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Abstract

Advances in experimental and computational techniques allow us to study the structure and

dynamics of large biomolecular assemblies at increasingly higher resolution. However, with

increasing structural detail it can be challenging to unravel the mechanism underlying the

function of molecular machines. One reason is that atomistic simulations become computa-

tionally prohibitive. Moreover it is difficult to rationalize the functional mechanism of systems

composed of tens of thousands to millions of atoms by following each atom’s movements.

Coarse graining (CG) allows us to understand biological structures from a hierarchical per-

spective and to gradually zoom into the adequate level of structural detail. This article intro-

duces a Bayesian approach for coarse graining biomolecular structures. We develop a

probabilistic model that aims to represent the shape of an experimental structure as a cloud

of bead particles. The particles interact via a pairwise potential whose parameters are esti-

mated along with the bead positions and the CG mapping between atoms and beads. Our

model can also be applied to density maps obtained by cryo-electron microscopy. We illus-

trate our approach on various test systems.

Introduction

Biomolecular processes occur on many spatial and temporal scales [1]. An expanding array of

experimental methods allows us to study the structure and dynamics of biological systems

with increasing throughput and precision. Nevertheless computer simulations must often

complement experiments to gain a quantitative understanding of the biological mechanism.

Molecular dynamics (MD) has developed into a powerful tool to study biomolecular sys-

tems with atomic detail [2, 3]. But typically there is a gap of several orders of magnitude

between the atomic scale and the length and time scales that are biologically relevant. There-

fore the computational burden posed by atomistic simulations becomes prohibitive for large

biomolecular systems such as protein complexes. A remedy is provided by coarse graining

(CG) approaches that reduce the system’s complexity by lumping together atoms into pseudo-

atoms or beads [4–6].
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Principled approaches to coarse graining start from an atomic potential such as an MD

force field and try to derive transferable potentials that reproduce the thermodynamic and

kinetic properties of the system as accurately as possible. CG methods that follow this approach

include force matching [7], reverse and inverse Monte Carlo [8–11], and other methods for

finding transferable CG potentials [12].

More pragmatic approaches derive a CG model directly from an experimental structure.

Among the most popular methods are elastic network models [13, 14] that reduce the full struc-

ture to Cα atoms and introduce harmonic springs between pairs of CG sites that are in contact.

Network models were shown to reproduce the large-scale conformational dynamics of biomol-

ecules. Recently, Xia and coworkers have developed a more principled approach that optimizes

a CG model so as to reproduce the dynamic properties of a high-resolution elastic net [15, 16].

CG models are also used to interpret structural data. Due to a lack of resolution bead models

constitute the most detailed 3D information that can be derived from small-angle X-ray scat-

tering curves [17, 18], in case no additional high-resolution information is available. Another

important application area is cryo-electron microscopy (cryo-EM). Three-dimensional recon-

structions obtained from single-particle studies of biomolecular assemblies can be represented

as bead models [19, 20]. These models have been used, for example, to predict the dynamics of

biomolecular assemblies [21] or for rigid docking [22]. Recently, bead models were also used

to obtain initial 3D reconstructions in single-particle analysis of projection images from cryo-

EM [23].

There are two fundamental challenges in deriving CG models of biomolecular systems [5].

The first challenge is that the optimal choice of the CG sites, the so-called CGmapping, is in

general unknown. Many CG methods for biomolecules such as proteins define beads along the

amino acid sequence. For example, the MARTINI force field represents every amino acid by

two beads, one for the backbone, one for the side chain [24]. However, if we want to represent

many atoms by a single spherical bead, it will no longer be adequate to define CG groups along

the polypeptide chain. Rather we need to combine atoms that are approximately enclosed in a

sphere into a single CG particle, independent whether the atoms are part of the same or differ-

ent amino acids. So the question of what is the best mapping between atoms and CG particles

becomes highly relevant in cases where one does not want to use sequence information such as

in ultra-CG pioneered by Voth and coworkers [25, 26]. Another reason might be that we are

only given low-resolution data, which do not allow us to derive sequence information.

