacteroidetes	12.117	17.543
Unknown	9.145	11.679
Verrucomicrobia	1.697	1.954
Spirochaetes	1.088	2.008
Proteobacteria	0.426	0.734
Tenericutes	0.077	0.075
Elusimicrobia	0.022	0.010
TM7	0.005	0.008
Cyanobacteria/Chloroplast	0.003	0.008
Actinobacteria	0.003	0.002
Fibrobacteres	0.002	0.000
Lentisphaerae	0.000	0.002
Family		
	Magombera	Mwanihana
Ruminococcaceae	41.932	35.731
Unknown	30.133	34.861
Lachnospiraceae	18.115	15.171
Porphyromonadaceae	6.195	8.514
Spirochaetaceae	1.088	1.769
Clostridiales_Incertae Sedis XIII	0.718	0.416
Bacteroidaceae	0.598	1.934
Prevotellaceae	0.467	0.882
Erysipelotrichaceae	0.330	0.277
Campylobacteraceae	0.092	0.092
Anaeroplasmataceae	0.077	0.075
Peptococcaceae 1	0.065	0.025
Clostridiaceae 1	0.063	0.000
Sutterellaceae	0.058	0.095
Elusimicrobiaceae	0.022	0.010
Oxalobacteraceae	0.020	0.051
Bacillaceae 1	0.014	0.007
TM7_genera_incertae_sedis	0.005	0.008
Chloroplast	0.003	0.008
Mycobacteriaceae	0.002	0.000
Streptomycetaceae	0.002	0.000
Peptostreptococcaceae	0.002	0.023
Fibrobacteraceae	0.002	0.000
Leuconostocaceae	0.000	0.002
Verrucomicrobiaceae	0.000	0.003
Acetobacteraceae	0.000	0.015
Sphingomonadaceae	0.000	0.008
Pseudomonadaceae	0.000	0.002
Victivallaceae	0.000	0.002

Supplementary Table S2. Mean relative abundance (%) of OTUs at the phylum and family level in the Magombera and Mwanihana forests.

Mwanihana	Magombera
Agelaea unknown	Allophylus pervillei
Alangium chinense	Anthocleista grandiflora
Albizia gummifera	Aoranthe penduliflora
Allanblackia ulugurensis	Burttdavya nyasica
Alsodeiopsis schumannii	Calycosiphonia spathicalyx
Anthocleista grandiflora	Cordia peteri
Aphloia theiformis	Craterispermum schweinfurthii
Baphia unknown	Dialium holtzii
Beilschmiedia kweo	Didymosalpinx norae
Bersama abyssinica	Diospyros abyssinica
Bridelia micrantha	Diospyros mespiliformis
Canthium oligocarpum	Diospyros zombensis
Canthium unknown	Dracaena mannii
Casearia gladiiformis	Erythrophleum suaveolens
Cassipourea gummiflua	Eugenia capensis
Cassipourea malosana	Gardenia posoquerioides
Cassipourea pachysiphon	Guibourtia schliebenii
Cephalosphaera usambarensis	Haplocoelopsis africana
Chionanthus mildbraedii	Isoberlinia scheffleri
Chrysophyllum gorungosanum	Khaya anthotheca
Chrysophyllum polystachyus	Kraussia speciosa
Cleistanthus polystachyus	Leptactina platyphylla
Coffea mongensis	Lettowianthus stellatus
Cola greenwayi	Ochna holstii
Cola unknown	Oxyanthus pyriformis
Combretum unknown	Oxyanthus pyriformis subsp. tanganyikensis
Craterispermum schweinfurthii	Parkia filicoidea
Croton sylvaticus	Polyalthia verdcourtii
Dialium holtzii	Pseudobersama mossambicensis
Dichapetalum unknown	Psychotria schliebenii
Didymosalpinx norae	Pterocarpus mildebraedii
Diospyros amaniensi	Rawsonia lucida
Diospyros amaniensis	Rinorea ferruginea
Dovyalis unknown	Rothmannia macrosiphon
Dracaena mannii	Sorindeia madagascariensis
Drypetes gerrardii	Synsepalum brevipes
Drypetes mannii	Tabernaemontana pachysiphon
Drypetes parvifolia	Tapura fischeri
Drypetes usambarensis	Tarenna pavettoides
Drypetes usambarica	Tetrapleura tetraptera
Englerophytum natalense	Treculia africana
Ficalhoa laurifolia	Vepris amaniensis
Ficalhoa laurifolia Hiern	Vitex doniana
Ficus unknown	Vitex mossambicensis
Flacourtia indica	Xylopia longipetala
Funtumia africana	
Garcinia buchananii	
Garcinia kingaensis	
Grewia mildbraedii	

