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Purpose: Frontotemporal lobar degeneration (FTLD) is a common cause of early onset dementia. Behavioral var-
iant frontotemporal dementia (bvFTD), its most common subtype, is characterized by deep alterations in behav-
ior and personality. In 2011, new diagnostic criteria were suggested that incorporate imaging criteria into
diagnostic algorithms. The study aimed at validating the potential of imaging criteria to individually predict di-
agnosis with machine learning algorithms.
Materials & methods: Brain atrophy was measured with structural magnetic resonance imaging (MRI) at 3 Tesla
in a multi-centric cohort of 52 bvFTD patients and 52 healthy control subjects from the German FTLD
Consortium's Study. Beside group comparisons, diagnosis bvFTD vs. controls was individually predicted in each
subject with support vectormachine classification inMRI data across thewhole brain or in frontotemporal, insu-
lar regions, and basal ganglia known to be mainly affected based on recent meta-analyses. Multi-center effects
were controlled for with a new method, “leave one center out” conjunction analyses, i.e. repeatedly excluding
subjects from each center from the analysis.
Results:Group comparisons revealed atrophy in, most consistently, the frontal lobe in bvFTD beside alterations in
the insula, basal ganglia and temporal lobe. Most remarkably, support vector machine classification enabled
predicting diagnosis in single patients with a high accuracy of up to 84.6%, where accuracy was highest in a re-
gion-of-interest approach focusing on frontotemporal, insular regions, and basal ganglia in comparison with
the whole brain approach.
Conclusion: Our study demonstrates that MRI, a widespread imaging technology, can individually identify bvFTD
with high accuracy in multi-center imaging data, paving the road to personalized diagnostic approaches in the
future.
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1. Introduction
Frontotemporal lobar degeneration (FTLD) is a common cause of
early onset dementia (Rabinovici and Miller, 2010). Its prevalence and
incidence is similar to Alzheimer's disease in individuals under the age
of 65 years. Behavioral variant frontotemporal dementia (bvFTD), its
most common subtype, is characterized by deep alterations in behavior
and personality (Neary et al., 1998). In 2011, new diagnostic criteria
were suggested that divide bvFTD into three different diagnostic catego-
ries: “possible bvFTD”, a strictly clinical diagnosis, “probable bvFTD”, if
clinical criteria are complemented with fitting imaging data (frontal
and/or anterior temporal atrophy, hypometabolism or hypoperfusion),
and bvFTD with “definite FTLD pathology”, when either a known path-
ogenic mutation or histopathological evidence is present (Rascovsky et
al., 2011). Recent meta-analyses on the neural correlates of bvFTD vali-
dated these imaging criteria and showed a decreased gray matter den-
sity (GMD) mainly in the frontal cortex, suggesting that bvFTD is
mainly a frontal brain disease in contrast to other neurodegenerative
diseases (Pan et al., 2012; Schroeter, 2012; Schroeter and Neumann,
2011; Schroeter et al., 2007, 2008, 2009, 2014).

Incorporating imaging criteria into diagnostic algorithms for bvFTD
is a decisive step in improving these criteria. The aim of our study was
to further validate imaging criteria for bvFTD by measuring brain atro-
phy with magnetic resonance imaging (MRI) in a multi-centric cohort,
and by using this data to predict diagnosis in each single patient. Note
that usage of multi-center data is a precondition for future application
in clinical routine. Accordingly, we calculated structural brain differ-
ences between bvFTD patients and healthy controls with voxel based
morphometry (VBM) (Ashburner and Friston, 2000) using the multi-
center cohort of theGerman FTLDConsortium. Recently, machine learn-
ing techniques have been applied to neuroimaging data in order to dis-
tinguish between patients and control subjects or different diseases on
an individual level (Dukart et al., 2011, 2013a, 2013b; Klöppel et al.,
2008). In this study we used support vector machine (SVM) algorithms
to differentiate between bvFTDpatients and healthy controls on an indi-
vidual level. We hypothesized that bvFTD is characterized mainly by
frontotemporal lobe atrophy and that SVM algorithms identify bvFTD
patient and control subjects with a high accuracy that might even be in-
creased by focusing on disease-specific brain areas, namely
fronto(temporal) regions, the insula and basal ganglia in comparison
with whole brain approaches, based on recent meta-analyses (Pan et
al., 2012; Schroeter, 2012; Schroeter et al., 2014).