The second challenge is that the effective potential between CG particles is generally

unknown. In network models, the potential form is simply imposed and mostly justified by

pragmatic success [5]. However, a couple of more principled approaches such as the Yvon-

Born-Green method [7, 12] allow us to estimate CG potentials that reproduce the properties of

the thermodynamic ensemble. When constructing CG models from cryo-EM maps, pairwise

interactions between the beads are typically ignored altogether [19, 20, 23].

Here we use Bayesian inference to develop a CG approach that is both principled and prag-

matic. Our CG model does not incorporate any sequence information and represents the

structure as a cloud of beads of equal size and occupancy. We introduce a Markov chain

Monte Carlo (MCMC) algorithm for inferring the model from experimental structures. In

addition to the CG mapping, our algorithm also learns the positions of the CG particles and

the parameters of an interaction potential that regularizes the local structure of the bead

model. Our model ignores any sequence information and can therefore be applied to atomic

resolution structures as well as volumetric reconstructions from cryo-EM. The main applica-

tion area will be ultra CG of large biomolecular assemblies rather than a detailed description of

the molecular interactions. Therefore, we use only simple functional forms for the CG poten-

tial. We demonstrate our method on various protein complexes.

Data-driven coarse graining of large biomolecular structures
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Methods

Our goal is to learn a CG representation of a biomolecular system, including the force field

and a CG mapping, from an experimental structure. Let us first assume that we are given an

atomic-resolution structure (for example from the PDB [27]). Our probabilistic model aims to

provide a quantitative answer to the following question: What is the best reduction of the

structure to a much smaller collection of K spherical particles?

Our input data is an array of N three-dimensional atom positions xn. We will denote the

unknown positions of the beads by Xk and demand that the CG structure not only approxi-

mates the atomic structure, but that it is also compatible with a CG force field E(X; λ) whose

parameters we will estimate along with X. We will use a Bayesian approach to infer the bead

positions and all other unknown parameters.

Mixture model approach to coarse graining

First, we need to formulate a probabilistic model that establishes a connection between the

atomic structure (our data) and the CG structure (our unknown parameters). A simple

approach is to view the input structure as a “cloud” of (fine-scale) atoms whose distribution in

3D space we describe with a Gaussian mixture model (GMM) [28]. According to the GMM,

the probability of observing an atom at position xn is

Pr ðxn jX; sÞ ¼
1

K

XK

k¼1

N ðxn; Xk; s
2Þ ð1Þ

where N ðxn;μ; s2Þ is a 3D spherical Gaussian distribution

N ðxn;μ; s
2Þ ¼

1
ffiffiffiffiffiffiffiffiffi
2ps23
p exp �

1

2s2
kxn � μk2

� �

ð2Þ

scattering about a central location at μ with standard deviation s. The probability of the entire

atomic structure x = (x1, . . ., xN)0 is

Pr ðx jX; sÞ ¼
YN

n¼1

1

K

XK

k¼1

N ðxn; Xk; s
2Þ : ð3Þ

Given an atomic structure x, we can find the optimal CG representation by maximizing

the probability Eq (3) as a function of X and s (this function is also called the likelihood func-
tion). The likelihood function involves a product over sums, which cannot be optimized

analytically. To find the CG model, we will use a trick that is typically applied in the estimation

of GMMs.

We introduce binary assignment variables Znk 2 {0, 1} that satisfy the constraints ∑k Znk = 1.

The assignment variables have the following meaning: If Znk = 1, the n-th atom at position

xn will be replaced by the k-th bead at position Xk in the CG representation. The constraints

∑k Znk = 1 guarantee that every atom can only be assigned to exactly one bead. Therefore, the

matrix Z encodes a mapping between atoms and beads.

