
Supplementary Material:
A neurocomputational model of goal-directed
navigation in insect-inspired embodied
agents
Dennis Goldschmidt 1,2,∗, Poramate Manoonpong 3 and Sakyasingha
Dasgupta 4,5

*Correspondence:
Dennis Goldschmidt
Champalimaud Centre for the Unknown
Av Brası́lia, Doca de Pedrouços, 1400-038 Lisbon, Portugal
dennis.goldschmidt@neuro.fchampalimaud.org

1 SUPPLEMENTARY TABLES

1.1 Model variables & parameters

Symbol Description Value (range)
φ(t) compass orientation of the agent [0, 2π)
s(t) walking speed signal of the agent [0, 1]
i index of (postsynaptic) neurons in circular arrays [0, N − 1]
j index of (presynaptic) neurons in circular arrays [0, N − 1]
N number of neurons in circular arrays 18
t simulation time [0, T]

∆t simulation time interval 0.1 s
tforage duration of outward foraging until homing 1000 s
T total duration of foraging trial 3

2thome
φi preferred orientations of circular arrays [0, 2π)

xHDi (t) activity of ith neuron in head direction layer R≥0

xGi (t) activity of ith neuron in gating layer R≥0
δij Kronecker delta

xMi (t) activity of ith neuron in memory layer R≥0
λ memory leak parameter 0.0075

xHVi (t) activity of ith neuron in home vector array R≥0
wij(t) weights of decoding layer R≥0

θHV (t) home vector angle (vector average of xHVi) [0, 2π)
lHV (t) length of home vector R≥0
mHV (t) motor signal of home vector angle R≥0
r(t) food reward at the feeder [0, 1]
d(t) distance of the agent to the feeder R≥0
σ(t) binary foraging state of the agent [0, 1]

1

Goldschmidt et al. Supplementary Material

Symbol Description Value (range)
xGVi (t) activity of ith neuron in global vector array R≥0

wGVi (t) weight to ith neuron in global vector array R≥0
µGV global vector learning rate 2
θGV (t) global vector angle (vector average of xGVi) [0, 2π)
lGV length of global vector R≥0

mGV (t) motor signal of global vector angle R≥0
mε(t) output signal of random search (exploration) R
ε(t) exploration rate [0, 1]
v(t) lowpass filtered signal of food reward R≥0
γ food reward discount factor R≥0
β(t) inverse temperature of exploration rate R≥0

µβ global learning rate for β adaptation 10−6

µv reward-based learning rate for β adaptation 102

Σ(t) control output for steering R
φnoisy noisy compass orientation [0, 2π)
δφ shift of compass orientation due to noise [0, 2π)
ηsens sensory noise level [0, 2π)
ηneur neural noise level R≥0

δxHDi fluctuations in the head direction activity R
δr position error R≥0

Lfeed distance of the nest to the feeder R≥0
θfeed angle of the nest to the feeder [0, 2π)
p(x, y) probability density function (box histogram) [0, 1]

2 EXPERIMENTAL PLATFORMS & FORAGING STATISTICS

2.1 Experimental Platforms

For our simulation results, we applied two different experimental platforms: First, we embedded the
closed-loop control into a two-dimensional simulated point agent (Fig. S1i) for large-scale numerical
results. Secondly, we used a simulated, embodied agent based on the the hexapod walking robot AMOS II
(Fig. S1ii, Manoonpong et al. (2013)). Both agents are able to perceive sensory input about compass
direction, walking speed, and landmark detection, as well as food reward and internally generated signals
(e.g., foraging state). These external and internal signals are fed into our model.

Our navigation model produces an output signal which controls the steering direction of the agent. The
embodied agent applies a central pattern generator (CPG)-based neural locomotion control, which consists
of modular neural networks generating a variety of periodic patterns and coordinating all leg joints. Thus,
the agent is able to control a multitude of different, insect-like behavioral patterns. The resulting behaviors
include omnidirectional walking and insect-like gaits (Manoonpong et al., 2013), which can be controlled
manually or autonomously driven by exteroceptive sensors, such as a camera (Zenker et al., 2013), a laser
scanner (Kesper et al., 2013), or infrared sensors (Goldschmidt et al., 2014). All neural networks in the
CPG-based locomotion control are modeled using a discrete-time non-spiking neuron model with different
activation functions (see Manoonpong et al. (2013) for details).