2. Methods

2.1. Patients and control subjects

Fifty-two patients with bvFTDwere included in the study. Diagnosis
was based on the newest diagnostic criteria by Rascovsky et al. (2011).
Of those fifty-two bvFTD patients twenty met the criteria for possible
bvFTD, twenty-eight the criteria for probable bvFTD, and four met the
criteria for genetically confirmed bvFTD. Twenty-four were female,
and duration since initial symptoms averaged 3.7 ± 3.7 years (results
are generally reported as mean ± standard deviation). Disease severity
was 5.5 ± 3.5 or 7.7 ± 4.2 as measured with the Clinical Dementia Rat-
ing scale (CDR) and the FTLD-modified Clinical Dementia Rating scale
(FTLD-CDR). The datawas retrieved from theGerman FTLDConsortium,
a prospective multicenter study on FTLD (http://www.ftld.de; Otto et
al., 2011). Fifty-two (twenty-four female) control subjects were recruit-
ed overall, thirty subjects from the different centers in the German FTLD
Consortium's study and, additionally, twenty-two from the Max-
Planck-Institute Leipzig database.

All subjectswere thoroughly examined by taking a case history, neu-
rological examination, neuropsychological testing andMRI (see below).
Overall the bvFTD and the healthy control subject group were exactly
gender matched and didn't differ in mean age (bvFTD 61.5 ±
10.0 years; healthy control subjects 63.1 ± 9.8 years; Student's t-test
p=0.76). The studywas approved by the ethics committees of the Uni-
versity of Ulm, and of the other universities involved in the FTLD Con-
sortium, and was in accordance with the latest version of the
Declaration of Helsinki. Each patient provided a written informed
consent.

2.2. Acquisition and analysis of imaging data

High resolution Magnetization-Prepared Rapid Gradient Echo
(MPRAGE) T1-images were acquired by seven different centers
throughout Germany. MRIs were performed on five different 3 Tesla
Siemens scanners (Allegra Ulm, Biograph Munich, TrioTim Erlangen &
Goettingen, Verio Leipzig & Rostock, Skyra Bonn) with three different
sequences (Erlangen/Bonn/Goettingen/Leipzig/Munich: TR =
2300 ms, TI = 900 ms, TE = 2.98 ms; Rostock: TR = 2500 ms, TI =
1100 ms, TE = 2.98 ms; Ulm: TR = 2200 ms, TI = 1200 ms, TE =
4.38 ms).

In total, the 52 bvFTD patients were compared to 52 healthy control
subjects. Generally, two different analyseswere conducted. Thefirst one
consisted of 19, exactly center-matched, patients and control subjects,
i.e. patients were compared with control subjects from exactly the
same center, to enable amaximally controlled pilot analysis. The second
analysis included all available subjects, and could therefore not be ex-
actlymatched according to center. Both groups had no significant differ-
ences in age and gender distribution (see above). Possible center effects
were controlled for with an additional analysis (see below).

2.3. Group comparison patients vs. control subjects – VBM analyses

GMD differences between bvFTD patients and the control cohort
were analyzed with VBM by applying the VBM8 toolbox (http://dbm.
neuro.uni-jena.de/vbm/vbm8-for-spm8/), implemented in SPM8
(Wellcome Trust Centre for Neuroimaging, London, UK), running on
Matlab 7.1. Data were pre-processed according to the VBM8 toolbox.
Firstly, high resolution imageswere normalized to the same stereotactic
space by registering each individual image to the same template image,
theMontreal Neurological Institute (MNI) 152 standard template, using
non-linear transformations. The images were segmented into graymat-
ter, whitematter, and cerebrospinal fluid volumes. The graymatter vol-
umes were then smoothed by convolving an isotropic Gaussian kernel
(12 × 12 × 12 mm). The result of the preprocessing steps is referred
to as GMD,whichwas compared in the next step. The statistical analysis
was performed voxel-wise by using the general linear model and
implementing a two-sample t-test. Results were controlled for poten-
tially confounding factors, namely age, gender, total intracranial vol-
ume, and the center where the MRI was conducted. A significance
threshold of p b 0.05, family wise error (FWE) corrected on the cluster
level, was used for the 19 vs. 19 pilot analysis. For the final 52 vs. 52
analysis a threshold of p b 0.05 FWE corrected on the voxel level was
used due to higher statistical power by the larger number of partici-
pants. Note that center effects were controlled for in both group com-
parisons (see below).