With the help of the assignment variables, we can interpret Eq (1) as a marginal distribu-

tion:

Pr ðx jX; sÞ ¼
X

Z

Prðx jX;Z; sÞ � Pr ðZÞ ð4Þ
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with the augmented likelihood Pr(x | X, Z, s) (see S1 Appendix for details):

Pr ðx jX;Z; sÞ ¼
1
ffiffiffiffiffiffiffiffiffi
2ps23N
p exp �

1

2s2
X

k

Nk k Xk � μkk
2 þ s2k

� �
( )

ð5Þ

and the summary statistics

Nk ¼
X

n

Znk; μk ¼
1

Nk

X

n
Znkxn; s2k ¼

1

Nk

X

n

Znkkxn � μk k
2 : ð6Þ

Nk is the number of atoms that have been assigned to the k-th bead, μk is the center of mass of

the assigned atoms and sk is the radius of the k-th cluster.

Prior distribution over coarse-grained structures

Without any detailed prior about the CG positions, random sampling from the full posterior

Pr(X, Z, s|x) would be simply an exercise in density estimation with a GMM. However, there is

no guarantee that bead configurations X will be physically realistic. We will therefore use a

Boltzmann ensemble based on a force field E(X; λ) as a prior over the CG positions:

Pr ðX j λÞ ¼
1

ZðλÞ
expf� EðX; λÞg : ð7Þ

The parameters λ of the CG potential E(X; λ) are unknown and will be estimated along with

the CG configuration. A major difficulty stems from the fact that we cannot evaluate the parti-

tion function

ZðλÞ ¼
Z

expf� EðX; λÞg dX ð8Þ

analytically. We will therefore use the configurational temperature formalism [29] to estimate

λ for given X.

We expand the CG potential energy into a linear combination of L structural features fl(X)

[29, 30]:

EðX; λÞ ¼
XL

l¼1

llflðXÞ ¼ hλ; f ðXÞi : ð9Þ

Many molecular interaction potentials can be parameterized in this way. Typically, we will use

only a small number of features as it is the case, for example, for the Lennard-Jones (LJ) poten-

tial:

flðXÞ ¼
X

k<k0
kXk � Xk0 k

� 6l; l ¼ 1; 2 ð10Þ

with L = 2 features corresponding to the attractive and the repulsive part of the LJ potential.

Inference of model parameters

We use Markov chain Monte Carlo (MCMC) [31] to infer the model parameters X, Z, s, and λ.

Our MCMC strategy is a Gibbs sampler [32], which updates groups of parameters successively

by drawing from the conditional posteriors:

X � e�
1

2s2
SkNkkXk � μkk

2� hλ;f ðXÞi
ð11Þ
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Z �Mð1; pnÞ ð12Þ

s� 2 � Gð3N=2; w2ðXÞ=2Þ ð13Þ

λ �
1

ZðλÞ
e� hλ;f ðXÞi ð14Þ

where we introduced the Gamma distribution Gða; bÞ with shape parameter α> 0 and scale

β> 0, the multinomial distribution Mð1; pnÞ, the assignment probabilities

pnk ¼
expf� 1

2s2 kxn � Xkk
2g

P
k0expf� 1

2s2 kxn � Xk0 k
2g

ð15Þ

and the goodness of fit between the atomic structure and the CG model

w2ðXÞ ¼
X

n;k

Znkkxn � Xk k
2 : ð16Þ

In words, the Gibbs sampler progresses by successively updating the bead positions (Eq 11),

the CG mapping (Eq 12), the precision of the CG model (Eq 13) and the parameters of the CG

potential (Eq 14). Steps Eqs (12) and (13) are straight forward: We simply run random number

generators for the multinomial distribution and the Gamma distribution to update the CG

mapping Z and the precision s−2. To draw posterior samples of X and λ is more challenging.

