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Primary progressive aphasia (PPA) encompasses the three subtypes nonfluent/agrammatic variant PPA, semantic
variant PPA, and the logopenic variant PPA, which are characterized by distinct patterns of language difficulties
and regional brain atrophy. To validate the potential of structural magnetic resonance imaging data for early in-
dividual diagnosis, we used support vector machine classification on grey matter density maps obtained by
voxel-basedmorphometry analysis to discriminate PPA subtypes (44 patients: 16 nonfluent/agrammatic variant
PPA, 17 semantic variant PPA, 11 logopenic variant PPA) from 20 healthy controls (matched for sample size, age,
and gender) in the cohort of the multi-center study of the German consortium for frontotemporal lobar degen-
eration. Here, we compared a whole-brain with a meta-analysis-based disease-specific regions-of-interest ap-
proach for support vector machine classification. We also used support vector machine classification to
discriminate the three PPA subtypes from each other. Whole brain support vectormachine classification enabled
a very high accuracy between 91 and 97% for identifying specific PPA subtypes vs. healthy controls, and 78/95%
for the discrimination between semantic variant vs. nonfluent/agrammatic or logopenic PPA variants. Only for
the discrimination between nonfluent/agrammatic and logopenic PPA variants accuracywas lowwith 55%. Inter-
estingly, the regions that contributed the most to the support vector machine classification of patients
corresponded largely to the regions that were atrophic in these patients as revealed by group comparisons. Al-
though thewhole brain approach took also into account regions that were not covered in the regions-of-interest
approach, both approaches showed similar accuracies due to the disease-specificity of the selected networks.
Conclusion, support vector machine classification of multi-center structural magnetic resonance imaging data
enables prediction of PPA subtypes with a very high accuracy paving the road for its application in clinical
settings.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords:
Grey matter
Multi-center
Primary progressive aphasia
Support vector machine classification
Whole brain approach
r Human Cognitive and Brain

Hammer (Erlangen), Manuel
a Polyakova (Leipzig), Tanja
ich), Dorothee Saur (Leipzig),
go Uttner (Ulm), Christine v.

. This is an open access article under
1. Introduction

Primary progressive aphasia (PPA) is a neurodegenerative disease
with insidious onset mainly characterized by a language dysfunction
that remains isolated for at least two years without significant impair-
ment in other cognitive domains (Gorno-Tempini et al., 2011;
Mesulam, 1982; Neary et al., 1998). PPA subsumes three gradually pro-
gressive language disorders, namely semantic variant PPA (svPPA) or
semantic dementia, nonfluent/agrammatic variant PPA (nfvPPA) or
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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progressive nonfluent aphasia, and logopenic variant PPA (lvPPA) or
logopenic progressive aphasia (Gorno-Tempini et al., 2008;
Gorno-Tempini et al., 2004; Gorno-Tempini et al., 2011). SvPPA ismain-
ly characterized by impairments in confrontation naming, single-word
comprehension, and object-knowledge, as well as surface dyslexia or
dysgraphia (Gorno-Tempini et al., 2011). The imaging supported diag-
nosis of svPPA is given when patients additionally show atrophy and/
or hypometabolism in the anterior (ventral and lateral) temporal lobe.
Patients suffering from nfvPPA show predominantly agrammatism, ef-
fortful halting speechwith inconsistent speech sound errors and distor-
tions (apraxia of speech), and impaired comprehension of syntactically
complex sentences. These language deficits are often associatedwith at-
rophy or hypometabolism in left inferior frontal gyrus, insula, premotor,
and supplementary motor areas. LvPPA is characterized by impaired
single-word retrieval in spontaneous speech and naming as well as im-
paired repetition of sentences. Patients suffering from lvPPA further-
more often show phonologic paraphasias in spontaneous speech and
naming. The imaging supported diagnosis of lvPPA is given when pa-
tients additionally show atrophy and/or hypometabolism in left posteri-
or parietal, supramarginal, and angular gyri (Gorno-Tempini et al.,
2011). The suggested imaging criteria have recently been validated by
comprehensive meta-analyses (Bisenius et al., 2016).

The prevalence of PPA is roughly estimated to range from 3 to 15/
100,000 in the US population (Grossman, 2010; Harvey et al., 2003;
Ratnavalli et al., 2002). PPA is thus a rare disease, which makes it very
difficult for neurologists outside specialized clinics to correctly recog-
nize and differentiate between the three PPA variants in routinehospital
practice (e.g., Wilson et al., 2009). Given that the current imaging
criteria are only supportive for the diagnosis of PPA,magnetic resonance
imaging (MRI) scans are often not included as standard in the clinical
assessment of PPA, but mainly used to exclude differential diagnoses
(e.g., Wilson et al., 2009). It has been shown for other types of dementia
like for instance, AD that changes in atrophy as visualized byMRI are an
especially good biomarker for correct early diagnosis and furthermore
even predictive for individuals with mild cognitive impairment to de-
cline into AD (e.g., Frisoni et al., 2010; McEvoy and Brewer, 2010;
Schroeter et al., 2009;Weiner et al., 2010). Therefore, it might be highly
interesting to investigate whether MRI scans have a similar predictive
value for the correct early diagnosis of PPA and to investigate which
brain regions contribute the most to the classification of its three
variants.

On the one hand, it seems plausible that brain regions proposed in
the current diagnostic imaging criteria and based on a large range of im-
aging studies (Bisenius et al., 2016; Gorno-Tempini et al., 2011) enable
the correct diagnosis of the three PPA variants. On the other hand,
most of the current imaging studies report comparisons of the three
variants of PPA with age-matched healthy controls at a group-level
and it has been critically discussed that statistical differences at group
level might not necessarily reveal the most important regions to cor-
rectly diagnose individual cases (Davatzikos et al., 2008a; Davatzikos
et al., 2008b; Wilson et al., 2009). Therefore, it might advance our
knowledge in this field crucially to investigate whether brain regions
contributing the most to the correct diagnosis of the three PPA variants
indeed correspond to regions that are especially atrophied in these
three variants. Moreover, it might be highly interesting to explore
whether disease-specific regions of interest (ROIs) in comparison with
whole brain approaches even enhance the predictive power of MRI
scans for the correct PPA classification.