2.2 Agent motion dynamics and foraging statistics

In this subsection, we will derive agent trajectory dynamics and foraging statistics for modeling social
insects. In both the point and embodied agent cases, the motion trajectory of the agent can be modeled
using the current compass orientation φ(t) as well as the walking speed v(t). The Cartesian coordinates x

2

Goldschmidt et al. Supplementary Material

Embodied Artificial

Agent AMOS II
Modular Robot Control

Environment (MoRoCo)

FTi

CTr TC

R0

R1
R2

L2

L1

L0

IR

Lpzrobots Toolkit

IR

i ii2D Simulation NaviSim

Figure S1. Experimental platforms. i) The twodimensional point agent simulation NaviSim is applied
for large-scale numerical experiments. ii) Lpzrobots framework (Der and Martius, 2012) containing the
Modular Robot Control Environment and the simulated artificial agent based on the six-legged walking
robot AMOS II (Manoonpong et al., 2013). The agent has six legs (R0, R1, R2, L0, L1, L2) and each
leg has three joints: the thoraco-coxal (TC) joint enables forward and backward movements, the coxa-
trochanteral (CTr) joint enables elevation and depression of the leg, and the femur-tibia (FTi) joint enables
extension and flexion of the tibia. The agent also contains a multitude of proprio- and exteroceptive sensors.
Here we apply a compass sensor, a walking speed sensor, and infrared (IR) sensors. Both platforms
are open-source projects and are available at https://github.com/degoldcode/NaviSim (NaviSim) and
https://github.com/georgmartius/lpzrobots (Lpzrobots), respectively.

and y are described by the following differential equations

ẋ(t) = v(t) cos(φ(t)), (S1)

ẏ(t) = v(t) sin(φ(t)) (S2)

In the two-dimensional simulation, we numerically integrate these equations by using the forward Euler
method with interval step size ∆t as follows:

x(t+ ∆t) = x(t) + ∆t · ẋ(t), (S3)

y(t+ ∆t) = y(t) + ∆t · ẏ(t). (S4)

The orientation of the agent is updated given by the differential equation

φ(t+ ∆t) = φ(t) + ∆t · φ̇(t) = φ(t) + ∆t · kφΣ(t), (S5)

where Σ(t) is the control output of our model, and kφ = π is a scaling factor. In random foraging, we apply
a Gaussian normal distributionN (0, exp(t)) for the turning rate, which corresponds to a correlated random
walk of the agent (Bovet and Benhamou, 1988). It has been shown that such a random walk leads to mean
foraging distances 〈L〉 proportional to the square root of the simulation time

√
t.

Similarly, we can show that the path integration errors follow a similar square-root scaling law. Fig. S2
shows the position errors δr with respect to time for each of the 1000 trials. We averaged the position errors
for each time step individually, which is indicated by the black colored solid line. These time-averaged
position errors increase as a square root function of time (green-colored dashed line) with scaling factor
a = 0.0044.

Frontiers 3

https://github.com/degoldcode/NaviSim
https://github.com/georgmartius/lpzrobots

Goldschmidt et al. Supplementary Material

Figure S2. Position errors δr and mean errors 〈δr〉t for each time step with respect to foraging time in
1000 trials (fixed sensory noise of 5% and 18 neurons per layer). Smooth fit (black line) indicates an
interpolation of the data points by taking the average of positional errors monotonically along the foraging
time axis. We identified this function to scaled by the square root of the foraging time (green line).