Posterior sampling of bead positions

Let us write the conditional posterior of the CG positions (Eq 11) in canonical form:

Pr ðX jZ; s;λ; xÞ / expf� UðXÞg

where the “potential energy” function U(X) is the sum of a data-dependent term and the force

field:

UðXÞ ¼
1

2s2
X

k
NkkXk � μk k

2 þ hλ; f ðXÞi : ð17Þ

The data-dependent term pulls the CG beads towards the cluster centers μk with a harmonic

force, but the CG potential E(X; λ) prevents clashes between beads and regularizes the local

structure resulting in a local order that is similar to a fluid. We use Hamiltonian Monte Carlo

(HMC) [33, 34] to generate configurations from exp{−U(X)} (see S1 Appendix for details).

Estimation of the CG potential

The conditional posterior distribution of the force field parameters λ depends only on the CG

structure (Eq 14). A major complication is posed by the intractability of the normalizing con-

stant Z(λ). Because we cannot compute Z(λ) analytically, it is not possible to use a standard

Monte Carlo algorithm to estimate λ, which would require knowledge of Z(λ) to evaluate the

acceptance probability. Monte Carlo algorithms that deal with the intractability of the partition

function have been proposed (see e.g. [30, 35]), but these algorithms either make assumptions

that are not satisfied in our context or suffer from slow convergence. We therefore use a simple

approximation based on the configurational temperature formalism [29].

Data-driven coarse graining of large biomolecular structures
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In brief, we consider the CG parameters λ as a set of L inverse temperatures that can also

adopt negative values. Given the current CG positions X, we compute an L × L matrix A and

an L-vector b as follows:

All0 ðXÞ ¼ ½rflðXÞ�
0
½rfl0 ðXÞ�; blðXÞ ¼ DflðXÞ ð18Þ

whererfl is the gradient of the l-th feature with respect to the bead positions and Δ =r0r is

the Laplace operator. We then solve the system of linear equations

AðXÞ λ ¼ bðXÞ ð19Þ

to determine our next estimate of λ. We can restrict the parameters of the CG potential by

introducing a prior probability Pr(λ) such as, for example, a zero-centered Gaussian or a

Laplacian prior favoring sparse parameterizations and update λ by minimizing [29]

1

2
kAðXÞ λ � bðXÞk2 � log Pr ðλÞ : ð20Þ

Reordering beads to preserve local structure

The mixture model (Eq 3) as well as the prior (Eq 7) are invariant under permutation of the

bead indices k = 1, . . ., K. We can therefore renumber a given configuration of the beads X
such that spatially close beads have similar indices. Due to the permutation invariance renum-

bering the beads will not change the posterior probability of the configuration. To find a mean-

ingful order of the beads that reflects the local structure, we find the shortest path that visits

every bead exactly once, based on the Euclidean distance matrix kXk − Xk0k as a cost function.

By solving this traveling salesman problem, we find a permutation of the beads that preserves

the local connectivity as much as possible.

Python implementation

Our coarse-graining algorithm has been implemented as a Python/Cython library that

depends only on freely available libraries including numpy, scipy and csb. The library can

be cloned or downloaded at https://github.com/michaelhabeck/cg.

Results and discussion

We ran our Bayesian CG algorithm on several large biomolecular assemblies some of which

served as a benchmark previously [16].

Coarse-grained model of Arp2/3

Let us first look at a particular assembly in more detail, the Arp2/3 complex. Arp2/3 is an

asymmetric heteromer composed of seven chains and has a total molecular weight of 224 kDa.

We ran our algorithm with K = 500 beads to find a CG representation of the crystal structure

(PDB code 1tyq). The crystal structure comprises 13341 heavy atom positions, which we

approximate by CG particles (without taking the mass differences between atoms of different

types into account). Therefore, on average a bead will represent N/K� 26 atoms.