To address these issues, we investigated here atrophy, namely
changes in grey matter density, with voxel-based morphometry
(VBM) in patients suffering from one of the PPA variants in comparison
with healthy controls as well as by comparing patients with different
PPA variants at a group level. Subsequently, we used linear support vec-
tor machine (SVM) classification of the individual grey matter density
maps to investigate their discriminative or predictive power for the cor-
rect classification of single subjects as belonging to one of the PPA
variants or healthy controls. A number of recent studies have used sim-
ilar pattern classificationmethods to classify patients with AD, FTD, and
mild cognitive impairment (Davatzikos et al., 2008a; Davatzikos et al.,
2008b; Dukart et al., 2013; Dukart et al., 2011; Fan et al., 2008;
Klöppel et al., 2008b; Lerch et al., 2008; Misra et al., 2009; Teipel et al.,
2007; Vemuri et al., 2008). Wilson et al. (2009) investigated the utility
of structural MRI scans for SVM classification in PPA variants in a single
center study. Here, we investigated patients included in the multi-cen-
ter study of the German consortium for frontotemporal lobar degenera-
tion (FTLD; Otto et al., 2011) to replicate and generalize previously
reported results, where themulti-center design is a precondition for ap-
plication in clinical routine in the future. Additionally, we compared a
whole-brain approach to a disease-specific ROI approach based on com-
prehensive anatomical likelihood estimation meta-analyses on the
three variants of PPA (Bisenius et al., 2016). These ROIs represent the
prototypical networks consistently affected in the three variants of
PPA across MRI studies reporting group-level statistics. Note that these
ROIs are based on a totally different cohort avoiding circularity. In
order to better understand possible differences between the whole
brain and the regions-of-interest approach, we furthermore computed
and visualized the voxels that contributed the most to the SVM classifi-
cation in thewhole brain approach. To reveal whether the brain regions
that contributed the most to the SVM classification in the whole brain
approach corresponded to the regions that were especially atrophic in
the three PPA variants, we also report pairwise group-level comparisons
of grey matter probability maps between patients and healthy controls,
respectively between PPA variants. For the pairwise group-level com-
parisons, we hypothesized that, according to the current imaging
criteria and previously published VBM studies, atrophy is focused to
left fronto-insular regions in nfvPPA, to the (mainly left) anterior tem-
poral lobe in svPPA, and to the (predominantly left) posterior
perisylvian or parietal cortex in lvPPA (e.g., Bisenius et al., 2016;
Desgranges et al., 2007; Gorno-Tempini et al., 2011; Grossman et al.,
2004; Mummery et al., 2000). Furthermore, we hypothesized that the
same brain regionswouldmainly contribute to the correct SVM classifi-
cation in PPA variants and healthy controls and that disease-specific ROI
approaches would reveal a higher predictive power for the SVM classi-
fication than whole-brain approaches.

2. Materials and methods

2.1. Subjects

Patients and healthy controls were recruited within seven centers
(located in Ulm, Munich, Leipzig, Homburg, Erlangen, Bonn, and
Goettingen) of the German consortium for FTLD (http://www.ftld.de).
All subjects gave written consent. The research protocol was in accor-
dance with the latest version of the Declaration of Helsinki and ap-
proved by the universities' ethics committees. For each center, the
clinical evaluation and the assessment of the MRI scans were done on
site according to standard operating procedures. That is, all of these cen-
ters used the same study protocol (diagnostic criteria, demographic,
neuropsychological and language assessment, and scanning parame-
ters), except for one center, where different scanning parameters
were used (see Section 2.2). The diagnosis of PPA required progressive
deterioration of speech and that the main deficits were restricted to
speech and language for at least two years. Patients were diagnosed
more specifically with nfvPPA, svPPA, or lvPPA according to the newest
diagnostic criteria (Gorno-Tempini et al., 2011). Note that data from the
patient's first visit in the multi-centric FTLD consortium's study was in-
cluded guaranteeing the relevance of our results for early diagnosis of
PPA syndromes. None of the patients included in this study had any co-
morbid psychiatric or neurodegenerative disease. The degree of clinical
impairment of the patients was assessed using the Clinical Dementia
Rating scale (CDR) and the FTLD-modified Clinical Dementia Rating
scale (FTLD-CDR). We compared 44 right-handed patients suffering
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froma variant of PPA (16 nfvPPA, 17 svPPA, and 11 lvPPA)with 20 right-
handed healthy controls. We report all possible pairwise comparisons
between PPA variants. Subjects from the larger group of a given group
comparison were matched as closely as possible to the smaller group
for 1) number, 2) scanning parameter, 3) age, and where possible 4)
gender.

2.2. Image acquisition

All structural imageswere acquired on SiemensMagnetom 3 T scan-
ners (2xVerio, 2xSkyra, 2xTrio, 1xAllegra, Erlangen, Germany). 47 T1-
weighted images (12 svPPA, 11 nfvPPA, ten lvPPA, 14 healthy controls)
were acquired using a magnetization prepared rapid gradient echo se-
quence with a matrix = 240 × 256 × 176, resolution =
1 × 1 × 1 mm, field of view = 240 mm, repetition time = 2300 ms,
echo time = 2.98 ms, inversion time = 900 ms, and flip angle = 9°.
For 17 subjects (five nfvPPA,five svPPA, one lvPPA, six healthy controls),
T1-weighted images were acquired using a magnetization prepared
rapid gradient echo sequence with a matrix= 208 × 256 × 256, resolu-
tion = 1 × 1 × 1 mm, field of view = 256 mm, repetition time =
2200 ms, echo time = 4.38 ms, inversion time = 1200 ms, and flip
angle = 8°. The distribution of the two sequences (scanning parame-
ters) did not differ significantly, neither between patient groups nor be-
tween patient groups and healthy control groups (see Table 1). The very
first MRI scans that were assessed as soon as the subjects were enrolled
in the study, were used for analyses.

2.3. Data analysis

2.3.1. Clinical characteristics
We used SPSS version 22 (IBM Corporation, Armonk, NY) to com-

pute descriptive group scores (mean and standard deviation) for the
overall patient and healthy control groups as well as for the respective
subsets after matching for sample size, age, gender, and scanning pa-
rameters. Group comparisons for age, disease duration, education, and
total greymatter density between all patient and healthy control groups
Table 1
Demographic and clinical characteristics of patients and healthy controls.

nfvPPA sv

Number 16 17
Gender (m/f) 8/8 11
Scanning parameter 11/5 12
Age (years) 67.50 ± 7.42 62
Education (years) 13.19 ± 4.29 15
Disease duration (years) 2.19 ± 1.60 3.
Total grey matter density (dm3) 0.54 ± 0.08 0.
CDR 3.44 ± 3.20 5.
FTLD-CDR 5.94 ± 4.07 7.