Halleria lucida	
Harungana madagascariensis	
Heinsenia diervilleoides	
Hirtella zanzibarica	
Ilex mitis	
Ixora scheffleri	
Keetia unknown	
Kraussia speciosa	
Lagynias pallidiflora	
Lagynias rufescens	
Lepidotrichilia volkensii	
Leptonychia usambarensis	
Lettowianthus stellatus	
Macaranga capensis	
Memecylon unknown	
Milicia excelsa	
Mnunganunga unknown	
Monodora unknown	
Morella salicifolia	
Myrianthus holstii	
Newtonia buchananii	
Ochna holstii	
Ochna macrocalyx	
Ocotea kenyensis	
Octoknema orientalis	
Oncoba welwitschii	
Oxyanthus speciosus	
Parinari excelsa	
Parkia filicoidea	
Pauridiantha paucinervis	
Phoenix reclinata	
Placodiscus amaniensis	
Polyalthia suaveolens	
Pteleopsis myrtifolia	
Pterocarpus tinctorius	
Pycnocoma littoralis	
Quassia undulata	
Rapanea melanophloeos	
Rawsonia lucida	
Rawsonia macrosiphon	
Rawsonia rufescens	
Ricinodendron heudelotii	
Rothmannia macrosiphon	
Rytigynia pseudolongicaudata	
Shirakiopsis elliptica	
Sorindeia madagascariensis	
Strombosia scheffleri	
Strychnos mellodora	
Strychnos mellodora Synsepalum cerasiferum	

Syzygium guineense
Tabernaemontana pachysiphon
Tabernaemontana pallidiflora
Tabernaemontana ventricosa
Tarenna pavettoides
Tarenna unknown
Tiliacora funifera
Treculia africana
Trema orientalis
Tricalysia coriacea
Tricalysia pallens
Tricalysia unknown
Trichilia dregeana
Trilepisium madagascariense
Turraea unknown
Uncaria africana
Uvariodendron pycnophyllum
Vepris amaniensis
Vepris simplicifolia
Vernonia unknown
Xymalos monospora
Zanthoxylum gilletii

Supplementary Table S3. Plant species found in the two forests, Mwanihana (data from ⁷) and Magombera (data from ⁵).

	Metric	F	R ²	Р
	u. UniFrac	6.985	0.194	0.001
Between Forests	w. UniFrac	5.983	0.171	0.001
	Bray-Curtis	6.113	0.174	0.001
Potwoon ground	u. UniFrac	1.658	0.293	0.001
(Magombora)	w. UniFrac	1.982	0.331	0.001
(Magoninera)	Bray-Curtis	1.919	0.324	0.001
Potwoon ground	u. UniFrac	2.086	0.258	0.001
(Mwanibana)	w. UniFrac	3.152	0.344	0.001
(iviwallildid)	Bray-Curtis	3.128	0.343	0.001

Supplementary Table S4. Permutational ANOVA (PERMANOVA) tests on unweighted (u.) and weighted (w.) UniFrac and Bray-Curtis distance/dissimilarity. Tests were performed using the R package vegan (adonis() function) with 999 permutations.

Group1	Group2	Distance [km]
Ma3	Ma2	1.855
Ma4	Ma1	2.253
Ma2	Ma1	2.393
Mw2	Mw1	2.671
Ma4	Ma2	3.491
Ma3	Ma1	3.635
Ma4	Ma3	5.248
Mw3	Mw2	5.812
Mw3	Ma4	7.293
Mw2	Ma4	7.509
Mw3	Mw1	8.455
Mw1	Ma4	8.591
Mw3	Ma1	8.980
Mw2	Ma1	9.761
Mw2	Ma2	10.371
Mw1	Ma1	10.769
Mw3	Ma2	10.778
Mw1	Ma2	10.793
Mw2	Ma3	12.218
Mw3	Ma3	12.472
Mw1	Ma3	12.550

Supplementary Table S5. Geographical distances (in kilometers) between GPS points of sample sites in Magombera and Mwanihana forests.

Supplementary Table S6 (external file). Predicted functional potential of the gut-associated microbiome in red colobus monkeys (*Procolobus gordonorum*).

Supplementary Table S7 (external file). Sample accession and metadata of 16 samples from Magombera and of 15 from Mwanihana forests.