Fig 1A shows a representative structure that we generated from the posterior (Eq 11); it

reproduces the shape of the crystal structure (Fig 1B). The size of the spheres indicates the

inferred van der Waals radius of the beads RCG� 3.82 Å, defined by the minimum of the esti-

mated LJ potential. The radial distribution function (RDF) reflects the local packing order of

Data-driven coarse graining of large biomolecular structures
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the bead model (Fig 1C). The RDF of the Arp2/3 model bears some similarity to an RDF of a

monatomic fluid. The first peak indicates an accumulation of neighbors at 2 × RCG due to

first-shell interactions. This local order is rapidly lost, which is indicated by subordinate peaks

in the RDF that are located at higher-order shells similar to a fluid. Upon Boltzmann inversion

of the RDF, we obtain a potential of mean force (PMF), which we can compare to the

Fig 1. CG representation of the Arp2/3 complex. (A) Space filling representation of the 500-bead model with sphere radius RCG� 3.82 Å. (B) Cartoon

representation of the crystal structure of Arp2/3 (PDB code 1tyq) with chains highlighted in different colors. The PDB entry provides structural information

for a total of 1692 amino acids and 13341 heavy atoms. (C) Radial distribution function (RDF); the dashed vertical line indicates 2 × RCG. (D) Potential of

mean force (PMF) obtained by Boltzmann inversion of the RDF (dashed line) compared to the estimated CG potential (gray solid line).

https://doi.org/10.1371/journal.pone.0183057.g001
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estimated CG potential (Fig 1D). The PMF of a CG particle system is used in the Boltzmann

inversion method [10] as an initial guess for the effective pair interaction potential between the

beads. There is a clear difference between the PMF and the CG potential. Whereas the CG

potential has only a single minimum at 2 × RCG, the PMF shows multiple minima.

Impact of the CG prior

Let us next study the impact of the CG potential and the Boltzmann prior on the bead

model. To do so, we also ran the Gibbs sampler on a posterior whose CG parameters λl were

clamped to zero. The overall size of the CG structure is very similar with a radius of gyration of

Rg = 43.19 ± 0.02 Å (with Boltzmann prior) and Rg = 42.70 ± 0.02 Å (without Boltzmann

prior) and close to the size of the input structure Rg = 43.15 Å. Also the estimated precision of

the models with and without the Boltzmann prior is very similar: s = 2.43 ± 0.01 Å (with Boltz-

mann prior) and s = 2.44 ± 0.01 Å (without Boltzmann prior). The introduction of the particle

interactions does not compromise the accuracy of the CG model.

In Fig 2A we show the RDFs obtained with and without the Boltzmann prior (Eq 7). With-

out the introduction of the Boltzmann prior the configurations of the CG model are more flex-

ible and produce configurations in which beads come significantly closer to each other than in

the regularized CG models. The RDF exhibits a single peak which is much broader and shifted

to a larger value compared to the RDF obtained in the presence of the Boltzmann prior. Only

with the introduction of the Boltzmann prior, the CG model exhibits the desired local order.

Fig 2B shows the sampled parameters λ1 and λ2 of the CG potential. The parameters fluctu-

ate significantly but scatter about stable averages. It is convenient to map the parameters to the

standard parameterization of the Lennard-Jones potential s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� l2=l1

6
p

and � ¼ l
2

1
=4l2

where RCG ¼
ffiffiffi
2

6
p

s=2. The posterior distributions of these parameters are shown in Fig 2C and

2D, indicating that the Gibbs sampler produces well-defined approximations of the posterior

distribution.

Impact of the degree of coarse graining

We ran the CG algorithm for different choices of K using the Arp2/3 complex as input struc-

ture. Representative bead models are shown in S1 Fig. We expect that with decreasing K, the

radius of the CG particle increases, because more and more atoms (� N/K) are represented by

a single CG particle. Fig 3A and 3B show the RDF for a different number of CG sites and the

estimated Lennard-Jones potentials. As expected, the size of the CG particles decreases with

increasing number of CG particles K, which is indicated by a shift of the first-shell peak in the

RDF. A corresponding shift is observable in the minimum of the estimated CG potential.

