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It is well accepted that cells in the tissue can be regarded as tiles tessellating space. A

number of approaches were developed to find an appropriate mathematical description

of such cell tiling. A particularly useful approach is the so called Voronoi tessellation, built

from centers of mass of the cell nuclei (CMVT), which is commonly used for estimating

the morphology of cells in epithelial tissues. However, a study providing a statistically

sound analysis of this method’s accuracy is not available in the literature. We addressed

this issue here by comparing a number of morphological measures of the cells, including

area, perimeter, and elongation obtained from such a tessellation with identical measures

extracted from direct imaging acquired by staining the cell membranes. After analyzing

the shapes of 15,000 MDCK II epithelial cells under several conditions, we find that

CMVT reasonably well reproduces many of the morphological properties of the tissue

with an error that is between 10 and 15%. Moreover, cross-correlations between different

morphological measures are reproduced qualitatively correctly by this method. However,

all of the properties including the cell perimeters, number of neighbors, and anisotropy

measures often suffer from systematic or size dependent errors. These discrepancies

originate from the polygonal nature of the tessellation which sets the limits of the

applicability of CMVT.

Keywords: epithelial tissue morphology, Voronoi tessellation, fluorescence microscopy, nuclei segmentation,

image analysis, MDCK, cross-correlations, cell shape

INTRODUCTION

Over the last decade, a global effort to understand the underlying principles of morphogenesis,
wound healing and cancer progression has generated a tremendous momentum in studies
of epithelial tissues (Zorn et al., 2015). Consequently, significant work to characterize their
architecture and growth is being performed on in vivo and in vitro model systems, a prototypical
example of the latter being the MDCK cell monolayers (Trepat et al., 2009; Angelini et al.,
2011; Puliafito et al., 2012; Harris et al., 2013; Deforet et al., 2014; Kaliman et al., 2014;
Streichan et al., 2014; Das et al., 2015; Zehnder et al., 2015). Such progress is founded on
the remarkable advance of molecular biology and imaging techniques, whose output data
forms the basis for the quantitative analysis of the tissue development (Ntziachristos, 2010).
However, optimally harvesting this data depends on the development of image analysis tools. One
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commonly used technique for gaining information about the
internal tissue organization is based on the construction of
appropriate space tessellations.

For epithelial cells, it was suggested already in 1978 that the
polygonal Voronoi tessellation (VT) well approximates the tissue
structure (Honda, 1978). This prompted the development of in
silico models, which adopt the polygonal nature of cells and are
parametrized to reproduce the distributions of morphological
features such as the area and the perimeters of the cells. These
models typically use a free energy functional, which is minimized
to yield optimal positions of points (Sulsky et al., 1984)
(Mkrtchyan et al., 2014) generating the tessellation. Alternatively,
vertex models optimize the cell area and the boundary-length
between cells. The parameters of the free energy function yield
insights into the mechanical state of the tissue (Farhadifar et al.,
2007; Hannezo et al., 2014; Dapeng et al., 2015) even though the
one-to-one correspondence with cells in acquired images cannot
be established.

Besides modeling, VTs are often applied in direct analysis of
fluorescence microscopy data. Tessellations offer simple, fast and
fully automated access to tissue morphology, which is otherwise
difficult to obtain for a large number of cells. Tessellations are
frequently generated from the centers of mass of cell nuclei
(CMVT), which themselves are determined from segmented
images (Figures 1A–C). Today, CMVT make an integral part
of automated image analysis packages used, for example, to
delineate cancerous and healthy tissue in histopathological
samples. One of the first attempts to use CMVT in a clinically
relevant situation was to estimate cell areas and perimeters in
primary lung carcinoma (Kayser and Stute, 1989). More accurate
and complex procedures developed over time include one using
CMVT to characterize a number of morphological measures of
cell shapes in different cancers with poor and good prognosis
(Sudbø et al., 2000) Recently, CMVT became the foundation of
an automatic analysis routine and is today used for the analysis
of biopsies to distinguish cervical inter-epithelial neoplasia from
normal tissues (Guillaud et al., 2014) (Sheikhzadeh et al., 2015).

For a long time CMVT was occasionally used in studies of
reconstituted tissues as part of the effort to elucidate biochemical
and physical principles of tissue growth (Zorn et al., 2015). It was
applied in an in-vitro characterization of the effect of cell medium
on the growth of two colorectal cancer cell lines (Darro et al.,
1993). With the advance of imaging, CMVT was employed more
frequently, due to its simplicity and accessibility of nuclei staining
procedures. In recent years it was used to estimate areas of
MDCK cells within a monolayer, and to understand fluctuations
of the cell volume (Zehnder et al., 2015). Furthermore, it was
applied in the quantification of the cell proliferation rate as a
function of the cell area (Streichan et al., 2014), and in evaluating
the time dependence of the average cell elongation in MDCK
colonies (Puliafito et al., 2012).

This wide spread usage of CMVT demonstrates that this
technique is becoming an accepted and fairly common method
for reconstruction of the cells’ shapes. It is therefore surprising
that a procedure for quantitative and systematic analysis
of this approximation is still lacking in literature. While
visual comparison of the tessellation with the images of the
cell membrane suggests that CMVT can capture a number

of cell shape characteristics at least in some tissues, direct
correspondence of reconstructed shapes and the true cell
morphology was not validated in a quantitative manner on a
statistically sound sample of any system. Actually, the accuracy
of CMVT may vary in different tissues and therefore the
applicability of the tessellation should be tested whenever CMVT
is used, particularly for diagnostic purposes.