CERAD Plus (test battery)
MMSE 19.94 ± 7.25 19
Word list memory (trials 1–3) 13.07 ± 6.61 13
Word list recall 4.33 ± 2.62 3.
Word list recognition (yes) 8.57 ± 2.41 8.
Word list recognition (no) 9.57 ± 0.65 7.
Constructional praxis 9.06 ± 1.95 10
Constructional praxis recall 6.75 ± 2.86 6.
Trail Making Test A (s) 94.38 ± 46.95 75
Trail Making Test B (s) 220.18 ± 91.33 12
Boston Naming Test 9.93 ± 4.76 6.
Verbal Fluency Test 8.06 ± 7.34 8.
Phonemic Fluency Test 3.87 ± 4.09 7.

Repeat and Point Test
Repeat task 7.93 ± 2.34 8.
Point task 8.53 ± 1.55 6.

CDR clinical dementia rating scale, global score, CERAD Consortium to Establish a Registry for
logopenic variant PPA, MMSE Mini-Mental State Examination, nfvPPA nonfluent/agrammatic v
cation, disease duration, CDR, FTLD-CDR, CERADPlus, and Repeat andPoint Test are indicated as
of the CERAD Plus and the Repeat and Point Test.
as well as between PPA variants were performed using one-way
ANOVAs, Kruskal-Wallis tests, and post-hoc t-tests in SPSS. Group com-
parisons for demographic and clinical characteristics between the
matched subsets were performed using independent t-tests (normally
distributed data) and Mann-Whitney U tests (not normally distributed
data) in SPSS. Group comparisons for gender and scanning parameter
were done using chi-square tests in SPSS.

2.3.2. Voxel-based morphometry
Images were processed with the VBM toolbox (http://dbm.neuro.

uni-jena.de/vbm/) in SPM 8 (Wellcome Department of Imaging Neuro-
science, London, UK; http://www.fil.ion.ucl.ac.uk/spm/software/spm8/)
running in a MATLAB 8.5 environment (Mathworks, Inc., Sherbon, MA,
USA) using the default parameters. MRI images were segmented into
greymatter, whitematter, and cerebrospinal fluid using the unified seg-
mentation module (Ashburner and Friston, 2005) and normalized to
the standard Montreal Neurological Institute template including affine
and non-linearmodulation to account for local compression and expan-
sion during transformation. The normalized segmented grey matter
density maps were smoothed with a Gaussian kernel of 8 mm full-
width-at-half-maximum. The group comparisons between the three
variants of PPA and healthy controls as well as between PPA variants
were performed in FSL (FMRIB Analysis Group, Oxford University, UK.,
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL) using permutation-based non-
parametric testing (5000 permutations) with the Threshold-Free Clus-
ter Enhancement (TFCE) method (Smith and Nichols, 2009; Winkler
et al., 2014). Age, gender, and total grey matter were entered as covari-
ates in the general linearmodel and results are reported at a family-wise
error (FWE) corrected p b 0.05.

SVM classification (Vapnik, 1995; Vapnik, 1998) was performed
using libsvm version 3.18 (Chang and Lin, 2011; https://www.csie.ntu.
edu.tw/~cjlin/libsvm) in a MATLAB 8.5 environment (Mathworks, Inc.,
Sherbon, MA, USA). Analyses were done using a linear kernel and the
default solver C-SVC with C= 1. In SVM classification, an optimal sepa-
rating hyperplane is defined, which maximizes the distance between
subjects belonging to different groups. In the training step, SVM assigns
PPA lvPPA HC

11 20
/6 4/7 11/9
/5 10/1 14/6
.53 ± 7.77 65.36 ± 6.25 67.05 ± 6.61
.35 ± 3.37 13.27 ± 3.35 14.10 ± 3.04
59 ± 2.45 3.64 ± 2.66 –
52 ± 0.08 0.51 ± 0.09 0.59 ± 0.05
32 ± 4.19 4.64 ± 4.43 0.03 ± 0.11
88 ± 5.44 6.86 ± 5.81 0.05 ± 0.15

.31 ± 8.35 22.10 ± 6.03 28.70 ± 0.92

.92 ± 7.62 11.64 ± 8.93 23.40 ± 3.03
77 ± 3.30 3.73 ± 3.88 8.20 ± 2.38
85 ± 1.41 9.10 ± 1.20 9.80 ± 0.52
69 ± 2.63 8.40 ± 3.34 10.00 ± 0.00
.00 ± 2.08 8.18 ± 3.31 11.00 ± 0.00
31 ± 4.31 4.55 ± 4.28 9.45 ± 1.91
.69 ± 51.56 75.80 ± 51.33 35.80 ± 9.01
3.70 ± 72.24 201.13 ± 84.47 74.50 ± 19.12
47 ± 4.26 10.18 ± 3.89 14.85 ± 0.49
00 ± 5.01 12.09 ± 8.49 26.75 ± 5.50
23 ± 5.29 6.80 ± 4.52 18.20 ± 4.63

93 ± 1.98 6.80 ± 3.36 10.00 ± 0.00
14 ± 2.85 8.10 ± 1.91 9.88 ± 0.49

Alzheimer's Disease, FTLD frontotemporal lobar degeneration, HC healthy controls, lvPPA
ariant PPA, PPA primary progressive aphasia, svPPA semantic variant PPA. Note age, edu-
mean±standarddeviation.Note that datawasmissing for a few subjects on some subtests
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a weight to the scan of each subject which indicates its importance for
the discrimination between groups. This weight is multiplied by a
label vector which indicates the group of the scan (e.g., patient or
healthy control). The cross-validation of the trained SVM was per-
formed using the leave-one (subject)-out method. This procedure iter-
atively leaves-out the information of one subject of each group and
trains themodel on the remaining subjects for subsequent class assign-
ment of the respective subject thatwas not included in the training pro-
cedure. This validation method allows the generalization of the trained
SVM to data that have not been presented to the SVM algorithm previ-
ously and avoids the danger of inflating accuracies.