However, the strength of the CG potential is only weakly affected by changes in K.

We computed an entire series of CG models for Arp2/3 with K ranging from 25 to 1500.

Fig 3C shows the error of the CG model s, which can also be seen as the resolution of the

model. For smaller s, more and more details of the input structure are represented. By fitting a

straight line between values of lnK and lns, we obtain a power law for the dependency of the

resolution and the number of bead particles (see dashed line in Fig 3C).

A similar behavior is found for the radius of the CG particle. Fig 3D shows that RCG

decreases as K increases. A hard sphere model would roughly give RCG� r(N/K)1/3 for the rela-

tion between the radius of the CG particle and the number of beads where r is the radius of the

(fine-scale) atoms. We find that this relation is approximately fulfilled in our coarse grained

models with an exponent of 0.31 instead of 1/3 and an atom radius of r = 1.34 Å, which is rea-

sonable because the input structure is based on the positions of all heavy atoms, which have

similar van der Waals radii.

Data-driven coarse graining of large biomolecular structures
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To compare our CG models with alternative coarse-graining approaches, we also computed

CG models of the Arp2/3 complex using the vector quantization approach implemented in

quanpdb [36]. S2 Fig shows the RDFs obtained with our CG approach and quanpdb. Whereas

the Bayesian models exhibit fluid-like packing marked by a first- and second-shell peak, the

quanpdb models show a much broader RDF indicating a loose packing of the CG particles.

Fig 2. Impact of the CG potential E(X; λ) on the 500-bead model of Arp2/3. (A) RDF of the models computed with Boltzmann prior (solid line, grey fill)

and without the Boltzmann prior (dashed line). (B) Sampled force field parameters λ1 and λ2. (C) Posterior distribution of the interaction range σ. (D)

Posterior distribution of the depth of the potential well � ¼ l
2

1
=4l2.

https://doi.org/10.1371/journal.pone.0183057.g002
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Transferability of coarse graining parameters

To study if the CG model is to some extent transferable, we also calculated various CG models

for GroEL (PDB code 1oel, N = 26929) and Rho transcription termination factor (PDB code

5jji, N = 19305), which are both symmetric assemblies. We computed CG models for a single

subunit and for the entire assemblies for a large number of CG particles. Fig 4 shows how the

Fig 3. CG models at different levels of coarse graining. (A) RDF for different resolutions. (B) Estimated CG potentials. (C) Standard deviation (error of

the CG model) s as a function of the number of coarse grained particles K. (D) Particle radius RCG as a function of K. The dependence of s and RCG on K is

modeled with a power law. The empirical fits are shown as dashed black lines in panels (C) and (D).

https://doi.org/10.1371/journal.pone.0183057.g003
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error of the model s, the radius of the CG particles RCG and the depth of the potential well

� depend on the average number of atoms per bead N/K for the different structures. Overall,

we see a large agreement in the behavior of these parameters, which argues for the transferabil-

ity of our simple CG model. The error of the model and the bead radius show the same depen-

dence on N/K as for the Arp2/3 complex (see Fig 3). A larger variability is observed for the

interaction parameter � (Fig 4C), which scatters between 0.5 an 2.0 for the different assemblies

and number of CG particles. More examples of coarse-grained models of large assemblies can

be found in S3 Fig.

Coarse graining of EM maps

It is also possible to fit CG models to 3D reconstructions obtained with cryo-electron micros-

copy (cryo-EM). A detailed derivation can be found in the S1 Appendix. To illustrate coarse

graining of cryo-EM maps, we used a reconstruction of Lengsin at 17 Å resolution (EMD-

1290) [37] and a reconstruction of the exosome at 4.2 Å resolution (EMD-3366) [38]. We used

K = 2000 particles to approximate both EM reconstructions. The CG models are shown in

Fig 5 together with the EM map and an atomic structure of Lengsin and the exosome. The esti-

mated particle radii are RCG = 2.7 Å for the Lengsin model and RCG = 2.8 Å for the exosome.