3 DIRECTED WALK USING SINUSOIDAL PHASORS

3.1 Directed walk using sine error compensation

In order to generate directed motion of an agent towards a desired orientation, we apply a turning rate
based on a sinusoidal function (Mittelstaedt, 1962, 1985; Vickerstaff and Di Paolo, 2005) minimizing the
angular difference between the desired and the actual orientation of the agent. The angular difference, or
error is defined as

δ = θ − φ, (S6)

δ ∈ [−π, π) (S7)

where θ is the desired orientation, and φ is the actual orientation. Thus, a turning rate given by

φ̇ = kφ sin(δ) (S8)

leads to right turns (φ̇ < 0) when the actual orientation is left from the desired orientation (δ < 0), and vice
versa (see Fig. S3).

3.2 Generating searching patterns

An interesting behavior arises from the unstable fixed point given by Eq. S8. When the agent overshoots
the home or goal position, its angular error changes rapidly from zero to close to the unstable fixed point
±π. Note that if the agent’s angular error is exactly±π, the turning rate is computed to be zero by definition.
However, if δ is close to the unstable fixed point, the agent will slowly turn to the left or right, leading the
turning rate to increase in the respective turning direction. As the agent’s orientation aligns with the desired
orientation, the turning rate decreases to zero. As a result, the agent will perform loops around the desired
position in a searching pattern (Vickerstaff and Di Paolo, 2005). Indeed, such looped searching patterns

4

Goldschmidt et al. Supplementary Material

-1

 0

 1

-2π -π 0 π 2π

d
φ
/d

t

δ

kφ=1

Figure S3. Sketch of the turning dynamics using a sine function of angular difference. The dynamical
system consists of two fixed points: a stable one at x = 0 and an unstable one at x = ±π. The system has
been shown to be equivalent to a linearly damped pendulum (Vickerstaff, 2007).

has been observed in desert ants (Wehner and Srinivasan, 1981), as well as in honeybees (Reynolds et al.,
2007).

3.3 Proof: phasor addition of inverted home vector and global vector leads to
goal-directed phasor

Here, we prove that adding the phasors given by the inverted home vector (HV) and global vector (GV)
leads to a phasor, which has a phase corresponding to the orientation towards the goal. We define the HV
as vector a (angle θHV , length lHV) and the GV as vector b (angle θGV , length lGV). We will show that
the vector b− a connecting the agent’s current position and the goal (see Fig. S4), is represented by the
sum of the HV and GV phasors. We assume that the agent controls its heading orientation φ(t) due to the
following differential control

φ̇(t) ∝ lHV (t) sin(θHV (t)− φ(t)− π) + lGV (t) sin(θGV (t)− φ(t)), (S9)

where vector a is inversed by substraction of π. For convenience, we will drop the time dependences from
now on.

Representing the phasors in the complex plane C with c sin(x) = Im
[
ceix

]
leads to

φ̇ ∝ Im

lHV eiθHV e−iπ︸︷︷︸
=−1

e−iφ

+ Im
[
lGV e

iθGV e−iφ
]

= Im
[
(lGV e

iθGV − lHV eiθHV)e−iφ
]
.

Frontiers 5

Goldschmidt et al. Supplementary Material

Goal

Home

Agent

a

b

b-a

Figure S4. Sketch of vector-based navigation. In order to derive the correct orientation towards the goal
based on a stored vector b, the agent has to subtract by the current position a derived from path integration.

Clearly, (lGV e
iθGV − lHV eiθHV) is the vector (b− a) described in complex polar coordinates. Thus, we

define the agent-to-goal vector representation in complex polar coordinates to be lgoaleiθgoal to obtain

φ̇ ∝ Im
[
lgoale

iθgoale−iφ
]

= lgoal sin(θgoal − φ)

Therefore, we proved that the addition of the inverted home vector and the global vector phasor leads to a
phasor that describes the vector connecting the agent’s current location to the goal position.