In this paper we develop a protocol for the analysis of
the accuracy of CMVT and apply this procedure to MDCK
monolayers. We show, on a sample of 15,000 MDCK-II cells
(cell areas 74–274µm2), generated by imaging 3 day old model-
tissues grown on collagen I coated elastic polyacrylamide gels
(E = 11–34 kPa), that CMVT indeed reasonably captures the
cells’ shapes. Similar results are obtained for different growth
conditions (cells grown on substrates with a Young’s modulus
of E = 0.6 kPa and glass), but with slightly lower statistics.
However, due to its intrinsic polygonal nature, CMVT cannot
reproduce the curved cell boundaries or avoid cutting through
the nucleus interior (Figure 1C). Consequently, while instructive,
the correspondence of the CMVT and the original data cannot be
significantly improved with better imaging.

To quantify the accuracy of the CMVT we analyze a number
of classic shape measures, namely cell area, perimeter, and
number of neighbors of each cell. Furthermore, we investigate cell
anisotropy measures; cell elongation (ratio of major and minor
principle axis of cells), variations in boundary-lengths (deviation
of the mean boundary-length that a cell has with each neighbor),
and co-alignment between cell body and its nucleus (the angle
between major axes of cell and nucleus). To assess the quality of
CMVT, we also determine morphological measures directly from
fluorescent images of the plasma membrane immuno-stained for
β-catenin.

EXPERIMENTAL MATERIALS AND
METHODS

Tissue Culture, Gel Preparation, and
Fluorescent Staining
MDCK II cells were purchased from ECACC (#00062107)
and cultured in MEM Earle’s medium (Biochrom, #F0325)
supplemented with 5% fetal bovine serum (FBS, #F0804, Sigma-
Aldrich), 2mM L-glutamine (Sigma-Aldrich, #G7513), 1% P/S
(penicillin, streptomycin) (Gibco, LifeTechnologies, #15070-063)
at 37◦C and 5% CO2. Cells were trypsinized and passaged every
2 or 3 days before reaching 80% confluence.

Elastic poly-acrylamide (PA) gels (E = 0.6–34 kPa)
were prepared as described earlier (Kaliman et al., 2014). In
brief: Mixtures of acrylamide (40% solution, BioRad) and bis-
acrylamide (2% solution, BioRad) were polymerized for 60min
on plasma cleaned glass cover slips (No. 1, 25mm Ø, VWR) that
were functionalized with 3-aminoproyltriethoxysiliane (APTES,
Sigma-Aldrich, Germany) for 15min and incubated with a 0.5%
solution of glutaraldehyde in PBS (Sigma Aldrich, Germany) for
30min. The hydrogels were subsequently coated with Collagen-I
(BD Biosciences) at 0.02mg/mL in a 50mM HEPES buffer using
the bi-functional cross-linker Sulfo-SANPAH (Pierce, Thermo
Scientific). For quality control, the Young’s modulus E was
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FIGURE 1 | (A) Image of cell nuclei (Hoechst stained) and segmented nuclei edges (red) (B) Non-processed membrane image (β-catenin) overlaid with the image

segmented with a watershed algorithm (blue). CMVT laid over (C) cell nuclei and (D) the membrane. Scale bar is 10µm.

measured macroscopically by a cone and plate rheometer (MCR
501, Anton Paar, Austria).

Cells were fixed using a 10% solution of formaldehyde for
5min, then washed and blocked with a 2% BSA (Sigma Aldrich)
solution in PBS, and permeabilized for using a 0.5% solution
of Triton X 100 (Carl Roth, Germany). Filamentous actin was
stained using phalloidin–tetramethylrhodamine B isothiocyanate
(TRITC, #77418-100UG, Sigma-Aldrich), β-catenin with a
combination of primary (anti-beta-catenin AB produced in
rabbit, Sigma-Aldrich) and secondary antibody (anti rabbit IgG-
FITC, Sigma-Aldrich), and the DNA in the nucleus was labeled
with Hoechst (#33342, Molecular Probes, Life Technologies).

Following this procedure, we obtain tissues of MDCK cells
grown on stiff gels in the density range of about 4800–8600
cells/mm2. On glass we explore densities of 4500–5700 cells/mm2

while on very soft substrates (E = 0.6 kPa) we systematically
recover densities of 12,500–13,000 cells/mm2.

Image Acquisition
Fluorescence microscopy was done with an inverted microscope
(Axio Observer.Z1) using a 20x objective (N-Achroplan) and the
HXP 120 illumination source (all from Zeiss, Göttingen). Images
were recorded with a Zeiss AxioCam (MRm Rev. 3 FireWire)
using the Zeiss AxioVision software package (Rel. 4.7). For the
different fluorescence channels, the following acquisition times
were used: Hoechst (nucleus) 400ms, TRITC (actin) 200ms,
and FITC (β-catenin) 500ms. All images were saved in an
uncompressed TIFF format in a resolution of 1388 (H) × 1040
(V) = 1.4 Mega Pixel with 8 bit depth resulting in a pixel
length 0.31µm. Stitching of images is not performed to avoid
introducing small shifts, which could affect the evaluation of the
morphological properties of cells extracted from such images.

Confocal imaging was performed to provide a deeper
understanding of the origins of errors associated with CMVT.
Images were acquired with a Leica LSM 5 laser-scanning
microscope equipped with a white light laser and a 63x oil
immersion objective.

Image Analysis
Morphological Properties of Cell Nuclei
Voronoi tessellations are typically obtained from immuno-
fluorescent images of cell nuclei. These images need to be
segmented with great accuracy to correctly determine all

individual objects (nuclei) and their centers of mass. As
summarized in a couple of recent reviews(Meijering, 2012)
(Xing and Yang, 2016), a number of methods were developed
for the segmentation of nuclei images over the last 50 years.
One common approach is used when a shape with several
concave points appears in the image after thresholding. In this
approach, this object is interpreted as two or more merged
nuclei (Zhang et al., 2013) (Wienert et al., 2012). However,
most common are approaches based on the watershed algorithm
(Vincent and Soille, 1991) (Malpica et al., 1997), which is either
applied to the original data, or on a distance-transformed binary
image (Xing and Yang, 2016). Watershed-based methods are
implemented for example in widely used software such as ImageJ
and CellProfiler. In most of these methods, difficulties arise when
nuclei cover a large fraction of the surface. In most of these
cases, the performance can be significantly improved by manual
pre-processing of images.