The Xmipp package for cryo-EM data processing [39] provides a method for computing

particle based CG models from 3D maps [20]. We ran Xmipp’s CG procedure with default set-

tings on the density map of the exosome (EMD-3366). Xmipp produced a CG model com-

prised of 2308 CG particles. The maximum cross-correlation coefficient (CC) between the EM

map and the CG model is 55%, which is significantly smaller than CC obtained with our CG

model: CC = 73%. The RDF of the Xmipp model shows a strong peak at very small distances

indicating that the pseudoatoms are not packed in a physically realistic fashion (see S4 Fig).

Modeling conformational dynamics

CG models are often used to predict conformational dynamics (e.g. [20, 40]). The most com-

mon approach is based on elastic network models [13, 14]. We tried to predict the structural

dynamics of adenylate kinase (AK), which is a standard test system to study conformational

changes in proteins. AK adopts an open conformation in the unbound state and a closed

Fig 4. Transferability of CG potential. Error of the CG model (A), CG particle radius (B) and interaction strength � (C) for various biomolecular

structures.

https://doi.org/10.1371/journal.pone.0183057.g004
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Fig 5. CG models of Lengsin and the exosome derived from cryo-EM maps. The EM map EMD-1290 shows Lengsin at 17 Å resolution and

was used to derive a CG model comprised of 2000 beads. The EM map EMD-3366 shows the exosome at 4.2 Å resolution and was used to derive a

CG model comprised of 2000 beads. (A) Side view of the CG model of Lengsin (left), EM map (middle) and the atomic structure (PDB code 2j9i)

(right). (B) Side view of the CG model of the exosome (left), EM map (middle) and the atomic structure (PDB code 5g06) (right). The CG particles

were sorted so as to minimize the path through all bead positions and are colored from blue to red. The radial distribution functions of the CG models

are shown in panels (C) Lengsin and (D) exosome.

https://doi.org/10.1371/journal.pone.0183057.g005
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conformation upon binding of two substrate molecules. We computed normal modes by diago-

nalizing the Hessian matrix derived from various network models. A common choice to define

an anisotropic network model is to use Cα positions and a cutoff distance of 15 Å [14]. To define

the network based on our CG models of AK, we used a cutoff distance of 7 × RCG; we have not

tried to optimize our cutoff criterion, and other choices might result in better predictions. To

assess how well the network captures the experimentally observed conformational change, we

computed the overlap between individual normal modes and the displacement vectors com-

puted from the superimposed open and closed states of AK (analogous to the analysis in [20,

40]). We used the ProDy python package [41] to carry out the anisotropic network analysis.

Fig 6 shows the overlap of the first 14 normal modes and the open-to-closed transition. Both

the Cαmodel and the CG model with K = 50 beads show a similar pattern in the overlap values.

The largest portion of the open-to-closed transition is sampled along the first non-trivial nor-

mal mode (mode 7). Indeed this mode represents the closure of the LID domain. The second

most significant motion is captured by mode 11 according to both models. An animation of

this mode reveals that it corresponds to movements of the NMP-binding domain. Thus the CG

model is able to capture some aspects of AK’s conformational dynamics. With too few beads

(K� 30), we observed a breakdown of the predictive power of the CG model with regard to

conformational dynamics, whereas the shape is still approximated well (see S5 Fig for details).