Supplementary Methods

Fecal sampling

Fecal samples were collected during two dry seasons (January-February and August-September 2013). Social groups moving through the canopy were followed unobtrusively from the ground, and stools were collected once from each social group during a single defecation event (when several individuals defecate simultaneously on the forest floor). Fifteen samples from three Mw social groups, and 16 samples from four Ma groups (mean: 4.4 samples per group; range: 3-7; Fig. 1) were collected. We collected 0.5 g of each feces (representing one individual) in a 15 ml polypropylene tube pre-filled with 5 ml of RNAlater® Stabilization Solution (Ambion, Life Technologies, Monza, Italy), stored at ambient temperature for up to 8 days, shipped to Italy, and stored at -20 °C until DNA extraction. Samples were collected without direct contact or interaction with the animals and under permit approval from the Tanzania Commission for Science and Technology (COSTECH), Tanzania Wildlife Research Institute (TAWIRI) and Tanzania National Parks (TANAPA). Our data collection procedure adhered to the legal requirements and complied with the laws governing wildlife research in Tanzania.

DNA extraction, PCR amplification and pyrosequencing

For each sample, the RNAlater[®] (Ambion, Life Technologies) was removed from 500 mg aliquots of thawed fecal samples. Genomic DNA was extracted from each sample using the QIAamp DNA Stool Kit (Qiagen, Milano, Italy) following the manufacturers' instructions, quality-assessed by gel electrophoresis and the NanoDrop spectrophotometer (Thermo Fisher, Waltham, MA) and stored at -20 °C until pyrosequencing.

For each sample, we amplified the 16S rRNA gene using the special fusion primer set specific for V1-V3 hypervariable regions (8-Forward: 5'-AGAGTTTGATCMTGGCTCAG-3' and 533-Reverse: 5'-TTACCGCGGCTGCTGGCAC-3'). The forward primer included: the Lib-L primer A sequence (Roche, Branford, CT), the key sequence TCAG, the sample-specific barcode Multiplex Identifier (MID) sequence and the 8-Forward sequence. The reverse primer comprised the Lib-L primer B sequence, the key sequence TCAG and the 533-Reverse sequence. For each sample, a PCR mix of 25 μ l was prepared containing 1X PCR buffer, 1.25 U of FastStart High Fidelity polymerase blend (Roche Life Science, Milano, Italy) and dNTPs from the FastStart High Fidelity PCR system (Roche Life Science, Milano, Italy), 0,4 μ M of each primer (PRIMM, Milano, Italy) and 10 ng of gDNA.

Thermal cycling consisted of initial denaturation at 95 °C for 5 minutes followed by 35 cycles of denaturation at 95 °C for 30 seconds, annealing at 58 °C for 30 seconds, and extension at 72 °C for 1 minute, with a final extension of 8 minutes at 72 °C.

Library construction and pyrosequencing

The PCR products of the 31 samples (16 from Ma, 15 from Mw forest and three replicates) were analysed by gel electrophoresis and cleaned using the AMPure XP beads kit (Beckman Coulter, Brea, CA, USA) following the manufacturer's instructions; quantified via PCR using the Library quantification kit Roche 454 titanium (KAPA Biosystems, Boston, MA) and pooled in equimolar proportion in a final amplicon library. The 454 pyrosequencing was carried out on the GS FLX+ system using the XL+ chemistry following the manufacturer's recommendations.

Supplementary References

1. Pucci, A. & Rovero, F. Observations on the Food Habits of the Endemic Udzungwa Red Colobus (Piliocolobus gordonorum) from Different Forest Sites in the Udzungwa Mountains, Tanzania. in *Folia Primatol.* **75:406**, (2003).

2. Davies, G. & Oates, J. *Colobine Monkeys: Their Ecology, Behaviour and Evolution*. (Cambridge University Press, 1994).

3. Struhsaker, T. T. *The Red Colobus Monkeys: Variation in Demography, Behavior, and Ecology of Endangered Species*. (Oxford University Press, 2010).

4. Platts, P. J. *et al.* Delimiting tropical mountain ecoregions for conservation. *Environ. Conserv.* **38**, 312–324 (2011).

5. Marshall, A. R. *Ecological report on Magombera forest*. (2008). Available at http://www.easternarc.or.tz/MagomberaEcologicalReport2008.pdf>

6. Lovett, J. C., Marshall, A. R. & Carr, J. Changes in tropical forest vegetation along an altitudinal gradient in the Udzungwa Mountains National Park, Tanzania. *Afr. J. Ecol.* **44**, 478–490 (2006).

7. Cavanaugh, K. C. *et al.* Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. *Glob. Ecol. Biogeogr.* **23**, 563–573 (2014).