We here develop a fully automated procedure optimized for
cell monolayers where the cell nuclei do not overlap in principle.
The routine (Figure 2) is particularly tuned to recognize
boundaries between cell nuclei, hence, avoiding undercounting in
the relevant image. Its foundation is a minimum intensity mask
that is built around each nucleus, before the local threshold is
applied. It is implemented in two stages. The first stage involves
building a mask based on local intensity minima (space between
cell nuclei) and in the second stage, the mask is superimposed
on the original image before a local thresholding is performed.
The binary image obtained is used to determine the boundaries
of the cells’ nuclei. Our fully automated method works with
accuracies larger than 99% as determined by manually counting
segmentation errors (see Supplementary Section 1).

Step 1–Finding low intensity regions
Initially, the contrast of the image is increased by linear
remapping of the original image intensity range onto the
intensity interval [0, 255] (Figure 2C). To determine the mask,
the environment of every pixel in the image is tested, by creating
a 36 arms of the stencil on the circle of fixed radius r, with the
reference pixel being in the center (Figure 2A). Radius r is the
first manually adjusted parameter and depends on magnification
and camera resolution used to acquire the images. The arms of
the stencil closing 180◦ are coupled resulting in 18 arm pairs.
If extremal pixels of the arms are brighter than the reference
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FIGURE 2 | Nuclei segmentation protocol. (A) 18 pairs of stencil arms. (B) Intensity values along the two arms of the stencil making a par (blue line in the (A)

panel). In this particular example, there is at least one pair of arms for which the difference in brightness between the referent pixel and the arm ends 1I is larger than

1Ic, as shown in the graph. Consequently, this pixel contributes to the image of low intensity regions. (C) Image of nuclei after contrast increasing. (D) Image of low

intensity region acquired after the first step in the segmentation procedure. (E) Precursor of the mask emerging from the second step of the segmentation procedure.

Examples of false and disconnected dangling branches are indicated with yellow and red arrows. (F) The completed mask. (G) Segmentation mask is superimposed

onto the enhanced image before thresholding. (H) A region of interest from the original image. (I) Result of the first step of the threshold procedure. (J) Result of the

local thresholding procedure. (K) Boundaries of the nuclei (red) extracted from image after thresholding. Scale bars are 10µm.

pixel by predefined value 1Ic (Figure 2B), the reference pixel is
stored in a 2D array, which is updated at every step. After all
pixels in the image are tested the 2D array forms an image of
low intensity regions (Figure 2C), roughly representing the space
between nuclei. For distinct experimental conditions (staining
method, magnification, and camera), r and 1Ic are kept constant
for all images (r = 9, 1Ic = 3).

Steps 2 and 3–Post-processing the image of low intensity

regions and creating a mask
In the second step, pixels of low intensity which are not part
of the space between nuclei are eliminated by performing a
set of morphological operations to the image of low intensity
regions. Specifically, a pixel is set to be white (element of the
region) if more than five pixels in its 3 × 3 neighborhood

are white. Disconnected small white objects are removed from
the image. The resulting image is then subject to dilatation,
skeletonization, and to the removal of spur pixels, yielding a
one pixel thick network (Figure 2E) that is a precursor of the
future mask.

The image obtained still suffers from dangling branches in
the network, which may be false boundaries (yellow arrow in
Figure 2E), or parts of missing boundaries (red arrow). To
reconstruct these, a search for a matching dangling branch is
performed in the radius of 27 pixels (8.4µm), around each
disconnected end in the image. If a match is found and the
extension of the branch found closes an angle that is less then π /4
with the original branch, the two dangling ends are connected
with a straight line. If such a connection is not possible, and if it
is shorter than 4.2µm the dangling branch is removed.
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Unconnected branches longer than 4.2µm are extended in
the straight line until a connection with the rest of the network
is made, if they are found to cut through a middle of a cell
that has an area 140% of the average cell in the image. Using
this procedure, most of the network becomes enclosed, which
completes the mask (Figure 2F).

Thresholding
Staining the DNA of the nuclei with Hoechst can result in large
intensity variations from one nucleus to another (DNA content,
DNA compaction). As a result, a simple threshold applied to the
image underestimates the size of darker nuclei and overestimates
bright nuclei. To avoid this inconsistency, a local threshold
procedure is applied in a three-step fashion. In the first step, a
mask is superimposed to the original image, which provides a
set of well separated nuclei. In a second step a threshold with a
very high value is applied prior to an object search (Figure 2I).
Pixels belonging to each nucleus are memorized. In the third
step, the mean intensity value of the original image at those pixel
positions is calculated. The local threshold value is set to 60% of
the original mean intensity value for each nucleus individually
(Figure 2J). The objects obtained are used to find the nuclei
boundaries (Figure 2K) with an inbuilt MATLAB procedure.

Estimation of errors introduced by the segmentation routine
Segmentation issues most often occur at high densities, when
two neighboring nuclei are of very different brightness, which
results in merging two nuclei into one (undersegmentation), or
due to the inhomogeneous intensity of a nucleus, leading to the
recognition of two objects (oversegmentation). To evaluate the
accuracy of our approach, these errors are corrected manually
in 0.65% of cases on a sample of 10,000 cells. Further details,
together with the evaluation of segmentation errors for tissues
grown on glass and very soft substrates, are shown in the
Section 1 of the Supplementary Materials. Importantly, even on
very soft substrates (0.6 kPa), where the density is as high as
13,000 cells/mm2 our approach recovers 99% of cells correctly,
outperforming watershed based algorithms implemented in
ImageJ and CellProfiler software packages (Supplementary
Section 1).