2.4. Group comparison patients vs. control subjects – conjunction analyses

These analyseswere performed to control for potential center effects
in the aforementioned group comparisons. To investigate the influence
of inter-center variability, group comparisons (patients vs. control sub-
jects) were conducted repeatedly with the “leave one center out” ap-
proach, i.e. excluding systematically subjects from one center from the
analysis. After these processing steps, a conjunction analysis was per-
formed by overlaying the results of the six, respectively seven different
VBM analyses, in order to identify those brain networks that were af-
fected by bvFTD in all analyses, and accordingly, independent from cen-
ter. The threshold was set to p b 0.05 FWE on the cluster level here.

http://www.ftld.de
http://dbm.neuro.uni-jena.de/vbm/vbm8-for-spm8/
http://dbm.neuro.uni-jena.de/vbm/vbm8-for-spm8/


658 S. Meyer et al. / NeuroImage: Clinical 14 (2017) 656–662
2.5. Group comparison patients vs. control subjects – SVM classification
analyses

The final analysis investigated the possibility to classify patients indi-
vidually solely from MRI data. The classification was obtained by SVM,
using the libSVM software package (Software available at http://www.
csie.ntu.edu.tw/~cjlin/libsvm) (Chang and Lin, 2011). SVMs are super-
vised learning models, used to analyze data, build classifiers and regres-
sion analyses. They work in two phases. In the training phase, a subset
of the available data points, in this study all the voxels of the brain or all
the voxels of the region of interest are used to find a linear hyperplane
to separate the two classes (e.g. patients vs. controls) optimally. In the
testing phase, new, previously unseen data is classified depending on
their relative position to the hyperplane.

For classification we used the “leave one (subject) out” approach. In
this approach one subject of each group (e.g. patients and control) is
used for testing and the remaining ones are used for training the classi-
fier, until every subject has been left out. The masks were created using
the Wake Forest University School of Medicine (WFU) PickAtlas
(Maldjian et al., 2003). Classifications were run for both of the above
mentioned analyses, andwith different regions of interest for each anal-
ysis (see Table 1).

3. Results

3.1. Group comparison patients vs. control subjects – VBM analyses

As illustrated in Fig. 1, the VBM-analysis revealed reductions in GMD
mainly in the frontal and temporal lobe, insulae and basal ganglia in
bvFTD. For the first center-matched analysis with 19 bvFTD patients vs.
19 control subjects, brain regions included bilaterally the globus pallidus,
frontal pole, insular cortex, temporal pole, left precentral gyrus,
postcentral gyrus, amygdala, Heschl's gyrus, and central opercular gyrus.
The second analysis including 52 bvFTD patients vs. 52 control subjects
revealed changes bilaterally in the anterior cingulate, frontomedian,
paracingulate cortices, superior, middle and inferior frontal gyri, frontal
pole, orbital gyrus, insular cortex, temporal pole, middle temporal gyrus,
amygdala, putamen, nucleus accumbens, and right pre- and postcentral
gyrus.Note that neither disease durationnor disease severity asmeasured
with the FTLD-CDR correlated with GMD in our study, preventing a po-
tential impact of these two clinical factors on our results.