In the whole brain approach, we included all voxels that had a prob-
ability for grey matter higher than 0.2 (because voxels lying between
whitematter and ventricular cerebrospinalfluid tend to bemisclassified
as greymatter (e.g., Ashburner and Friston, 2000; Dukart et al., 2011). In
the ROI approach, we used the results from a recently published ana-
tomical likelihood estimation meta-analysis on the three variants of
PPA (p b 0.05 false discovery rate corrected) acrossMRI studies as a pro-
totypical disease-specific template (Bisenius et al., 2016). The original
meta-analytic clusters were coregistered to the Montreal Neurological
Institute template of the VBM results using SPM 8 and dilated by two
voxels using the 3Ddilation function implemented in theWFUPickAtlas
(Maldjian, http://www.nitrc.org/projects/wfu_pickatlas). Non-para-
metric statistical comparisons were calculated between the perfor-
mance (as indicated by the area under the receiver operating
characteristic curve, AUC) of the ROI approach and the whole brain ap-
proach for all pairwise comparisons at p b 0.05 in StAR (Vergara et al.,
2008; www.melolab.org/star/home.php).

In order to determine and visualize the importance of each voxel for
the discrimination between groups in the whole brain approach, we
multiplied each grey matter probability map (containing only voxels
where p N 0.2) by the product of weight and label and summed on a
voxel basis (Klöppel et al., 2008b).

3. Results

3.1. Demographic and clinical characteristics

The demographic and clinical characteristics of the overall patient
and healthy control groups are shown in Table 1. The patient and
healthy control groups did not differ significantly from each other in
age, education, or disease duration. The patient and healthy control
groups differed however significantly in total grey matter density
(F(3,63)= 4.06, p=0.01) with svPPA and lvPPA showing lower values
than healthy controls. The three PPA variants did not differ significantly
from each other in age, education, disease duration, or total grey matter
density.

A detailed description of each of the pairwise comparisons between
the matched subsets is given in Supplementary Table A.1. As shown in
Table A.1, no pair of groups differed significantly in age, gender, and ed-
ucation and none of the patient groups differed significantly from the
other patient groups in age, gender, education, duration of disease,
CDR, and FTLD-CDR. PPA variants differed significantly from healthy
controls in CDR, FTLD-CDR, and most of the subtests of the Consortium
to Establish a Registry for Alzheimer's Disease (CERAD) Plus test battery.
NfvPPA and svPPA additionally differed significantly from healthy con-
trols in the Repeat and Point Test. In the pairwise comparisons between
PPA variants, svPPA showed a significantly lower test score in the Point
task than nfvPPA and a significantly higher test score in the Repeat task
than lvPPA (see Supplementary Table A.1).

3.2. Voxel-based morphometry results

Significant results of the statistical comparison between grey matter
density maps of healthy controls and patients are shown in red
(nfvPPA), light green (svPPA), and blue (lvPPA) color in Figs. 1–3 on
the top left (for more details, see Supplementary Table A.2). All results
are reported at an FWE corrected significance level of p b 0.05. The re-
sults of the statistical comparison between grey matter density maps
of svPPA and nfvPPA are shown in Fig. 4 on the top left
(svPPA b nfvPPA in light green color, nfvPPA b svPPA in red color). The
results for the statistical comparison between lvPPA and svPPA are
shown in Fig. 5 on the top left (svPPA b lvPPA in light green color,
lvPPA b svPPA no significant results at p b 0.05). There were no signifi-
cant results for the comparison between lvPPA and nfvPPA at a FWE
corrected significance level of p b 0.05 (therefore not shown). More de-
tails on the pairwise comparisons between PPA variants are given in
Supplementary Table A.2.

3.3. Support vector machine classification results

SVMclassificationwas applied separately to each group comparison:
1) nfvPPA vs. healthy controls, 2) svPPAvs. healthy controls, 3) lvPPA vs.
healthy controls, and 4) svPPA vs. nfvPPA. The reported accuracy is the
percentage of subjects correctly assigned to the clinical diagnosis (pa-
tient/healthy control or svPPA/nfvPPA). Sensitivity refers to the propor-
tion of patients correctly classified as patients and specificity to the
proportion of healthy controls correctly classified as healthy controls.
Positive predictive value refers to the number of correctly classified pa-
tients out of all subjects classified as patients and negative predictive
value refers to the number of correctly classified healthy controls out
of all subjects classified as healthy controls.

3.4. Group comparisons between patients and healthy controls

The accuracy for the classification between different variants and
healthy controls using the leave-one-out approach ranged from 91 to
97% for the whole brain approach and from 82 to 100% for the ROI ap-
proach. Details on the respective sensitivity, specificity, and accuracy
are given in Figs. 1–3 on the bottom right and details on positive and
negative predictive values are shown in Supplementary Table A.3. The
results of the SVM classification between patients and healthy controls
for the whole brain approach are shown on the top right of Figs. 1–3.
Here, values range between−1 and 0 or 0 and 1 and reflect the relative
importance of these voxels in the discrimination between both groups.
Voxels that contributed the most to the classification of subjects as pa-
tients (i.e., had a higher negative value) are depicted in yellow and the
voxels that contributed the most to the classification of subjects as
healthy controls (i.e., had a higher positive value) are shown in light
green. A value near 0 indicates that this voxel was neither indicative
for the classification as patient nor as healthy control.

Brain regions that contributed the most to the classification of sub-
jects as nfvPPA vs. control subjects (Fig. 1 on the top right) encompass
bilaterally cerebellum, inferior, middle, and superior temporal gyri,
middle occipital gyrus, parahippocampal gyrus, crus cerebri, thalamus,
precuneus, inferior and superior frontal gyri, as well as in the left hemi-
sphere orbital gyrus, insula, pre- and postcentral gyri, middle frontal
gyrus, and angular gyrus. Classification accuracy was 91% for the
whole brain approach and 84% for the ROI approach. The statistical com-
parison between both approaches revealed high AUC values, but with-
out significant differences (AUCROI = 0.90, AUCwhole brain = 0.94, p =
0.48).