Morphological properties of cell nuclei
The described protocol allows for the accurate determination
of a number of morphological measures for each shape
(nucleus) in the image including the area and the perimeter.
Moreover, centers of mass and orientations of cell nuclei were
calculated from binary images using a built-inMATLAB function
‘regionprops’ contained in the Image Processing Toolbox. This
function returns measurements of shape properties for each
connected component (nuclei) in the binary image. The
connected components are labeled using the flood field algorithm
with the connectivity four implemented in the “bwconncomp”
function.

Membrane Segmentation
Immuno-fluorescent staining, imaging and segmenting the
membrane is a key step for building a reference set of cell
shapes used as the source of the “true,” or the so-called “directly

measured,” data. Here we use β-catenin staining that reveals
the position of the cell membranes and cell-cell contacts. This
picture is subdivided into 95 parts and for each part image
contrast is increased (intensity histogram in each segment is
linearly stretched such that 1% of data is saturated at low and
high intensities). At this stage, h-minima transform is applied—
all intensity minima with an intensity depth that is smaller than
the critical value are suppressed using the “imhmin” function in
MATLAB. Subsequently, watersheding is performed with pixel
connectivity eight using a built-in MATLAB function based on
the Fernand-Meyer algorithm.

To check for the sensitivity of the segmentation protocol,
the analysis is repeated with several critical values for the
minima depth (Figures 3A–C, and Supplementary Sections 2, 3).
Setting the critical depth of the minima to 35 induced more
oversegmentation errors, while the value 45 was associated
with significant undersegmentations. Setting the depth to 40
resulted in the correct reconstruction of 98.39% cells. This was
determined on a sample of 17,850 cells grown on hard gels
by comparison with images that were manually corrected by
combining nuclei and membrane pictures. A similar extent of
errors is obtained for tissues grown on very soft gels, while
larger deviations are generated on glass due to the relatively
low intensity of β-catenin on cell-cell contacts at the observed
densities (Supplementary Section 2).

Morphological features of cells are obtained from segmented
images by a self-developed MATLAB routine. First, vertex pixels
of cells are found in the image and sorted in a clockwise
direction for each cell. Then all pixels between vertices are
detected as boundary pixels. To obtain the boundary length
between two vertices, the distance between successive boundary
pixels, adopting values of 1 or

√
2, is determined and counted.

The perimeter of the cell is the total boundary length between
all vertices of the cell. The area is the sum of the pixel areas
associated with the object, half of the area associated with
boundary pixels and a third of the vertex pixels’ area. The
number of neighbors is the number of vertices belonging to each
cell. Elongation and orientation are obtained with the MATLAB
“regionprops” function (see above).

Properties of Centre of Mass Voronoi
Tessellation
Construction of the Voronoi tessellation
With a set of distinct points in a continuous space, the Voronoi
cell is defined as the region that contains all locations closer to the
specific discrete point than to any other (Voronoi, 1908). Even
though similar regions were published by Descartes and later by
Dirichlet (2D and 3D case), the term Voronoi region is nowadays
most commonly used. It is termed after Voronoi who studied
those domains in a general n-dimensional space. In other words,
if n centers of mass of nuclei are given:c1, c2, . . . , cn, the Voronoi
region associated to the center of mass of the cell nucleus i is
given by:

VTi =
{

x ∈ X
∣

∣d (x, ci) <d
(

x, cj
)

, i 6= j
}

,
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FIGURE 3 | Sensitivity of the membrane segmentation protocol to the parameters of the watershed algorithm. Results for several choices of minimum

intensity depths are presented (A–C). Arrows point to oversegmented (red) or undersegmented (white, yellow) boundaries. Scale-bar represents 10µm.

where X is a metric space with a distance function d in 2D
Euclidian space. An algorithm to compute such tessellations
is available online (Barber et al., 1996) and is implemented
in C++, Python, and MATLAB. We use the software package
Computational Geometry for MATLAB based on Qhull
for computation of Voronoi tessellations. The set of input
parameters are the coordinates of seeding points and output is a
list of vertices defining the tessellation. As seeding points we use
the centers of mass of all cell nuclei that are completely within
the field of view. As a result, one generates a set of polygonal
non-intercepting objects, which is intrinsic to CMVT.

CMVT Morphological Measures
For an arbitrarily shaped polygonal object, all morphological
measures can be obtained from the positions of the vertices
(Goldstein et al., 2002) (Mulchone and Choudhury, 2014).
Specifically, for the polygonal cell given by n vertices (xi, yi)
characteristic for CMVT, the area A is given by:

A =
1

2

n
∑

i= 1

(

xiyi+ 1 − xi+ 1 yi
)

,

while the perimeter is simply

L =
n

∑

i=1

√

(xi−xi+1)
2 + (yi−yi+1)

2.

The sum runs over a closed path spanned by all vertices and the
n+1 element in the sum corresponds to first vertex.

The number of neighbors is in principle equal to the number
of vertexes, since corrections for vertices shared by more than
three cells are negligible in our sample.

The elongation e of the cell is calculated from the principle
(orthogonal) moments of inertia I1 and I2:

e =

√

I1

I2
.

The moments are obtained from the diagonalization of the
inertial tensor with components Ixx, Iyy, and Ixy calculated in an
arbitrary rectangular coordinate system spanning the xy plane.
As a result one finds:

I1,2 =
1

2
(Ixx + Iyy)±

√

(Ixx + Iyy)
2 − 4(IxxIyy − I2xy),

where Ixx, Iyy, and Ixy are given by the rawmoments of the density
distribution within the cell, which is assumed uniform. More
specifically:

Ixx =m02 −
m2

01

m00
, Iyy =m20 −

m2
10

m00
, and Ixy =m11 −

m10m01

m00
.