3.2. Group comparison patients vs. control subjects – conjunction analyses

The conjunction analysis revealed different degrees of concordance
in the two analyses (Fig. 2). In the 19 bvFTD vs. 19 control subjects
Table 1
Results of support vector machine classification to separate patients and control subjects

Region of interest Analysis (N) Accuracy %) Sensitivity (%) Sp

Whole Brain
19 vs. 19 73.6 63.2 84
52 vs. 52 81.7 78.9 84

Frontal Lobe
19 vs. 19 78.9 68.4 89
52 vs. 52 80.7 76.9 84

Frontal Lobe, Insula, Basal Ganglia
19 vs 19 78.9 68.4 89
52 vs 52 82.7 80.7 84

Temporal Lobe
19 vs. 19 71.1 73.7 68
52 vs. 52 78.8 76.9 80

Frontal & Temporal Lobe
19 vs. 19 76.3 68.4 84
52 vs. 52 84.6 80.7 88

Frontal & Temporal Lobe, Insula, Basal Ganglia
19 vs. 19 73.6 63.2 84
52 vs. 52 84.6 80.7 88
analysis, the highest concordance was found in bilateral frontal pole.
These were the only areas showing GMD loss in all of the six analyses.
As opposed to this, the 52 bvFTD vs. 52 control subjects analysis showed
a high concordance in both, the frontal and temporal lobes, insula
and the basal ganglia. More specifically it identified the superior
frontal gyrus, frontal pole, frontoorbital and frontomedian cortex,
paracingulate and anterior cingulate/midcingulate cortex, middle and
superior temporal gyrus, planum polare, insular cortex, putamen, nu-
cleus accumbens, left angular gyrus, and right supramarginal gyrus
(see Fig. 2).

3.3. Group comparison patients vs. controls subjects – SVM classification
analyses

Results of the final analyses, investigating the possibility to individ-
ually classify patients solely fromMRI data, are illustrated in detail (ac-
curacy, sensitivity, specificity, positive and negative predictive value) in
Table 1. Classification accuracy ranged from 71.1% to 78.9% in the 19
bvFTD patients vs. 19 control subjects analyses, and from 78.8% to
84.6% in the 52 bvFTD patients vs. 52 control subjects analyses. Obvious-
ly, classification accuracywas generally strongwith higher values in the
larger cohort, presumably due to a higher statistical power. Accordingly,
description of results will be focused on the larger cohort including 52
patients and 52 control subjects in the following. The frontal lobe
mask revealed better results for accuracy than the temporal lobe mask
(80.7% vs. 78.8%). Both masks reached slightly lower accuracy than
using all the voxels of the brain (81.7%). Adding the insula and basal
ganglia to the frontal mask increased accuracy to 82.7%. The highest ac-
curacywith 84.6% could be obtained by using amask including the fron-
tal and temporal lobe alone, or combined with the insula and basal
ganglia.More detailedmasks did not lead to better classification. Overall
a high specificity was achieved.

Fig. 3 illustrates weights of voxels most relevant for SVM classifica-
tion between bvFTD patients and healthy controls across the whole
brain. Relevant voxels for bvFTD classification were located in the fron-
tal and temporal cortex, the insula, basal ganglia, and the cerebellum.

4. Discussion

This study aimed at further validating imaging criteria for bvFTD by
measuring brain atrophy with MRI in a multi-centric cohort, and by
predicting diagnosis in each patient individually based on pattern rec-
ognition algorithms (SVM classification).

In line with our hypothesis the group comparison between bvFTD
and control subjects revealed most pronounced and most consistent
GMD loss in frontal brain regions in both of the conducted group
ecificity (%) Positive predictive value (%) Negative predictive value (%)