Regions that contributed the most to the classification of subjects as
svPPA vs. control subjects included bilaterally (although predominantly
in the left hemisphere) cerebellum, inferior, middle and superior tem-
poral gyri, middle occipital gyrus, parahippocampal gyrus, hippocam-
pus, amygdala, putamen, insula, precentral and postcentral gyri,
middle frontal gyrus, inferior parietal gyrus, and cingulate gyrus (see
Fig. 2 on the top right). Classification accuracy was very high for both
approaches (97% for the whole brain approach and 100% for the ROI ap-
proach). The statistical comparison between approaches showed very

http://www.nitrc.org/projects/wfu_pickatlas
http://www.melolab.org/star/home.php


Fig. 1. Voxel-based morphometry and support vector machine classification results for nonfluent/agrammatic variant PPA as compared to healthy controls. Top left: voxel-based
morphometry (VBM) results for the comparison between nonfluent/agrammatic variant PPA (nfvPPA) and healthy controls (HC) (family-wise error corrected p b 0.05). Bottom left:
Regions of interest (ROIs) based on independent meta-analyses. Right: Results of support vector machine classification (SVM) classification. Top: Regions most relevant for
classification as patients in yellow, HC in light green. Note that the scale of the distance weights has no applicable units. Bottom: Sensitivity, specificity, and accuracy for the ROI
approach and the whole brain approach in SVM classification.
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high AUC values for both, but without significant differences (AUCROI =
1.00, AUCwhole brain = 0.97, p = 0.32).

Regions that contributed the most to the classification of subjects as
lvPPA patients vs. control subjects are shown in yellow in Fig. 3 on the
top right and encompass left inferior temporal gyrus, fusiform gyrus,
middle occipital gyrus, parahippocampal gyrus, hippocampus, puta-
men, insula, thalamus, precentral gyrus, middle and superior frontal
gyri, angular gyrus, supramarginal gyrus, and cingulate gyrus as well
as bilaterally cerebellum, middle and superior temporal gyri, caudate
nucleus, thalamus, middle and superior frontal gyri, precuneus, and su-
perior parietal gyrus. Classification accuracy was high for both, the
whole brain approach (95%) and the ROI approach (82%). The statistical
comparison between both approaches did show high AUC values
without significant differences (AUCROI = 0.91, AUCwhole brain = 0.95,
p = 0.38).
Fig. 2. Voxel-based morphometry and support vector machine classification results for semanti
results for the comparison between semantic variant PPA (svPPA) and healthy controls (HC)
independent meta-analyses. Right: Results of support vector machine (SVM) classification. T
that the scale of the distance weights has no applicable units. Bottom: Sensitivity, specificity, a
3.4.1. Group comparisons between PPA variants
Fig. 4 illustrates on top right in yellow the regions that contributed

themost to the classification as svPPA and in green the regions that con-
tributed the most to the classification as nfvPPA. Here, sensitivity refers
to the ratio of correctly classified svPPA patients and specificity to the
ratio of correctly classified nfvPPA patients. Details on positive and neg-
ative predictive values are given in Supplementary Table A.3. The re-
gions that contributed the most to the classification of a subject as
svPPA included bilaterally cerebellum, inferior, middle and superior
temporal gyri, middle occipital gyrus, fusiform gyrus, parahippocampal
gyrus, hippocampus, putamen, insula, cuneus, precuneus, inferior fron-
tal gyrus, superior parietal gyrus, cingulate gyrus, and left precentral
gyrus. Regions that contributed the most to the classification of nfvPPA
included bilateral cerebellum, middle and superior occipital gyrus, su-
perior temporal gyrus, gyrus rectus, posterior orbital gyrus, caudate
c variant PPA as compared to healthy controls. Top left: voxel-based morphometry (VBM)
(family-wise error corrected p b 0.05). Bottom left: Regions of interest (ROIs) based on
op: Regions most relevant for classification as patients in yellow, HC in light green. Note
nd accuracy for the ROI approach and the whole brain approach in SVM classification.



Fig. 3. Voxel-basedmorphometry and support vectormachine classification results for logopenic variant PPA as compared to healthy controls. Top left: voxel-basedmorphometry (VBM)
results for the comparison between logopenic variant PPA (lvPPA) and healthy controls (HC) (family-wise error corrected p b 0.05). Bottom left: Regions of interest (ROIs) based on
independent meta-analyses. Right: Results of support vector machine (SVM) classification. Top: Regions most relevant for classification as patients in yellow, HC in light green. Note
that the scale of the distance weights has no applicable units. Bottom: Sensitivity, specificity, and accuracy for the ROI approach and the whole brain approach in SVM classification.
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nuclei, thalamus, inferior, middle, and superior frontal gyrus, precentral
gyrus, postcentral gyrus, inferior parietal gyrus, angular gyrus,
supramarginal gyrus, right precuneus, right superior parietal gyrus,
and right cingulate gyrus. Classification accuracy was 78% for both, the
whole brain and the ROI approach. Both approaches revealed high
AUC values without significant differences between them (AUCROI =
0.87, AUCwhole brain = 0.88, p = 0.72).

Fig. 5 illustrates on top right in yellow the regions that contributed
themost to the classification as lvPPA and in green the regions that con-
tributed the most to the classification as svPPA. Sensitivity refers to the
ratio of correctly classified lvPPA patients and specificity to the ratio of
correctly classified svPPA patients. Positive and negative predictive
values are given in Supplementary Table A.3. The regions that contribut-
ed the most to the classification of a subject as lvPPA included bilateral
cerebellum, middle occipital gyrus, middle and superior temporal gyri,
caudate nuclei, thalamus, superior frontal gyrus, supramarginal gyrus,
Fig. 4. Support vectormachine classification results for the comparison and discrimination betw
the comparison between semantic variant PPA (svPPA) and nonfluent/agrammatic variant PPA (
Bottom left: Regions of interest (ROIs) based on independentmeta-analyses. Right: Results of su
svPPA in yellow, nfvPPA in light green. Note that the scale of the distanceweights has no applica
brain approach in SVM classification.
angular gyrus, precuneus, cingulate gyrus, right lateral orbital gyrus, in-
ferior andmiddle frontal gyrus, and superior parietal gyrus. Regions that
contributed the most to the classification of svPPA included bilateral
cerebellum, inferior, middle, and superior temporal gyrus,
parahippocampal gyrus, hippocampus, insula, and right putamen. Clas-
sification accuracy was 95% for both, the whole brain and the ROI
approach. Both approaches reached high AUC valueswithout significant
differences between them (AUCROI = 0.91, AUCwhole brain = 0.93, p =
0.41).