4 DERIVING AN ADAPTIVE EXPLORATION RATE BASED ON A GRADIENT RULE

Here, we derive an adaptive exploration rate based on a gradient rule (Triesch, 2005, 2007) for a foraging
agent in random environments (i.e., containing randomly distributed goals). The exploration rate only
accounts for received rewards in time. We define the time-discounted cumulative reward to be

v(t) =
t∑
i=0

γir(t− i),

which is given by the update rule v ← r+ γv. We assume the exploration rate with respect to v to be given
by

ε(v(t)) = exp(−βv(t)),

where β > 0 is the inverse temperature. For later convenience, we derive the partial derivatives of ε, which
are given by

∂ε(v)

∂β
= −v exp(−βv) = −vε, (S10)

∂ε(v)

∂v
= −β exp(−βv) = −βε. (S11)

6

Goldschmidt et al. Supplementary Material

We derive a gradient rule, which changes β accordingly to bring the probability distribution fε(ε) of ε(t)
closer to an exponential distribution fexp(λ, ε) = λ exp(−λε), assuming a fixed mean distribution. This
maximizes the mutual information between the input distribution fv(v) and the output distributionfε(ε),
such that the exploration activity matches the environmental needs. The following relationship is given by
the derivatives:

fε(ε) =
fv(v)
∂ε
∂v

. (S12)

We consider the Kullback-Leibler (KL) divergence as a measure for closeness of two probability
distributions:

DKL(fε|fexp) =

∫
fε(ε) ln

(
fε(ε)

λ exp(−λε)

)
dε

=

∫
fε(ε)

[
ln
(
fε(ε)

)
− ln

(
λ exp(−λε)

)]
dε

=

∫
fε(ε) ln(fε(ε))dε−

∫
fε(ε)(lnλ− λε)dε

= −H(ε) + λ

∫
εfε(ε)dε− lnλ

∫
fε(ε)dε

= −H[ε] + λE[ε]− lnλ+ const.

By substituting −H[ε] with the relations given by Eq. S12, we derive

−H[ε] =

∫
fε(ε) ln(fε(ε))dε =

∫
fv(v) ln

(
fv(v)
∂ε
∂v

)
dv =

∫
fv(v)

[
ln
(
fv(v)

)
− ln

(
∂ε

∂v

)]
dv

=

∫
fv(v) ln

(
fv(v)

)
dv −

∫
fv(v) ln

(
∂ε

∂v

)
dv = −H[v]− E

[
ln

(
∂ε

∂v

)]
,

which leads to

DKL(fε|fexp) = −H[v]− E
[

ln

(
∂ε

∂v

)]
+ λE[ε]− lnλ+ const. (S13)

Considering that the input entropy H[v] is independent1 of β, we derive the partial derivative of the KL
divergence with respect to β as given by

∂DKL

∂β
=

∂

∂β

{
− E

[
ln

(
∂ε

∂v

)]
+ λE[ε]

}
= − ∂

∂β

{
E

[
ln

(
∂ε

∂v

)
− λε

]}

= −E
[
∂ ln(∂ε/∂v)

∂β
− λ ∂ε

∂β

]
= −E

[
∂ ln(−βε)

∂β
+ λvε

]
,

1 It follows ∂H[v]
∂β

= 0.

Frontiers 7

Goldschmidt et al. Supplementary Material

where we used the derivatives from Eqs. S10 and S11. Thus, the partial derivivate of the KL divergence is
given by

∂DKL

∂β
= −E

[
1

β
+ λvε

]
, (S14)

where we used fV (V)
fε(ε)

= ∂ε
∂V .

Finally, the gradient-descent rule is given by

∆β(t) = ηβ

(
1

β(t)
+ λv(t)ε(t)

)
, (S15)

which we apply as an update for β ← β + ∆β.

5 PSEUDOCODE OF LEARNING ALGORITHM FOR ADAPTIVE VECTOR
NAVIGATION

Algorithm 1 Learning algorithm for adaptive vector navigation

Initialize: wGVi = 0, all activities xHV
i and xGV

i of the circular arrays are initially set to zero. See
Supplementary Tables for detailed initial parameters.

Repeat: At simulation time t

Step 1: Update sensory inputs (compass φ(t), speed s(t), internal states σ(t) and rewards R(t) from
environmental interactions of the agent.

Step 2: Update home vector array activities xHV
i (t) using Eqs. 4–10.

Step 3: Update global vector array activities xGV
i (t) and weights wGV

i (t) using Eqs. 12–15.