.2 80.0 69.6

.6 83.7 80.0

.5 86.7 73.9

.6 83.3 78.6

.5 86.7 73.9

.6 84.0 81.5

.4 70.0 72.2

.8 80.0 77.8

.2 81.3 72.7

.5 87.5 82.1

.2 80.0 69.6

.5 87.5 82.1

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm


Fig. 1. Group comparison between behavioral variant frontotemporal dementia (bvFTD) vs. healthy control cohort (HC) for gray matter density (GMD). A: 19 patients with bvFTD vs. 19
center-matched control subjects. B: 52 patients with bvFTD vs. 52 control subjects. Family wise error (FWE) correction. Coordinates in Montreal Neurological Institute (MNI) space. Left
side of the brain is shown on the left.
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comparison analyses. Remarkably, the conjunction analysis of the
smaller of the two cohorts revealed the greatest overlap between the
centers in the bilateral frontal pole. This is of particular note since this
cohort was characterized by a lower average of duration since initial
symptoms occurred (2.4 ± 2.6 vs. 3.7 ± 3.7 years), and, accordingly,
lower disease severity (CDR 5.0 ± 3.5 vs. 5.5 ± 3.5; FTLD-CDR 5.8 ±
4.1 vs. 7.7 ± 4.2; Student's t-test p = 0.12, 0.62, 0.52) as compared to
the larger cohort, suggesting that the frontal lobemay be thefirst affect-
ed brain region in bvFTD patients, as has been postulated before
(Schroeter et al., 2014). The results support the assumption that
bvFTD might be regarded as a mainly frontal disease as suggested by
powerful meta-analyses across imaging studies, histopathological stud-
ies, and conceptual theories for this neurodegenerative disease (Kim et
al., 2012; Pan et al., 2012; Schroeter, 2012; Schroeter et al., 2014; Seeley
et al., 2006). Furthermore, we found GMD differences in the insulae and
basal ganglia in agreement with the aforementioned meta-analytic and
histopathological findings, and, additionally, in the temporal lobe. Such
regional alterations have been previously described for different sub-
types of bvFTD (Whitwell et al., 2009) and in autopsy proven FTLD pa-
tients (Rabinovici et al., 2007).

In linewith themajor aimof this study, the diagnosis bvFTD could be
predicted in individual patients by applying pattern recognition algo-
rithms to MRI data as shown for the first time to our knowledge. The
SVM analyses supplied very reasonable results, varying in accuracy be-
tween 71.1% and 78.9% in the 19 vs. 19 comparison and between 78.8%
and 84.6% in the 52 vs. 52 comparison, depending on the selected region
of interest. Using all voxels of the frontal lobe led to better classification
accuracy than using all voxels of the temporal lobe. This again supports
the assumption that the primarily affected or core network lies within
the frontal lobe.

The highest accuracywas reached by using all the voxels of the fron-
tal and temporal lobe alone or togetherwith the insula and basal ganglia
in order to distinguish between patients and control subjects (Table 1).
These results underline the importance of the insula and basal ganglia in
bvFTD (Kim et al., 2012; Schroeter et al., 2014). The relevance of the four
aforementioned brain regions for pattern classification was confirmed
by the analysis investigating the importance of the several brain regions
contributing to the correct classification in thewhole brain analysis (see
Fig. 3). Of note, the cerebellum contributed also to correct classification
here.

Onemight conclude that SVM classification enables individual diag-
nosis of bvFTD with structural MRI – a finding supporting the inclusion
of imaging criteria into diagnostic algorithms. For clinical applications,
we suggest conducting analyses across the frontal, temporal lobes,
insula and basal ganglia in order to distinguish between patients and
healthy control subjects with highest reliability. Incorporating addition-
al biomarkers into the classifier, such as from cerebrospinal fluid, or
other imaging modalities, such as positron emission tomography, shall
increase diagnostic accuracy in the future (Dukart et al., 2011, 2013a;
Steinacker et al., 2017; Tahmasian et al., 2016).



Fig. 2. Conjunction analyses across group comparison between behavioral variant frontotemporal dementia (bvFTD) vs. control cohort, leaving for each analysis one center, i.e. respective
patients and control subjects, out. Differences in gray matter density (GMD). The scale illustrates the number of overlapping centers. A: 19 patients with bvFTD vs. 19 center-matched
control subjects. B: 52 patients with bvFTD vs. 52 control subjects. Family wise error (FWE) correction. Coordinates in Montreal Neurological Institute (MNI) space. Left side of the
brain is shown on the left.
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For clinical purposes in the framework of personalized medicine fu-
ture studies shall focus on detecting neurodegenerative diseases with
such approaches as early as possible, i.e. in prestages such as mild cog-
nitive or mild behavioral impairment or mild neurocognitive disorder,
where treatmentmight be easier to conduct, and allowdifferential diag-
nosis with other neurodegenerative disease subtypes. Especially a com-
parison with the most frequent dementia type – Alzheimer's disease –
would be of interest. Here, previous studies have shown that bvFTD/
FTLD can be differentiated with high accuracy from Alzheimer's disease
with the same approaches (Dukart et al., 2011; Klöppel et al., 2008;
Möller et al., 2016). Note that regions-of-interest and analysis tech-
niques might differ in diagnostic vs. differential diagnostic procedures
as shown for imaging approaches recently (Dukart et al., 2010, 2011,
2013a, 2013b).