Fig. 6 illustrates on top in yellow the regions that contributed the
most to the classification as lvPPA and in green the regions that contrib-
uted the most to the classification as nfvPPA. Sensitivity refers to the
ratio of correctly classified lvPPA patients and specificity to the ratio of
correctly classified nfvPPA patients. For details on positive and negative
predictive values see Supplementary Table A.3. The regions that contrib-
uted themost to the classification of a subject as lvPPA included bilateral
een semantic variant PPA and nonfluent/agrammatic variant PPA. Top left: VBM results for
nfvPPA) (svPPA b nfvPPA green, nfvPPA b svPPA red, family-wise error corrected p b 0.05).
pport vectormachine (SVM) classification. Top: Regionsmost relevant for classification as
ble units. Bottom: Sensitivity, specificity, and accuracy for the ROI approach and thewhole



Fig. 5. Support vector machine classification results for the comparison and discrimination between logopenic variant PPA and semantic variant PPA. Top left: VBM results for the
comparison between logopenic variant PPA (lvPPA) and semantic variant PPA (svPPA) (svPPA b lvPPA family-wise error corrected p b 0.05). Bottom left: Regions of interest (ROIs)
based on independent meta-analyses. Right: Results of support vector machine (SVM) classification. Top: Regions most relevant for classification as lvPPA in yellow, svPPA in light
green. Note that the scale of the distance weights has no applicable units. Bottom: Sensitivity, specificity, and accuracy for the ROI approach and the whole brain approach in SVM
classification.
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cerebellum, inferior, middle occipital gyrus, middle and superior tem-
poral gyri, thalamus, putamen, middle and superior frontal gyrus,
supramarginal gyrus, angular gyrus, precentral gyrus, cingulate gyrus,
precuneus, superior parietal gyrus. Regions that contributed the most
Fig. 6. Support vector machine classification results for the discrimination between
logopenic variant PPA and nonfluent/agrammatic variant PPA. Top: Regions most
relevant for support vector machine classification as logopenic variant PPA (lvPPA) in
yellow, nonfluent/agrammatic variant PPA (nfvPPA) in light green. Note that the scale of
the distance weights has no applicable units. VBM results are not shown for the group
comparisons, because no significant results were obtained. Middle: Sensitivity,
specificity, and accuracy for the ROI approach and the whole brain approach in SVM
classification. Bottom Regions of interest (ROIs) based on independent meta-analyses.
to the classification of nfvPPA included right inferior temporal gyrus, bi-
lateral middle and superior temporal gyri, gyrus rectus, lateral orbital
gyrus, insula, caudate nuclei, cuneus, cingulate gyrus, middle and supe-
rior frontal gyri, postcentral gyrus, supramarginal gyrus, and superior
parietal gyrus. Classification accuracy was low with 55% for the whole
brain approach and higher with 64% for the ROI approach. AUC values
were comparable, namely higher for the ROI than the whole brain ap-
proach, but without significant differences between them (AUCROI =
0.64, AUCwhole brain = 0.59, p = 0.50).

4. Discussion

To our knowledge, this is the first study demonstrating that SVM
classification in multi-center MRI data can be used to diagnose and dis-
sociate PPA subtypes, where the multi-center design is a precondition
for application in clinical routine in the future. Moreover, we compare
a whole brain vs. data-driven disease-specific ROI approach for SVM
classification. We used ROIs reported in a recent comprehensive meta-
analysis on PPA (Bisenius et al., 2016). In order to revealwhether the re-
gions that contributed themost to thewhole brain SVM classification of
the three variants of PPA corresponded to the regions that were espe-
cially atrophic in the respective variant, we additionally conducted sta-
tistical group-level comparisons between patient groups and healthy
control groups. In the following, we are going to introduce the results
of these group-level comparisons, before we discuss in more detail the
results of the SVM classification for the whole brain approach and the
ROI approach as well as possible further implications.

4.1. Atrophy in the different variants of primary progressive aphasia

The group comparisons in our study revealed regional brain atrophy
that included the disease-specific brain areas identified in comprehen-
sive systematic and quantitative meta-analyses across imaging studies
from the literature, if one compares this data for each PPA variant (see
left top and bottom images in Figs. 1–3). Beyond that our group-level
comparisons are in linewith studies showing that, with the progression
of the disease, the atrophic networks in the three subtypes of PPA partly
converge (e.g., Gorno-Tempini et al., 2011; Rogalski et al., 2011). Mild
and early svPPA has been shown to involve atrophy in (predominantly
left) anterior temporal lobe, with extension to the adjacent
temporoparietal junction, hippocampus and amygdala and posterior
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orbital cortex aswell as in the right anterior temporal lobe (Czarnecki et
al., 2008; Grossman, 2010; Krueger et al., 2010; Mesulam et al., 2012;
Rohrer et al., 2008) and to progress bilaterally into posterior and supe-
rior temporal lobe, left temporoparietal junction, bilateral cingulate cor-
tex and orbitofrontal gyri, left superior orbitofrontal gyrus, left inferior
and superior frontal gyri (e.g., Grossman, 2010; Kumfor et al., 2016;
Rogalski et al., 2011). Early and mild stages of nfvPPA, on the other
hand, have been shown to be characterized by atrophy in left inferior
frontal gyrus, temporoparietal junction, anterior superior temporal
gyrus, posterior middle frontal gyrus and precentral gyrus (Mesulam
et al., 2012) and to progress into left anterior temporal lobe, orbital cor-
tex, dorsolateral prefrontal cortex, anterior cingulate cortex, and along
the perisylvian fissure into the parietal lobe (e.g., Grossman, 2010;
Rogalski et al., 2011). For lvPPA, atrophy has been shown to progress
from (predominantly left) posterior superior temporal cortex, inferior
parietal cortex, posterior cingulate cortex and medial temporal cortex
into the anterior and lateral temporal cortex, caudate nucleus, insula, in-
ferior frontal gyrus and dorsal frontal cortex aswell as into the temporo-
parietal junction, posterior cingulate and precuneus of the right hemi-
sphere. (e.g., Rogalski et al., 2011; Rohrer et al., 2013).

4.2. Support vector machine classification is a useful tool to differentiate be-
tween healthy controls and primary progressive aphasia variants

Accuracies for the whole brain approach in SVM classification be-
tween patients and healthy controls ranged from 91% for nfvPPA over
95% for lvPPA to 97% for svPPA. The between-subtype whole brain
SVM classification enabled high accuracy of 78 and 95% for the discrim-
ination between svPPA vs. nfvPPA and svPPA vs. lvPPA variant. Only for
the discrimination between nfvPPA and lvPPA variants accuracy was
lowwith 55%. These numbers are in linewith previously reported accu-
racies ranging from58 to100% in studies on neurodegenerative diseases
like AD (e.g., (e.g., Chetelat and Baron, 2003; Davatzikos et al., 2008b;
Dukart et al., 2013; Dukart et al., 2011; Klöppel et al., 2008b; Lerch et
al., 2008; Teipel et al., 2007; Vemuri et al., 2008), mild cognitive impair-
ment (e.g., Davatzikos et al., 2008a; Teipel et al., 2007), FTD (e.g.,
Davatzikos et al., 2008b; Dukart et al., 2011; Klöppel et al., 2008a), and
PPA (Wilson et al., 2009; Zhang et al., 2013).