Conclusion

This article introduces a data-driven Bayesian approach for coarse graining large biomolecular

assemblies. In addition to the positions of the beads, our model estimates a mapping between

atoms and beads as well as the parameters of a CG potential. The CG potential regularizes the

Fig 6. Normal mode analysis of adenylate kinase (AK). An anisotropic network model was derived from the Cα positions of the open conformation of

AK (PDB code 4ake) and used to compute normal modes. The overlap between the normal modes and the conformational change from the open to the

closed structure of AK (PDB code 1ake) was computed as described by Stember and Wriggers [40] and is shown in panel (A). The same analysis was

carried out for a CG model comprised of K = 50 beads. To compute the overlap with the experimental conformational change, the normal modes derived

from the CG model where interpolated using a thin-plate spline and are shwon in panel (B).

https://doi.org/10.1371/journal.pone.0183057.g006
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local structure of the CG model, whereas the likelihood resulting from a Gaussian mixture

model imposes overall shape restraints.

The main motivation for our coarse-graining algorithm is to model large biomolecular

complexes in an integrative approach guided by cryo-EM maps, crosslinking data etc. In the

simplest scenario, the subunits would be represented as coarse-grained structures that can

only move rigidly. In combination with an elastic network approach, our CG models also

seems to be suitable for predicting conformational dynamics as illustrated for adenylate kinase.

This might be useful for flexible fitting of CG models.

With dreceasing number of beads, our models become very coarse: tens to hundreds of

atoms are represented by a single bead. An obvious limitation of such ultra CG models is that it

becomes impossible to model structural changes that occur within beads. Another drawback of

our current model is that the CG potential is not physically realistic but mainly serves to

improve the bead packing. Future extensions of our model could include more realistic force

field terms that are able to capture some of the physico-chemical properties of biomolecular

assemblies. Moreover, it might also be interesting to introduce multiple species of CG particles.

Our current model has a single unknown parameter, the number of beads K. In the future,

we would like to develop methods that estimate the number of CG particles from structural

data such as cryo-EM maps or solution scattering curves. Another future extension is to

expand the current model into a hierarchy of CG models in which intermediate resolution

structures serve as input structure for estimating a CG model with coarser resolution. The

hierarchy of CG models could then be simulated by using resolution exchange Monte Carlo

[42]. Other interesting extensions include the use of symmetry when coarse graining symmet-

ric assemblies and integrative modeling of macromolecular complexes from cryo-EM and

crosslinking / mass spectrometry.

Supporting information

S1 Fig. CG models of Arp2/3 with number of beads increasing from top to bottom and left

to right.

(PNG)

S2 Fig. Comparison of our Bayesian coarse-graining method with quanpdb (vector quanti-

zation). CG models of Arp2/3 were computed for a varying number of beads (K = 400, 500,

750, 1000). Shown is the radial distribution function (RDF) obtained from the CG models.

(A) Bayesian CG models. (B) quanpdb.

(PDF)

S3 Fig. Coarse-grained models of large biomolecular assemblies. CG models of (A) F-actin

(PDB code 3j8i, N = 14660, K = 250), (B) Rho transcription factor (PDB code 5jji, N = 19305,

K = 500), (C) GroEL/ES (PDB code 1aon, N = 58674, K = 1000) and (D) of the 26S proteasome

(PDB code 5t0c, N = 155216, K = 2000).

(PDF)

S4 Fig. Comparison of our Bayesian coarse-graining method with Xmipp. Radial distribu-

tion function (RDF) of a CG model obtained from the exosome map using Xmipp’s volume-

to-pseudoatom command. (A) The full RDF shows a dominant peak close to zero resulting

from a few very small distances. (B) If we zoom into the RDF at larger distances, the RDF

shows fluid-like features. However, the first- and second-shell peak are less pronounced than

in the RDF resulting from our coarse-graining procedure.

(PDF)
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S5 Fig. Overlap between conformational change of adenylate kinase and normal modes

calculated from various CG models. See the caption of Fig 6 for more details. The insets

show that CG models that served as an input for the anisotropic network analysis. The lower

right panel shows the overlap distribution of the Cαmodel for comparison.

(PDF)

S1 Appendix. Algorithmic details.

(PDF)
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