Zeroth, first and second moments of a regular 2D polygon are
listed here:

m00 = A,

m10 =
1

6

n
∑

i=1

(xi + xi+1)
(

xiyi+1 − xi+1yi
)

,

m01 =
1

6

n
∑

i=1

(

yi + yi+1
) (

xiyi+1 − xi+1yi
)

,

m11 =
1

24

n
∑

i=1

(xi − xi+1)
[

xi
(

3y2i + 2yiyi+1 + y2i+1

)

+ xi+1(y
2
i + 2yiyi+1 + 3y2i+1)

]

,

m20 = −
1

12

n
∑

i=1

(x3i + x2i xi+1 + xix
2
i+1 + x3i+1)(yi − yi+1),

m02 =
1

12

n
∑

i=1

(y3i + y2i yi+1 + yiy
2
i+1 + y3i+1) (xi − xi+1) .

The standard deviation of from the mean boundary length is
given by:

〈△L〉 =

√

√

√

√

1

n

n
∑

i=1

(
√

(xi − xi+1)
2 + (yi − yi+1)

2 −
L

n

)2

.

The orientation is determined by finding the coordinate system
where the off diagonal terms Ixy vanish:

Ix′ y′ = sinθcosθ
(

Iy − Ix
)

+ cos (2θ)Ixy =
1

2
sin (2θ)

(

Iy − Ix
)

+ cos (2θ)Ixy= 0.

This yields the orientation angle θ

θ =
1

2
tan−1

( −2Ixy
Iyy − Ixx

)

.
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RESULTS AND DISCUSSION

Generation of the Sample
The key step in the comparison of CMVT with the true
morphology of the cells is the construction of the sample of
cells, which will be used for this analysis. Our main sample (hard
PA gels) consists of 23 images of cell nuclei and membranes
(Supplementary Figures 1, 2). Those images are segmented
with the procedure described above providing centers of nuceli
(Supplementary Figure 3) as well as outlines of the cell membrane
(Supplementary Figure 4). The first criterion that a cell has to
satisfy to be part of the set is that it has to have a correctly
segmented nucleus as well as a membrane. Yet segmentation
disparities are obviously small and amount to about 2% on
hard and very soft gels, and about 7% on glass. This comprises
the direct error of the nuclei and membrane segmentation
(Supplementary Sections 1, 2 for details at different conditions).

Besides correct segmentation, in order to be part of the set,
the entire neighborhood of the cell has to be within the field of
view. This immediately excludes from the statistics all cells that
are at the outer edges of the images (15% on hard gels, 17% on
glass, and 11% on very soft gels), since for them, it is not possible
to unambiguously reconstruct the tessellation. Moreover, due
differences in positions of the cells’ nuclei and cell membranes
relative to the boundary of the image, there is a 1% difference
in the number of cells excluded in the nuclei and membrane
channel.

To eliminate false recognitions we, furthermore, introduce the
criteria that 95% of the segmented nucleus must be contained

inside the segmented membrane, which is not occupied by
another nucleus by more than 5% of the total nuclei area. Cells
that do not satisfy this criterion do not contribute to the statistics
(about 11% for hard PA gels, 28% for soft gels, and 14% for glass).
This criterion is introduced to account for the fact that imaging of
the membrane and the nuclei require focusing in different planes
above the substrate. Namely, adherent junctions associated with
β-catenin are, in our samples, positioned slightly above the
midline of the cell nucleus (Figure 4A). Therefore, the brightest
point of the β-catenin picture can be above the equator of the
nucleus along the z-axis. If even small deviation from the tubular
shape of the cell takes place, the nucleus will appear outside
its membrane in the 2D x-y projection (Figure 4B). Beside
this problem, which is intrinsic to the acquired data, similar
effects arise if the threshold value set during the segmentation
of a nuclei was set too low. However, this type of error is
significantly reduced by the variable threshold introduced in the
image analysis.

In the selection procedure described, a total of 16% of cells
grown on hard gels, 25% on glass, and 33% on very soft gels are
excluded from the statistics. While this is a significant fraction,
the advantage of this stringent set of criteria is the insensitivity
of the representative set generated on the free parameters in the
sampling protocol (Supplementary Section 2.3). This is evident
from the assessment of probability distributions calculated
for all morphological measures for the three segmentations
used in Figure 3. Here, each ensemble of segmented cells is
independently subject to the elimination procedure described
above, resulting in three representative sets (Figure 4D). These

FIGURE 4 | (A) Confocal reconstruction (z-x) of β-catenin and the nucleus shows that β-catenin is slightly above the equator of the nucleus. (B) Errors intrinsic to the

data due to deviations from the epithelial tubular structure, which in 2D projections appear as nuclei protruding into neighboring cells. Scale-bars represent 10µm. (C)

Table of K-S test results and (D) the distribution of cell areas building the data set, obtained for three different segmentation parameters.
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three “true” sets are compared with Kolmogorov-Smirnov (K-
S) test providing a p-value (probability that two distributions
are the same) as well as the maximal distance between two
cumulative distribution functions as presented in the table
(Figure 4C).

D = sup
∣

∣

∣
CDF(MMemb)1 − CDF(MMemb)2

∣

∣

∣

For example, the distribution of cell areas (Figure 4D) is fully
accepted by the K-S test with p-value equal to 100%, and the
maximal distance between two distributions being 0.32 and 0.2%
respectively, showing that all three sets are statistically nearly
identical. The number of neighbors, even though it is accepted
by the test, has the smallest p-value due to discretized nature
of this measure. Moreover, this measure is most sensitive to the
segmentation errors occurring in the immediate neighborhood
of the cell of interest. Most importantly, this analysis shows that
the uncertainties of themeasuredmorphological features are very
small, and hence can be taken as excellent representatives of the
true cell shape characteristics.