Until now, there has only been one study investigating the three var-
iants of PPAwith SVM classification (Wilson et al., 2009). These authors
performed a principal component analysis onMRI scans from one study
center and subsequently used the results for the pairwise SVM classifi-
cation between patients and healthy controls as well as between the
three patient groups. Wilson et al. (2009) found an accuracy of 100%
for the discrimination between svPPA patients and healthy controls,
100% for the classification between lvPPA patients and healthy controls,
and an accuracy of 89% for the discrimination between nfvPPA and
healthy controls. These authors report an accuracy of 89% for the dis-
crimination between svPPA and nfvPPA patients, 93.8% for svPPA vs.
lvPPA, and 81.3% for lvPPA vs. nfvPPA. Our SVM results using the
whole brain approach on grey matter density maps in the multi-center
cohort of the FTLD consortium are thus comparable with the results of
Wilson et al. (2009) with regard to the classification between patients
and healthy controls showing higher accuracies for svPPA and lvPPA
than for nfvPPA and the classification between lvPPA and nfvPPA show-
ing a lower classification accuracy than the other classifications be-
tween PPA variants.

Additionally, we performed group-level comparisons on the grey
matter density maps between patients and healthy controls as well as
between PPA variants in order to investigate whether the regions that
contributed the most to the SVM classification of patients also
corresponded to the regions mostly atrophied in these patients. Figs. 2
and 3 show that brain regions that were most consistently atrophied
in svPPA and lvPPA indeed also contributed themost to the SVM classi-
fication of these patients. For nfvPPA, on the other hand, brain regions
that contributed the most to the SVM classification as patients were
not constrained to the regions that were atrophied in our nfvPPA pa-
tients, but also encompassed very similar regions in the contralateral
(right) hemisphere (see Fig. 1). A possible explanation for the impor-
tance of the additional brain regions in the right hemisphere might be
that they were affected to a lesser extent (and thus not significant in
the group-level comparison) and that SVM classification as a more sen-
sitive method already took into account early atrophy in these regions.
There is a general consensus that the results of group-level statistics
might not be applicable to individual scans, because their sensitivity
and specificity at early stages of brain pathology is insufficient for the
prediction of the status of individual scans (Davatzikos et al., 2008b;
Fan et al., 2008; Wilson et al., 2009).

Interestingly, for the discrimination between svPPA and nfvPPA,
the regions that contributed to the SVM classification as svPPA pa-
tients (see Fig. 4 on the top), corresponded to the regions that were
most consistently atrophied in these patients (see Fig. 2 on the top
left). The regions that contributed to the SVM classification as nfvPPA,
on the other hand, were (except for two characteristic regions in the
inferior and middle frontal gyri) rather spread. This might be due to
the fact that the group comparisons between patients and healthy
controls showed for both, svPPA and nfvPPA, significant atrophy in
the superior temporal gyrus, parahippocampal area, hippocampus,
insula, and inferior frontal gyrus (see Figs. 1 and 2 on the top left). Al-
though atrophy in the superior temporal gyrus, parahippocampal
area, and hippocampus have been discussed to be rather specific for
svPPA, while insula, and inferior frontal gyrus have been discussed
to be rather characteristic for nfvPPA, it has been shown in longitudi-
nal studies that with the progression of the disease, the atrophic net-
works in the three variants of PPA partly converge (e.g.,
Gorno-Tempini et al., 2011; Rogalski et al., 2011). Given that on the
one hand several regions might be affected similarly in nfvPPA and
svPPA depending upon the current stage of the respective disease
and on the other hand structural MRI scans do not provide any infor-
mation regarding the temporal dynamic pattern of brain atrophy, the
SVM classificationmethod, given its high sensitivity, might not always
be able to perfectly discriminate between these two variants. For both
subtype-specific classifications, svPPA vs. nfvPPA and svPPA vs. lvPPA,
we reached a high classification accuracy, although the number of pa-
tients was rather low for lvPPA and the respective comparison. The
high accuracy might be related to a relatively strong (in the sense of
high t-values) and regionally focused atrophy in svPPA. This is obvi-
ous in the group comparisons revealing much higher atrophy in
svPPA than nfvPPA or lvPPA, whereas nfvPPA showed stronger atro-
phy only in a very small area and lvPPA did not show any atrophy in
comparison with svPPA. Note that disease duration and severity did
generally not significantly differ between PPA subtypes excluding
these factors as explanation for differences in classification accuracy.

As stated before thewhole-brain SVM classification between nfvPPA
and lvPPA variants reached only a low accuracy. Thismight be related to
relatively small and rather distributed atrophy in these two PPA variants
or to conceptual issues. In a prospective data-driven study, Sajjadi et al.
(2012) examined towhich extent PPA patients would be classifiable ac-
cording to the revised clinical diagnostic criteria and which linguistic
impairments would cluster together (and thus form distinct syn-
dromes) using principal factor analysis. In this cohort, 58.7% of the pa-
tients could be assigned to one of the three variants of PPA proposed
by Gorno-Tempini et al. (2011), while 41.3% of the patients were classi-
fied asmixed PPA because their deficits either extended beyond a single
PPA variant or they met the diagnostic criteria for more than one vari-
ant. The principal factor analysis identified two clear syndromes corre-
sponding to the proposed syndromes of svPPA and nfvPPA as well as a
residual miscellany. Interestingly, impaired sentence repetition, which
has been proposed as a cardinal diagnostic feature for lvPPA, aligned
with the factor corresponding to nfvPPA. Onemight therefore speculate
that low classification accuracy between nfvPPA and lvPPA in imaging
data might not only be related to the rather relatively small and
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distributed atrophy, but possibly also to problems in clinically
distinguishing both PPA syndromes.