Inter-center variability, as revealed in the conjunction analysis of the
group comparisons, was more prominent in the smaller cohort (Fig. 2).
The reason for inter-center variability could bemanifold. Firstly, the dis-
ease stages might vary between centers, and secondly, the centers used
different MRI scanners or even scanning parameters. The overlap be-
tween detected GMD differences across the different centers in the
larger cohort shows a greater similarity between the centers in the ex-
pected areas of the frontal and temporal lobe, and the basal ganglia, pre-
sumably due to higher numbers of subjects included and, consequently,
higher statistical power.

In sum, the conjunction analyses prove that disease effects are great-
er than the effect of inter-center variability. We suggest applying such
conjunction analyses with the “leave one center out” approach, i.e. ex-
cluding repeatedly subjects from each center from the analysis, also to
other multi-centric data to control for inter-center differences/bias.

Onemight discuss as a limitation of this study the different scanning
conditions between the centers, varying from different types of scan-
ners to different scanning sequences. More subtle effects of the disease
might therefore be overlooked or some over-interpreted because of
inter-center variability.We tried to approach this problemwith the cen-
ter conjunction analyses (see above), which pointed out themain areas
showing GMD loss across all centers. Note that this approach can be
transferred to other multi-center studies to validate their findings.
Here, further studies shall add also other scanner types beyond Siemens
scanners. On the other hand themulti-center designmight be discussed
as an important advantage of the study. By conducting analyses across



Fig. 3.Weights of voxels most relevant for support vector machine (SVM) classification between patients with behavioral variant frontotemporal dementia (bvFTD) and healthy controls
(HC). The most relevant voxels for classification as bvFTD are shown in red-yellow, for HC in blue. SVM classification was performed on all voxels within the gray matter mask (tissue
probability N0.4). A: 19 patients with bvFTD vs. 19 center-matched control subjects. B: 52 patients with bvFTD vs. 52 control subjects. Coordinates in Montreal Neurological Institute
(MNI) space. Left side of the brain is shown on the right.
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multi-centric data we guaranteed a real-life scenario ensuring that our
approach can be transferred to and applied in clinical settings. Another
shortcoming of this study is the fact that most of the patients do not
have a definite diagnosis yet, i.e. no detected pathogenic mutation or
histopathological evidence. In order to be as precise as possible only pa-
tients diagnosed according to the newest diagnostic criteria were in-
cluded in the study (Rascovsky et al., 2011). Future studies shall
approve our automatic classification approach in genetically and histo-
pathologically proven cohorts.

5. Conclusion

Recently, new diagnostic criteria were suggested that incorporate
imaging criteria into diagnostic algorithms for behavioral variant
frontotemporal dementia (bvFTD). The study aimed at validating
these imaging criteria for individual diagnosis by predicting diagnosis
from imaging data with machine learning algorithms. Brain atrophy
was measured with structural magnetic resonance imaging (MRI) at 3
Tesla in a multi-centric cohort of 52 bvFTD patients and 52 healthy con-
trol subjects from theGerman FTLDConsortium's Study. Note that usage
of multi-center data is a precondition for future application in clinical
routine. Support vector machine classification predicted diagnosis in
single patients with a high accuracy of up to 84.6%, where accuracy
was higher in a region-of-interest approach focusing on a disease-spe-
cific network including frontotemporal, insular regions and basal gan-
glia in comparison with the whole brain approach. Our study
demonstrates that MRI, a widespread imaging technology, can individ-
ually identify bvFTDwith high accuracy, paving the road to personalized
diagnostic approaches in the future.
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