Our final set consists of 15,014 cells grown on hard substrates,
which allows us to study the morphology of cells ranging
in area from 74 to 274µm2 with an appropriate statistical
accuracy. These cells are classified in 20 subsets according to
their size (Figure 5), where each subset has a width of 10µm2

and contains at least 68 cells. For each cell, we determine
selected morphological characteristics, first from the images of
the membrane and then from CMVT. These findings are then
analyzed in detail as described below. Additionally, two smaller
sets (covering a smaller range of sizes and/or having smaller
statistics) are constructed for testing CMVT on tissues cultivated
on glass and very soft gels (Supplementary Sections 4, 5).

Comparison of Morphological Measures
Obtained from Membrane Images and
CMVT Estimates
We first compare the probability distributions of measures
emerging from tessellations MCMVT with directly measured
ones from images of the membrane MMemb (Figures 6A–C)
for basic measures such as area, perimeter, and the number of
neighbors, and (Figures 7A–C) for anisotropy measures such as
the elongation, mean deviation of the contact angle and the co-
alignment of principle axis of the cell nuclei and the cell body.
The correlation

CorrMemb
CMVT =

∑

i=1

(

MCMVT
i −

〈

MCMVT
〉)

(

MMemb
i −

〈

MMemb
〉)

√

∑

i=1

(

MCMVT
i −

〈

MCMVT
〉)2

√

∑

i=1

(

MMemb
i −

〈

MMemb
〉

)2

between the two measured and the CMVT estimated
distributions of a morphological measure is shown in the
inset. Here the average in the bracket denotes the average of
the respective distributions and the sum runs over all cells in
the set.

Furthermore, sorting by the measured areas (Figure 5), we
build 20 subclasses (indexed with k), each containing Nk cells

FIGURE 5 | Distribution of cells in the sample following their area,

classified in 20 subsets.

(Nk > 68 and every cell in the subclass is denoted by an index
i = 1 . . .Nk). The mean value of a particular morphological

measure
〈

MCMVT
k

〉

and
〈

MMemb
k

〉

is presented as function of the

mean cell area in each subclass and shown in the second row of
Figures 6D–F, 7D–F.

We compare data on cell-by-cell basis and calculate the mean
relative error ErrMCMVT

k
of a measure MCMVT comparative to

MMemb in each subclass:

ErrMCMVT
k = N−1

k

Nk
∑

i=1

∣

∣

∣
MCMVT

i −MMemb
i

∣

∣

∣
/MMemb

i

This error measure (third rows—Figures 6G,H, 7G,H) denotes
the average deviation of the CMVT estimated from the measured
magnitude of a morphological characteristic of interest as
a function of the mean cell area in a particular subclass.
Exceptionally, for the number of neighbors (Figure 6I),
and the co-alignment (Figure 7I) we report the mean
difference

〈

1MCMVT
k

〉

= N
−1

k

∑Nk

i=1

∣

∣

∣MCMVT
i −MMemb

i

∣

∣

∣.

In the insets of the graphs, we show the mean tessellation error
calculated for all of N cells in the set

〈

ErrMCMVT
〉

=
1
N

∑N
i=1

∣

∣

∣
MCMVT

i −MMemb
i

∣

∣

∣

MMemb
i

=
20

∑

k=1

Nk

N
ErrMCMVT

k .

In the case of number of neighbors and co-alignment of the nuclei
and cell body, we calculate the mean difference
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FIGURE 6 | Comparison of CMVT (yellow squares) and directly extracted morphological measures (blue circles). The graphs associated with cell areas,

perimeters and number of neighbors are shown in the first, second, and third column, respectively. Top graphs (A–C) shows the probability distribution generated by

direct measurement and estimated from the tessellation. (D–F) Second row is the average dependence of morphological characteristics on the cell area. The

associated deviations of CMVT are shown in the third row (G–I). The distributions of errors for small, intermediate-sized and large cells are shown in the bottom row

(J–L).

〈

ErrMCMVT
〉

=
1

N

∑N

i=1

∣

∣

∣
MCMVT

i −MMemb
i

∣

∣

∣
,

which averages the deviation over all cells in the sample.
Finally, we show the distribution of relative errors (MCMVT

i −
MMemb

i )/MMemb
i (Figures 6J,K, 7J,K) or the distribution of

differences (Figures 6L, 7L) in the bottom row for several subsets
of cells. Here we focus on particularly small and large cells, as well
as a set of cells of intermediate size (as indicated in Figure 5),
to see what type of cells actually contribute to the error of the
tessellation.

Basic Measures
The most commonly discussed morphological characteristic of
cells in a tissue is the average area or cell density. The analysis
of CMVT prediction shows that the distribution of cell area is
reasonably well reproduced. This agreement is confirmed by the
comparison of the probability distributions of the areas measured
and areas of cells obtained from the tessellation (Figure 6A),
and the relatively high degree of correlation between the two

distributions. However, further analysis over the subclasses
(Figure 6D), shows that the areas of larger cells are systematically
underestimated, and the areas of smaller cells overestimated by
the tessellation. Accordingly, the distributions of errors presented
for small, midsized, and large cells (Figure 6J) are not centered at
zero. For small cells the offset is toward positive values, while for
large cells is it toward negative values showing a systematic error
of the tessellation that makes small cells larger and large cells
smaller. Consequently, the mean subpopulation error increases
toward the two extrema in cell sizes (Figure 6G). Nevertheless,
the areas of the cells are reasonably well reproduced by CMVT,
and the mean error is about 10%. Notably, the mean cell size of
the set is estimatedwith 0.25% error, which justifies the utilization
of CMVT in estimations of the mean cell density, a result that
should be seen in the light of the uncertainty of the mean “true”

area
〈

MMemb
〉

of 0.04% (Figure 4D).