4.3. Regions-of-interest approach or whole brain approach?

We compared the whole brain approach for SVM classification with
an ROI approach using ROIs from a recent meta-analysis on the three
variants of PPA (Bisenius et al., 2016). A similar approach has already
been adopted by Dukart and colleagues who compared the whole
brain versus ROI approach for SVM classification between FTD and AD
as well as between these patient groups and healthy controls using
structural MRI and PET scans (Dukart et al., 2013; Dukart et al., 2011).
These authors reported that for MRI scans, the ROI approach was com-
parable to thewhole brain approach for the discrimination between pa-
tients and healthy controls, but had a lower accuracy for the
discrimination between patient groups (AD vs. FTD) (Dukart et al.,
2013; Dukart et al., 2011). In the current study, the ROI approach
reached generally a high accuracy in diagnosis and, at least mainly, dif-
ferential diagnosis/classification of PPA syndromes, comparable to the
whole-brain approach. In detail, it showed a higher accuracy as com-
pared to healthy controls for svPPA patients and a slightly lower accura-
cy for nfvPPA and lvPPA patients, while it showed a similar accuracy for
svPPA vs. nfvPPA and svPPAvs. lvPPApatients as compared to thewhole
brain approach. Remarkably, for the lvPPA vs. nfvPPA comparison the
ROI approach showed a higher accuracy than thewhole brain approach,
may be due to the diffusivity and similar strength (in the sense of t-
values) of brain atrophy requiring higher regional specificity for the
analysis. One might speculate that ROI-based classification might be
given preference for special questions in differentiating between syn-
dromes in the future. Given however that none of these trends was sta-
tistically significant, we consider both approaches as equally valid.

The visual comparison between the whole brain approach and the
ROI approach raises however the question about the optimal method
to choose ROIs for SVM classification in PPA. The optimal number of
ROIs for SVM classification needs to be such as to accurately capture
all subtleties of the structural abnormality in these patients and thus
achieve a sufficient predictive accuracy without however reducing pre-
dictive accuracy through the increase of noise that possibly accom-
panies additional ROIs that are less relevant to the classification.
Selecting ROIs based on group-level comparison between patients and
healthy control groups might for instance provide a higher discrimina-
tive power for the SVM classification in the same study sample. These
ROIs would however be biased to at least some extent by the specific
study sample and might therefore not necessarily lead to similar good
results in other study samples. Another possibility to find the optimal
ROIs for the SVM classification between nfvPPA (or lvPPA) and healthy
controls might consist in rerunningmeta-analyses on the three variants
of PPA across MRI studies using a less conservative statistical threshold.
This methodological approach might no longer exclusively reveal the
brain regions that are specific to a given variant (and to some extent
possibly even false positive results), but due to the higher sensitivity,
also common networks between variants that become usually only vis-
ible in longitudinal studies monitoring the progression of the disease
(e.g., Rogalski et al., 2011). For the ROI approach of SVM classification
between the different variants of PPA, on the other hand, it might be
rather promising to only consider ROIs that are eithermore severely im-
paired in one variant as in the other variants as for instance the inferior
and middle temporal gyri in svPPA, or rather specific to the given vari-
ant (e.g., middle frontal gyrus in nfvPPA as compared to svPPA). The
considerations regarding the optimal ROI for SVM classification in PPA
are however purely hypothetical and need to be investigated in future
studies.

Furthermore, it might be interesting to compare the ROI approach to
the whole brain approach using combined imaging data as for instance
MRI and PET as has already been done for AD and FTD (e.g., Davatzikos
et al., 2008b; Dukart et al., 2013; Dukart et al., 2011) or using MRI and
diffusion tensor imaging data as has been done by Zhang et al. (2013),
who showed, in a small sample, higher accuracies for whole brain
SVM classification of diffusion tensor imaging data than of MRI data
for nfvPPA and svPPA versus healthy controls. Moreover, the potential
of ROI approaches for disease classification has to be validated in longi-
tudinal studies, where one would assume higher accuracy in early
stages.

5. Limitations

The relatively small number of subjects might hamper the generali-
zation of the results to the overall population of PPA patients. Given
however that our results are very similar to another study including
more patients but using a different approach (Wilson et al., 2009) this
should not really constitute a major issue. A problem that might occur
in pattern classification methods is the risk of overfitting the data due
to the high-dimensionality of the data, which can however be reduced
by using the leave-one out approach as has been done in the current
study. Segmentation and normalization processes are not always per-
fect whichmight result in underestimation of atrophy in patients or un-
derestimation of grey matter in healthy controls, which leads to lower
accuracies in the SVM classification. This issue should however at least
partly be addressed in the current study given that our data have been
acquired on different scanners andwere well balanced between patient
and healthy control groups. Finally, the classification between pairs of
groupswas a highly idealized situation that does not reflect the problem
in the real world of differential diagnosis between several neurological
diseases with different prevalence rates – an issue that has to be ad-
dressed in future studies validating the application of SVM approaches
in every day diagnostic life.

6. Conclusion

Our study aimed at validating the potential of structural multi-cen-
ter MRI data for disease classification in PPA. We compared the whole
brain approach with a disease-specific ROI approach for SVM classifica-
tion in the three variants of PPA. Generally, both thewhole brain and the
disease-specific approach reached high classification accuracy in diag-
nosis and differential diagnosis of PPA syndromes without significant
differences. Our results showed that for svPPA, the ROI approach using
prototypical disease-related networks as revealed by meta-analyses
across MRI studies revealed a higher accuracy (perfect discrimination
of 100%) than the whole brain approach. For nfvPPA and lvPPA on the
other hand, the SVM classification showed higher accuracies when
using the whole brain approach. The regions contributing to the correct
SVM classification of patients mostly corresponded to regions that were
consistently atrophied in these patients as shown by the VBM results.
For the discrimination between svPPA and nfvPPA, and between
svPPA and lvPPA the whole brain approach and the ROI approach
showed similar results. The ROI approach increased accuracy in classifi-
cation between lvPPA and nfvPPA in comparison with the whole brain
approach, whichmight be related to the diffusivity and similar strength
(in the sense of t-values) in these PPA syndromes requiring higher re-
gional specificity for the analysis. Given that the accuracies for SVM clas-
sification using the ROI approach were still quite high despite the
relatively small size of the chosen ROIs as compared to the regions
that were taken into account in the whole brain SVM classification of
the respective patients, future studies shall further explore the potential
of the ROI approach using different ROIs for SVM classification of PPAs.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2017.02.003.
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