Step 5: The exploration rate ε(t) is updated using Eqs. 19 and 20.
v ← r + γv
ε← exp(−βv)

Step 6: Update inverse temperature β(t) of exploration rate using Eqs. 21 and 22.
∆β ← µβ

(
1
β + µvvε

)
β ← β + ∆β,

Step 7: Update navigation control output Σ(t) as a weighted linear combination of expressed vector
representations and exploration using Eq. 23.

Step 8: Update agent’s position due to control output.
φ← φ+ ∆tκφΣ

ragent ← ragent + ∆t

(
v cos(φ)
v sin(φ)

)
Step 9: t← t+ ∆t.

Until: maximum simulation time is reached (t = T).

8

Goldschmidt et al. Supplementary Material

REFERENCES

Bovet, P. and Benhamou, S. (1988). Spatial analysis of animals’ movements using a correlated random
walk model. Journal of Theoretical Biology, 131(4):419 – 433.

Der, R. and Martius, G. (2012). The Playful Machine: Theoretical Foundation and Practical Realization of
Self-Organizing Robots, volume 15 of Cognitive Systems Monographs. Springer.

Goldschmidt, D., Wörgötter, F., and Manoonpong, P. (2014). Biologically-inspired adaptive obstacle
negotiation behavior of hexapod robots. Frontiers in Neurorobotics, 8(3).

Kesper, P., Grinke, E., Hesse, F., Wörgötter, F., and Manoonpong, P. (2013). Obstacle/Gap Detection and
Terrain Classification of Walking Robots based on a 2D Laser Range Finder. In Proc. 16th Int. Conf. on
Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR), pages
419–426.

Manoonpong, P., Parlitz, U., and Wörgötter, F. (2013). Neural control and adaptive neural forward models
for insect-like, energy-efficient, and adaptable locomotion of walking machines. Frontiers in Neural
Circuits, 7(12).

Mittelstaedt, H. (1962). Control systems of orientation in insects. Annual Review of Entomology,
7(1):177–198.

Mittelstaedt, H. (1985). Neurobiology of Arachnids, chapter Analytical Cybernetics of Spider Navigation,
pages 298–316. Springer Berlin Heidelberg, Berlin, Heidelberg.

Reynolds, A. M., Smith, A. D., Menzel, R., Greggers, U., Reynolds, D. R., and Riley, J. R. (2007).
Displaced honey bees perform optimal scale-free search flights. Ecology, 88(8):1955–1961.

Triesch, J. (2005). Artificial Neural Networks: Biological Inspirations – ICANN 2005: 15th International
Conference, Warsaw, Poland, September 11-15, 2005. Proceedings, Part I, chapter A Gradient Rule
for the Plasticity of a Neuron’s Intrinsic Excitability, pages 65–70. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Triesch, J. (2007). Synergies between intrinsic and synaptic plasticity mechanisms. Neural Computation,
19(4):885–909.

Vickerstaff, R. J. (2007). Evolving dynamical system models of path integration. PhD thesis, University of
Sussex.

Vickerstaff, R. J. and Di Paolo, E. A. (2005). Evolving neural models of path integration. Journal of
Experimental Biology, 208(17):3349–3366.

Wehner, R. and Srinivasan, M. V. (1981). Searching behaviour of desert ants, genus Cataglyphis
(Formicidae, Hymenoptera). Journal of comparative physiology, 142(3):315–338.

Zenker, S., Aksoy, E., Goldschmidt, D., Wörgötter, F., and Manoonpong, P. (2013). Visual terrain
classification for selecting energy efficient gaits of a hexapod robot. In Advanced Intelligent Mechatronics
(AIM), 2013 IEEE/ASME International Conference on, pages 577–584.

Frontiers 9

	Supplementary Tables
	Model variables & parameters

	Experimental platforms & foraging statistics
	Experimental Platforms
	Agent motion dynamics and foraging statistics

	Directed walk using sinusoidal phasors
	Directed walk using sine error compensation
	Generating searching patterns
	Proof: phasor addition of inverted home vector and global vector leads to goal-directed phasor

	Deriving an adaptive exploration rate based on a gradient rule
	Pseudocode of learning algorithm for adaptive vector navigation