Significantly stronger deviations of CMVT from the true data
can be seen in the distribution of perimeters (Figure 6B). This
measure is mainly affected by the curved nature of the cell
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FIGURE 7 | Comparison of CMVT (yellow squares) and directly extracted morphological measures (blue circles). The graphs associated with cell

elongation, standard deviation of boundary length and co-alignment of the nuclei and the cell are shown in the first, second, and third column, respectively. Top

graphs (A–C) shows the probability distribution generated by direct measurement and estimated from the tessellation. (D–F) Second row is the average dependence

of morphological characteristics on the cell area. The associated deviations of CMVT are shown in the third row (G–I). The distributions of errors for small,

intermediate-sized and large cells are shown in the bottom row (J–L).

wall, which the tessellation approximates with a straight line.
Consequently, the length of the boundaries is systematically
underestimated, shifting the whole distribution to smaller values.
Naturally, best performance is obtained for relatively small cells
(Figure 6E). Nonetheless, the mean error of the tessellation is
only 9.4%. Moreover, since the perimeter of the cell is strongly
correlated with the cell area, the systematic size dependent errors
prevail and are even somewhat enhanced (Figures 7E,H,K). This
is particularly acute for large cells where CMVT underestimates
the cell perimeter more than 16% on average (Figure 7H).

The distribution of the number of neighbors (Figure 6C) is
well accounted for by the tessellation, even though the number
of cells having 6 neighbors is systematically overestimated. The
distribution is slightly skewed for both measured and tessellated
data sets, and the dependence on the cell size (Figure 6F) is well
reproduced. The more detailed analysis of the errors generated
(Figure 6L) shows that despite centering at zero, overestimates
of the number of neighbors are more common for intermediate
cell sizes, unlike for very large, and small cells that tend to

underestimate the number of neighbors. In fact, on average, in
22.3% of cases CMVT overestimates, and in 20% underestimates
the number of neighbors by one. Actually, CMVT correctly
estimates the number of neighbors only for 46.5% of cells,
which yields a low correlation index. This poor performance is
also associated with the segmentation errors in the immediate
environment of the cell of interest. Therefore, we conclude that
CMVT provides the mean number of neighbors in a quantitative
manner, but not on a single cell level.

Measures of Cell Anisotropy
Several measures such as the elongation, the standard deviation
of boundary length and the co-alignment angle between the
principle axis of the cell and its nucleus are all sensitive
to the anisotropic properties of the cell shape. For the cell
elongation and the co-alignment of the cell’s body and nuclei
CMVT only qualitatively represents the probability distributions
(Figures 7A,C). As in the case of perimeters, these measures
show systematic errors. While the mean error of the tessellation
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remains between 10 and 15%, the correlation between the
measured and the estimated distributions remains only about 0.5.
Interestingly, the elongation seems to be independent of the cell
size and is around 1.3, similar to previous reports (Puliafito et al.,
2012). However, it is systematically underestimated by CMVT—
the cells turn out more spherical than they are (Figure 7D).
Consequently, the distribution of errors is negatively skewed
(Figure 7J). At the same time, the co-alignment between the cell
and its nuclei is underestimated by the tessellation (Figure 7F).
Naturally, the distribution of errors (Figure 7L) is positively
skewed, even though the maximum of the distribution is still
around zero. Overall, these results suggest that in isotropic cells
no particular nuclear polarity takes place, as expected, a result
that is captured by CMVT but only on average and not on the
single cell level. However, since most cells in this tissue have an
elongated shape, associated with the co-alignment of the cell and
the nuclei, significant errors are generated by the tessellation.
The variation of boundary length, which should be larger for
elongated cells then for isotropic cells, itself increases linearly
with the cell area (Figure 7E), which is interesting in the light of
the insensitivity of the elongation to the cell area, and the fact that
linear increase is expected with the cell perimeter. Importantly,
CMVT well reproduces this trend, but still has mean error of
11.2% on the level of the single cell.

Unlike basic measures, the morphology measures associated
with cell anisotropy do not show errors that are strongly size
dependent, but seem systematic. Consequently, the distributions
of errors do not change shape for different subclasses of cell sizes
(Figures 7J–L).

Cross-Correlations between Measures
From the previous discussion, it becomes evident that there
must be a degree of correlations between various morphological
measures. To quantify this, we calculate the correlation

coefficient CorrM
b

Ma , which measures the extent of the linear
relationship between two estimated or directly measured
properties of the cells’ shapeM a andM b:

CorrM
b
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∑
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Ma
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)
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i −〈Mb〉
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√
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The mean in the brackets denotes the mean of the distributions
shown in Figures 6A–C and Figures 7A–C, and the sum is
performed over all cells in the set. The correlation coefficients
as defined above are identical to elements of the normalized
covariance matrix of the data set. The latter is commonly used
as a starting point for the multivariate data analysis, which can
provide more detailed insights into the correlations within the
statistical set. However, already the analysis of the provided
scatter plots and cross correlation coefficients (Figure 8 and
Supplementary Section 6) may provide useful information. For
example, it is clear that CMVT captures appropriately the level
cross-correlation between various measures.

Interestingly, the only strong cross-correlation in the data is
between the cells’ areas and perimeters, evidenced from scatter

plots shown in Figures 8A,B. The cross-correlation is even
overestimated by CMVT (Figure 8C), due to the inability of
CMVT to capture small fluctuations of the cell boundary arising
in the true data.

Surprisingly, cell areas are not strongly cross-correlating with
any other measures, neither in the true set, nor in the CMVT
reconstruction. Weak cross-correlations exist with the number
of neighbors, and the standard deviations in the boundary
length. The latter is the consequence of cross-correlation between
perimeters and the variations in the boundary lengths, which is
most likely of purely geometric origin, as well as the weak cross-
correlations between the variation in boundary length and the
cell elongation. Interestingly, we find that the co-alignment of
the cell nuclei and the cell body does not cross-correlate with
the cell area, despite the expectation that in smaller cells, stress
on the nuclei will be strongly coupled to the stress on the cell
membrane. Likewise, no appreciable relation between the cell
area and the cell elongation emerges from our data. This trend
is well reproduced by CMVT.

In the context of other anisotropy measures, it was already
anticipated in the previous section that elongation of the cells
anti-correlates with the co-alignment of the cell and its nuclei.
In other words, in elongated cells, the orientation of the nuclei
follows the orientation of the cell, whereas in more isotropic cells,
this correlation is lost. This trend is well captured by CMVT, as
well as the lack of correlation of these two measures with other
characteristics of the cell shape.

DISCUSSION AND CONCLUSIONS

The aim of this work was to establish a method for a systematic
comparison of the true morphology of a tissue and the CMVT
estimate, which is an important problem in the physiology of
epithelium. We first applied this procedure to MDCK cells
monolayers grown on relatively hard gels where the tessellation
reproduces various shape characteristics with a mean error of 10
to 15% and qualitatively correctly captures the cross-correlations
between various measures. We find that the tessellation predicts
the mean cell area with very high accuracy, thus validating
the common use of CMVT in estimating the macroscopic cell
density. However, the cell-by-cell analysis reveals significant cell-
size related effects, and relatively large deviations for the sub-
populations of small and large cells. Interestingly, the same trends
are recovered in tissues grown on glass and on very soft substrates
(Supplementary Sections 4, 5). Systematic comparison shows that
the smallest deviations in the estimates of area occur close to the
peak of the area distributions in all growing conditions, which is
the foundation for the CMVT applicability.

Several other observations are independent of growth
conditions. For example, significant deviations of CMVT,
dependent on cell sizes occur in the determination of the number
of neighbors, a fact that can also be associated in part with
errors in segmentation. However, for all substrates, CMVT
over-stabilizes the honeycomb structures with six neighbors.
Furthermore, characteristics reflecting the anisotropy of cells
such as the elongation, variation in cell boundary lengths, or
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FIGURE 8 | Scatter plots and cross-corelations. (A,B) Exemplary scatter plots showing the cross-correlation (left panels) or the lack of it (middle and the right

panels) between various morphological measures. (C) Correlation coefficients between two morphological measures, as estimated by CMVT (yellow numbers on the

left) and directly measured (blue numbers on the right in each column). Cross-correlation coefficient can adopt values between −1 for anti-correlated measures to 1

for fully correlated ones.

the co-alignment of the cell body and the cell nuclei, are only
qualitatively reproduced by CMVT in all conditions, albeit
correct trends are usually recovered in the context of the
dependence on the cell size. The largest discrepancies between
CMVT and the true shape characteristics occur for particularly
large or small cells. This is evident from the relative errors of
perimeters in the subpopulation of the large cells, and relative
errors of areas in the subpopulation of the small cells, being more
than 16%.

Interestingly, averages of most morphological measures over
sub-populations of cells, sorted by size, depend linearly on the
associated mean cell areas, suggesting different scaling factors for
each measure (Supplementary Section 7). However, such scaling
may be applied only to averages generated for particular cell
sizes, because the distributions of errors in each sub-population
are typically very broad and cross-correlation factors small. The
exception are the cross-correlations between cell perimeters and
areas. Consequently, correction scaling should not be generally
applied on the isolated cell level.

To validate the use of CMVT we developed a procedure that
requires building a representative set of cells from which the
‘true’ distributions of morphological measures can be extracted.
Interestingly, we find that these distributions converge only
for sets comprising over 10,000 cells, as exemplified here by
distributions generated for cells grown on hard gels. Sets with
only a few thousands of cells (as achieved on glass and soft
substrates) are, on the other hand, only able to predict trends and

the mean errors, but correlation coefficients between the CMVT
predictions and the true distributions are strongly affected by the
inaccuracy of the reference set.

Generating such large statistics may be difficult in some cases.
For example, monolayers of MDCK cells grown on collagen
coated glass contain significantly more defects then on hard gels,
affecting the segmentation of the membrane and making the
generation of the reference set more difficult. Similarly, on soft
substrates, the high density of cells makes the segmentation of
nuclei cumbersome, requiring the development of more accurate
procedures. Actually, such large number of cells call for the
development of fully automated, yet competitive segmentation
procedures, an example of which is presented here in the context
of extraction of cell nuclei.

The establishment of the current validation method is the
prerequisite for further analysis of the morphology of MDCK
cells and of other tissues. In particular, with the appropriately
constructed reference set, one could use the CMVT to delineate
between the well-characterized and unknown tissue (e.g.,
healthy and cancerous growth), or between different stages in
development. The current findings and the limitation of CMVT
should also be considered in theoretical modeling of epithelial
tissues where these types of tessellations are commonly applied
to generate the growing structures.

In the context of MDCK cells, it would be interesting to
explore the performance of the CMVT as a function of the
more controlled density of cells, also associated with a smaller
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range of cell sizes. This would provide better understanding
of cellular mechanics and spatial correlations within the
tissue.

One should however keep in mind that the largest source
of errors in CMVT predictions of cell morphologies is due
to the polygonal nature of this tessellation. Consequently,
after establishing a reference set, the correspondence between
the measured and estimated morphological characteristics
cannot be significantly improved with more precise imaging.
Therefore, even though a reasonable agreement is obtained, more
sophisticated tessellation methods, which systematically estimate
all shape features, should be tested in future.
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